2.2.105 Problems 10401 to 10500

Table 2.223: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

10401

\begin{align*} y^{\prime \prime }+y&=x^{3}+x^{2}+x +1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.339

10402

\begin{align*} y^{\prime \prime }+y&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.332

10403

\begin{align*} y^{\prime \prime }+y&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.386

10404

\begin{align*} y {y^{\prime \prime }}^{2}+y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

129.444

10405

\begin{align*} y {y^{\prime \prime }}^{2}+{y^{\prime }}^{3}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

29.458

10406

\begin{align*} y^{2} {y^{\prime \prime }}^{2}+y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

58.353

10407

\begin{align*} y {y^{\prime \prime }}^{4}+{y^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

109.688

10408

\begin{align*} y^{3} {y^{\prime \prime }}^{2}+y^{\prime } y&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

60.881

10409

\begin{align*} {y^{\prime }}^{3}+y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

11.156

10410

\begin{align*} y {y^{\prime \prime }}^{3}+y^{3} y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

96.657

10411

\begin{align*} y {y^{\prime \prime }}^{3}+y^{3} {y^{\prime }}^{5}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

56.931

10412

\begin{align*} y^{\prime \prime }+y^{\prime } x +y {y^{\prime }}^{2}&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _reducible, _mu_xy]]

0.269

10413

\begin{align*} y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+y {y^{\prime }}^{2}&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _reducible, _mu_xy]]

0.306

10414

\begin{align*} y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y^{2} {y^{\prime }}^{2}&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.349

10415

\begin{align*} y^{\prime \prime }+\left (\sin \left (x \right )+2 x \right ) y^{\prime }+\cos \left (y\right ) y {y^{\prime }}^{2}&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.402

10416

\begin{align*} y^{\prime } y^{\prime \prime }+y^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

14.166

10417

\begin{align*} y^{\prime } y^{\prime \prime }+y^{n}&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

32.663

10418

\begin{align*} y^{\prime }&=\left (x +y\right )^{4} \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

0.805

10419

\begin{align*} y^{\prime \prime }+\left (x +3\right ) y^{\prime }+\left (3+y^{2}\right ) {y^{\prime }}^{2}&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.365

10420

\begin{align*} y^{\prime \prime }+y^{\prime } x +y {y^{\prime }}^{2}&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _reducible, _mu_xy]]

0.224

10421

\begin{align*} y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+{y^{\prime }}^{2}&=0 \\ \end{align*}

[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.585

10422

\begin{align*} 3 y^{\prime \prime }+\cos \left (x \right ) y^{\prime }+\sin \left (y\right ) {y^{\prime }}^{2}&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

3.136

10423

\begin{align*} 10 y^{\prime \prime }+x^{2} y^{\prime }+\frac {3 {y^{\prime }}^{2}}{y}&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.220

10424

\begin{align*} 10 y^{\prime \prime }+\left ({\mathrm e}^{x}+3 x \right ) y^{\prime }+\frac {3 \,{\mathrm e}^{y} {y^{\prime }}^{2}}{\sin \left (y\right )}&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.657

10425

\begin{align*} y^{\prime \prime }-\frac {2 y}{x^{2}}&=x \,{\mathrm e}^{-\sqrt {x}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.411

10426

\begin{align*} y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}}&=x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.388

10427

\begin{align*} y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}}&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.791

10428

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x -c^{2} y&=0 \\ \end{align*}

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.188

10429

\begin{align*} x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+a^{2} y&=\frac {1}{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.454

10430

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=2 x^{3}-x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.535

10431

\begin{align*} y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+4 \csc \left (x \right )^{2} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.311

10432

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y&=4 \cos \left (\ln \left (x +1\right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

30.182

10433

\begin{align*} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+y \cos \left (x \right )^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.970

10434

\begin{align*} y^{\prime \prime } x -y^{\prime }+4 x^{3} y&=8 x^{3} \sin \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

6.516

10435

\begin{align*} y^{\prime \prime } x -y^{\prime }+4 x^{3} y&=x^{5} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.383

10436

\begin{align*} \cos \left (x \right ) y^{\prime \prime }+\sin \left (x \right ) y^{\prime }-2 \cos \left (x \right )^{3} y&=2 \cos \left (x \right )^{5} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

