2.2.137 Problems 13601 to 13700

Table 2.287: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

13601

\begin{align*} y^{\prime } y+\frac {a \left (x -6\right ) y}{5 x^{{7}/{5}}}&=\frac {2 a^{2} \left (x -1\right ) \left (x +4\right )}{5 x^{{9}/{5}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

63.458

13602

\begin{align*} y^{\prime } y-\frac {3 a y}{x^{{7}/{4}}}&=\frac {a^{2} \left (x -1\right ) \left (x -9\right )}{4 x^{{5}/{2}}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

78.745

13603

\begin{align*} y^{\prime } y-\frac {a \left (\left (1+k \right ) x -1\right ) y}{x^{2}}&=\frac {a^{2} \left (1+k \right ) \left (x -1\right )}{x^{2}} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

42.982

13604

\begin{align*} y^{\prime } y-\left (\left (2 n -1\right ) x -a n \right ) x^{-1-n} y&=n \left (x -a \right ) x^{-2 n} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

113.552

13605

\begin{align*} y^{\prime } y-a \left (\frac {n +2}{n}+b \,x^{n}\right ) y&=-\frac {a^{2} x \left (\frac {n +1}{n}+b \,x^{n}\right )}{n} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

143.492

13606

\begin{align*} y^{\prime } y&=\left (a \,{\mathrm e}^{x}+b \right ) y+c \,{\mathrm e}^{2 x}-a b \,{\mathrm e}^{x}-b^{2} \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

42.887

13607

\begin{align*} y^{\prime } y&=\left (a \,{\mathrm e}^{\lambda x}+b \right ) y+c \left (a^{2} {\mathrm e}^{2 \lambda x}+a b \left (\lambda x +1\right ) {\mathrm e}^{\lambda x}+b^{2} \lambda x \right ) \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

124.284

13608

\begin{align*} y^{\prime } y&={\mathrm e}^{\lambda x} \left (2 a \lambda x +a +b \right ) y-{\mathrm e}^{2 \lambda x} \left (a^{2} \lambda \,x^{2}+a b x +c \right ) \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

193.800

13609

\begin{align*} y^{\prime } y&={\mathrm e}^{a x} \left (2 a \,x^{2}+b +2 x \right ) y+{\mathrm e}^{2 a x} \left (-a \,x^{4}-b \,x^{2}+c \right ) \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

95.198

13610

\begin{align*} y^{\prime } y+a \left (2 b x +1\right ) {\mathrm e}^{b x} y&=-a^{2} b \,x^{2} {\mathrm e}^{2 b x} \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

14.368

13611

\begin{align*} y^{\prime } y-a \left (1+2 n +2 n \left (n +1\right ) x \right ) {\mathrm e}^{\left (n +1\right ) x} y&=-a^{2} n \left (n +1\right ) \left (n x +1\right ) x \,{\mathrm e}^{2 \left (n +1\right ) x} \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

81.632

13612

\begin{align*} y^{\prime } y+a \left (1+2 b \sqrt {x}\right ) {\mathrm e}^{2 b \sqrt {x}} y&=-a^{2} b \,x^{{3}/{2}} {\mathrm e}^{4 b \sqrt {x}} \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

33.967

13613

\begin{align*} y^{\prime } y&=\left (2 \ln \left (x \right )+a +1\right ) y+x \left (-\ln \left (x \right )^{2}-a \ln \left (x \right )+b \right ) \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

47.377

13614

\begin{align*} y^{\prime } y&=\left (2 \ln \left (x \right )^{2}+2 \ln \left (x \right )+a \right ) y+x \left (-\ln \left (x \right )^{4}-a \ln \left (x \right )^{2}+b \right ) \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

68.372

13615

\begin{align*} y^{\prime } y&=a x \cos \left (\lambda \,x^{2}\right ) y+x \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

32.331

13616

\begin{align*} \left (A y+B x +a \right ) y^{\prime }+B y+k x +b&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

9.609

13617

\begin{align*} \left (y+a x +b \right ) y^{\prime }&=\alpha y+\beta x +\gamma \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

52.945

13618

\begin{align*} \left (y+A \,x^{n}+a \right ) y^{\prime }+n A \,x^{n -1} y+k \,x^{m}+b&=0 \\ \end{align*}

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

33.041

13619

\begin{align*} x y^{\prime } y&=a y^{2}+b y+c \,x^{n}+s \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

66.837

13620

\begin{align*} x y^{\prime } y&=-n y^{2}+a \left (2 n +1\right ) x y+b y-a^{2} n \,x^{2}-a b x +c \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

