Internal
problem
ID
[6278]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
3.
THE
DIFFERENTIAL
EQUATION
IS
LINEAR
AND
OF
SECOND
ORDER,
page
311
Problem
number
:
572
Date
solved
:
Tuesday, September 30, 2025 at 02:42:08 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(a-x)^2*(b-x)^2*diff(diff(y(x),x),x) = k^2*y(x); dsolve(ode,y(x), singsol=all);
ode=(a - x)^2*(b - x)^2*D[y[x],{x,2}] == k^2*y[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") k = symbols("k") y = Function("y") ode = Eq(-k**2*y(x) + (a - x)**2*(b - x)**2*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -k**2*y(x) + (a - x)**2*(b - x)**2*Derivative(y(x), (x, 2)) cann