37.094

13621

\begin{align*} 2 x y^{\prime } y&=\left (1-n \right ) y^{2}+\left (a \left (2 n +1\right ) x +2 n -1\right ) y-a^{2} n \,x^{2}-b x -n \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

54.204

13622

\begin{align*} \left (a x y-a k y+b x -b k \right ) y^{\prime }&=c y^{2}+d x y+\left (-d k +b \right ) y \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

69.732

13623

\begin{align*} x \left (2 a y+b x \right ) y^{\prime }&=a \left (2-m \right ) y^{2}+b \left (1-m \right ) x y+c \,x^{2}+A \,x^{m +2} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6.036

13624

\begin{align*} \left (x^{2}+y x +a \right ) y^{\prime }&=y^{2}+y x +b \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

8.730

13625

\begin{align*} \left (2 A x y+B \,x^{2}+b \right ) y^{\prime }&=A y^{2}+k \left (A k +B \right ) x^{2}+c \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

88.516

13626

\begin{align*} \left (A x y+B \,x^{2}+k x \right ) y^{\prime }&=A y^{2}+B y x +\left (A b +k \right ) y+B b x +b k \\ \end{align*}

[_separable]

0.133

13627

\begin{align*} \left (A x y+B \,x^{2}+k x \right ) y^{\prime }&=A y^{2}+c x y+d \,x^{2}+\left (-A \beta +k \right ) y-c \beta x -k \beta \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

103.514

13628

\begin{align*} \left (A x y+A k y+B \,x^{2}+B k x \right ) y^{\prime }&=c y^{2}+d x y+k \left (d -B \right ) y \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

121.221

13629

\begin{align*} \left (A x y+B \,x^{2}+\left (-1+k \right ) A a y-\left (A b k +B a \right ) x \right ) y^{\prime }&=A y^{2}+B y x -\left (B a k +A b \right ) y+\left (-1+k \right ) B b x \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7.464

13630

\begin{align*} \left (\left (a x +c \right ) y+\left (1-n \right ) x^{2}+\left (2 n -1\right ) x -n \right ) y^{\prime }&=2 a y^{2}+2 y x \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

272.934

13631

\begin{align*} x \left (2 a x y+b \right ) y^{\prime }&=-a \left (m +3\right ) x y^{2}-b \left (m +2\right ) y+c \,x^{m} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5.849

13632

\begin{align*} x \left (\left (m -1\right ) \left (A x +B \right ) y+m \left (d \,x^{2}+e x +F \right )\right ) y^{\prime }&=\left (A \left (1-n \right ) x -B n \right ) y^{2}+\left (d \left (2-n \right ) x^{2}+e \left (1-n \right ) x -F n \right ) y \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

426.141

13633

\begin{align*} x \left (2 a x y+b \right ) y^{\prime }&=-4 a \,x^{2} y^{2}-3 b x y+c \,x^{2}+k \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

37.644

13634

\begin{align*} \left (y x +a \,x^{n}+b \,x^{2}\right ) y^{\prime }&=y^{2}+c \,x^{n}+b x y \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

257.242

13635

\begin{align*} x \left (2 a \,x^{n} y+b \right ) y^{\prime }&=-a \left (3 n +m \right ) x^{n} y^{2}-b \left (2 n +m \right ) y+A \,x^{m}+x \,x^{-n} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

27.863

13636

\begin{align*} y^{\prime } y&=-n y^{2}+a \left (2 n +1\right ) {\mathrm e}^{x} y+b y-a^{2} n \,{\mathrm e}^{2 x}-a b \,{\mathrm e}^{x}+c \\ \end{align*}

[[_Abel, ‘2nd type‘, ‘class A‘]]

97.182

13637

\begin{align*} y^{\prime }&=a y^{3}+\frac {b}{x^{{3}/{2}}} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Abel]

8.364

13638

\begin{align*} y^{\prime }&=-y^{3}+3 y a^{2} x^{2}-2 a^{3} x^{3}+a \\ \end{align*}

[_Abel]

2.249

13639

\begin{align*} y^{\prime }&=-y^{3}+\left (a x +b \right ) y^{2} \\ \end{align*}

[_Abel]

7.514

13640

\begin{align*} y^{\prime }&=-y^{3}+\frac {y^{2}}{\left (a x +b \right )^{2}} \\ \end{align*}

[_rational, _Abel]

10.082

13641

\begin{align*} y^{\prime }&=-y^{3}+\frac {y^{2}}{\sqrt {a x +b}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Abel]

15.069

13642

\begin{align*} y^{\prime }&=a y^{3}+3 a b x y^{2}-b -2 a \,b^{3} x^{3} \\ \end{align*}

[_Abel]

4.201

13643

\begin{align*} y^{\prime }&=a y^{3} x +b y^{2} \\ \end{align*}

[[_homogeneous, ‘class G‘], _Abel]

6.846

13644

\begin{align*} y^{\prime }&=a y^{3} x +2 a b \,x^{2} y^{2}-b -2 a \,b^{3} x^{4} \\ \end{align*}

[_Abel]

5.435

13645

\begin{align*} y^{\prime }&=a \,x^{2 n +1} y^{3}+b \,x^{-n -2} \\ \end{align*}

[[_homogeneous, ‘class G‘], _Abel]

10.998

13646

\begin{align*} y^{\prime }&=a \,x^{n} y^{3}+3 a b \,x^{n +m} y^{2}-b m \,x^{m -1}-2 a \,b^{3} x^{n +3 m} \\ \end{align*}

[_Abel]

7.417

13647

\begin{align*} y^{\prime }&=a \,x^{n} y^{3}+3 a b \,x^{n +m} y^{2}+c \,x^{k} y-2 a \,b^{3} x^{n +3 m}+b c \,x^{m +k}-b m \,x^{m -1} \\ \end{align*}

[_Abel]

13.229

13648

\begin{align*} 9 y^{\prime }&=-x^{m} \left (a \,x^{1-m}+b \right )^{2 \lambda +1} y^{3}-x^{-2 m} \left (9 a +2+9 b m \,x^{m -1}\right ) \left (a \,x^{1-m}+b \right )^{-\lambda -2} \\ \end{align*}

[_Abel]

13.955

13649

\begin{align*} y^{\prime } x&=a \,x^{4} y^{3}+\left (b \,x^{2}-1\right ) y+c x \\ \end{align*}

[_rational, _Abel]

5.215

13650

\begin{align*} y^{\prime } x&=a y^{3}+3 a b \,x^{n} y^{2}-b n \,x^{n}-2 a \,b^{3} x^{3 n} \\ \end{align*}

[_rational, _Abel]

6.759

13651

\begin{align*} y^{\prime } x&=3 x^{2 n +1} y^{3}+\left (b x -n \right ) y+c \,x^{1-n} \\ \end{align*}

[_rational, _Abel]

6.617

13652

\begin{align*} y^{\prime } x&=a \,x^{n +2} y^{3}+\left (b \,x^{n}-1\right ) y+c \,x^{n -1} \\ \end{align*}

[_rational, _Abel]

7.243

13653

\begin{align*} x^{2} y^{\prime }&=y^{3}-3 a^{2} x^{4} y+2 a^{3} x^{6}+2 a \,x^{3} \\ \end{align*}

[_rational, _Abel]

2.427

13654

\begin{align*} y^{\prime }&=-\left (a x +b \,x^{m}\right ) y^{3}+y^{2} \\ \end{align*}

[_Abel]

39.199

13655

\begin{align*} y^{\prime }&=\frac {y^{3}}{\sqrt {a \,x^{2}+b x +c}}+y^{2} \\ \end{align*}

[_Abel]

56.664

13656

\begin{align*} y^{\prime }&=-y^{3}+a \,{\mathrm e}^{\lambda x} y^{2} \\ \end{align*}

[_Abel]

5.696

13657

\begin{align*} y^{\prime }&=-y^{3}+3 a^{2} {\mathrm e}^{2 \lambda x} y-2 a^{3} {\mathrm e}^{3 \lambda x}+a \lambda \,{\mathrm e}^{\lambda x} \\ \end{align*}

[_Abel]

3.332

13658

\begin{align*} y^{\prime }&=-\frac {{\mathrm e}^{2 \lambda x} y^{3}}{3 \lambda }+\frac {2 \lambda ^{2} {\mathrm e}^{-\lambda x}}{3} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Abel]

5.053

13659

\begin{align*} y^{\prime }&=a \,{\mathrm e}^{2 \lambda x} y^{3}+b \,{\mathrm e}^{\lambda x} y^{2}+c y+d \,{\mathrm e}^{-\lambda x} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Abel]

5.546

13660

\begin{align*} y^{\prime }&=a \,{\mathrm e}^{\lambda x} y^{3}+3 a b \,{\mathrm e}^{\lambda x} y^{2}+c y-2 a \,b^{3} {\mathrm e}^{\lambda x}+b c \\ \end{align*}

[_Abel]

6.297

13661

\begin{align*} y^{\prime }&=a \,{\mathrm e}^{\lambda x} y^{3}+3 a b \,{\mathrm e}^{x \left (\lambda +\mu \right )} y^{2}-2 a \,b^{3} {\mathrm e}^{\left (\lambda +3 \mu \right ) x}-{\mathrm e}^{\mu x} b \mu \\ \end{align*}

[_Abel]

5.313

13662

\begin{align*} y^{\prime \prime }+a y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.173

13663

\begin{align*} y^{\prime \prime }-\left (a x +b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.138

13664

\begin{align*} y^{\prime \prime }-\left (a^{2} x^{2}+a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.662

13665

\begin{align*} y^{\prime \prime }-\left (a \,x^{2}+b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.087

13666

\begin{align*} y^{\prime \prime }+a^{3} x \left (-a x +2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.506

13667

\begin{align*} y^{\prime \prime }-\left (a \,x^{2}+b x c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.084

13668

\begin{align*} y^{\prime \prime }-a \,x^{n} y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.219

13669

\begin{align*} y^{\prime \prime }-a \left (a \,x^{2 n}+n \,x^{n -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.097

13670

\begin{align*} y^{\prime \prime }-a \,x^{-2+n} \left (a \,x^{n}+n +1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.095

13671

\begin{align*} y^{\prime \prime }+\left (a \,x^{2 n}+b \,x^{n -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.074

13672

\begin{align*} b y+a y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.649

13673

\begin{align*} y^{\prime \prime }+a y^{\prime }+\left (b x +c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.214

13674

\begin{align*} y^{\prime \prime }+a y^{\prime }-\left (b \,x^{2}+c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.810

13675

\begin{align*} y^{\prime \prime }+a y^{\prime }+b \left (-b \,x^{2}+a x +1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.640

13676

\begin{align*} y^{\prime \prime }+a y^{\prime }+b x \left (-b \,x^{3}+a x +2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.689

13677

\begin{align*} y^{\prime \prime }+a y^{\prime }+b \left (-b \,x^{2 n}+a \,x^{n}+n \,x^{n -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.697

13678

\begin{align*} y^{\prime \prime }+a y^{\prime }+b \left (-b \,x^{2 n}-a \,x^{n}+n \,x^{n -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.635

13679

\begin{align*} y^{\prime \prime }+y^{\prime } x +\left (n -1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.571

13680

\begin{align*} 2 n y-2 y^{\prime } x +y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.542

13681

\begin{align*} b y+a x y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.640

13682

\begin{align*} y^{\prime \prime }+a x y^{\prime }+b x y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.418

13683

\begin{align*} y^{\prime \prime }+a x y^{\prime }+\left (b x +c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.567

13684

\begin{align*} y^{\prime \prime }+2 a x y^{\prime }+\left (b \,x^{4}+a^{2} x^{2}+c x +a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.258

13685

\begin{align*} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }-a y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.973

13686

\begin{align*} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+a y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.939

13687

\begin{align*} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (a x +b -c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.639

13688

\begin{align*} y^{\prime \prime }+\left (a x +2 b \right ) y^{\prime }+\left (a b x +b^{2}-a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.836

13689

\begin{align*} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.587

13690

\begin{align*} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (\left (a -c \right ) x^{2}+b x +1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.552

13691

\begin{align*} y^{\prime \prime }+2 \left (a x +b \right ) y^{\prime }+\left (a^{2} x^{2}+2 a b x +c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.973

13692

\begin{align*} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (\alpha \,x^{2}+\beta x +\gamma \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.918

13693

\begin{align*} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (-c \,x^{2 n}+a \,x^{n +1}+b \,x^{n}+n \,x^{n -1}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.085

13694

\begin{align*} y^{\prime \prime }+a \left (-b^{2}+x^{2}\right ) y^{\prime }-a \left (x +b \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.871

13695

\begin{align*} y^{\prime \prime }+\left (a \,x^{2}+b \right ) y^{\prime }+c \left (a \,x^{2}+b -c \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.717

13696

\begin{align*} y^{\prime \prime }+\left (a \,x^{2}+2 b \right ) y^{\prime }+\left (b \,x^{2} a -a x +b^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.076

13697

\begin{align*} y^{\prime \prime }+\left (2 x^{2}+a \right ) y^{\prime }+\left (x^{4}+a \,x^{2}+b +2 x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.863

13698

\begin{align*} y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }+\left (\alpha \,x^{2}+\beta x +\gamma \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.901

13699

\begin{align*} y^{\prime \prime }+\left (b \,x^{2} a +b x +2 a \right ) y^{\prime }+a^{2} \left (b \,x^{2}+1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.895

13700

\begin{align*} y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y^{\prime }+x \left (b \,x^{2} a +b c +2 a \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.777