29.075

10437

\begin{align*} y^{\prime \prime }+\left (1-\frac {1}{x}\right ) y^{\prime }+4 x^{2} y \,{\mathrm e}^{-2 x}&=4 \left (x^{3}+x^{2}\right ) {\mathrm e}^{-3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.089

10438

\begin{align*} y x -x^{2} y^{\prime }+y^{\prime \prime }&=x^{m +1} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.381

10439

\begin{align*} y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.224

10440

\begin{align*} \cos \left (x \right )^{2} y^{\prime \prime }-2 \cos \left (x \right ) \sin \left (x \right ) y^{\prime }+y \cos \left (x \right )^{2}&=0 \\ \end{align*}

[_Lienard]

0.592

10441

\begin{align*} y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-1\right ) y&=-3 \,{\mathrm e}^{x^{2}} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.645

10442

\begin{align*} y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y&=x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.830

10443

\begin{align*} y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-3\right ) y&={\mathrm e}^{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.490

10444

\begin{align*} y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y&={\mathrm e}^{x^{2}} \sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.912

10445

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +2 \left (x^{2}+1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.483

10446

\begin{align*} 4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{8}+6 x^{4}+4\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.333

10447

\begin{align*} x^{2} y^{\prime \prime }+\left (-y+y^{\prime } x \right )^{2}&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.465

10448

\begin{align*} y^{\prime \prime } x +2 y^{\prime }-y x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.308

10449

\begin{align*} y^{\prime \prime } x +2 y^{\prime }+y x&=0 \\ \end{align*}

[_Lienard]

0.386

10450

\begin{align*} y^{\prime }+\cot \left (x \right ) y&=2 \cos \left (x \right ) \\ \end{align*}

[_linear]

4.291

10451

\begin{align*} 2 x y^{2}-y+\left (y^{2}+x +y\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

11.845

10452

\begin{align*} y^{\prime }&=x -y^{2} \\ \end{align*}

[[_Riccati, _special]]

6.756

10453

\begin{align*} -2 y+5 y^{\prime }-3 y^{\prime \prime }-y^{\prime \prime \prime }+y^{\prime \prime \prime \prime }&=x \,{\mathrm e}^{x}+3 \,{\mathrm e}^{-2 x} \\ \end{align*}

[[_high_order, _linear, _nonhomogeneous]]

0.188

10454

\begin{align*} x^{2} y^{\prime \prime }-x \left (6+x \right ) y^{\prime }+10 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

1.653

10455

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-5\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Bessel]

0.522

10456

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-5\right ) y&=0 \\ \end{align*}

[_Bessel]

0.366

10457

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.878

10458

\begin{align*} y^{\prime \prime \prime }-y x&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.023

10459

\begin{align*} y^{\prime }&=y^{{1}/{3}} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

2.562

10460

\begin{align*} x^{\prime }&=3 x+y \\ y^{\prime }&=-x+y \\ \end{align*}

system_of_ODEs

0.273

10461

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[_Gegenbauer]

0.193

10462

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }-6 y^{\prime } x +12 y&=0 \\ \end{align*}

[_Gegenbauer]

0.200

10463

\begin{align*} \left (x^{2}+3\right ) y^{\prime \prime }-7 y^{\prime } x +16 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.322

10464

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+8 y^{\prime } x +12 y&=0 \\ \end{align*}

[_Gegenbauer]

0.194

10465

\begin{align*} 3 y^{\prime \prime }+y^{\prime } x -4 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.282

10466

\begin{align*} 5 y^{\prime \prime }-2 y^{\prime } x +10 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.309

10467

\begin{align*} y^{\prime \prime }-x^{2} y^{\prime }-3 y x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.323

10468

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.230

10469

\begin{align*} y^{\prime \prime }+y^{\prime } x -2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.276

10470

\begin{align*} \left (x^{2}-6 x +10\right ) y^{\prime \prime }-4 \left (x -3\right ) y^{\prime }+6 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.273

10471

\begin{align*} \left (x^{2}+6 x \right ) y^{\prime \prime }+\left (3 x +9\right ) y^{\prime }-3 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.206

10472

\begin{align*} t y^{\prime \prime }+\left (t^{2}-1\right ) y^{\prime }+t^{2} y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.329

10473

\begin{align*} t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.096

10474

\begin{align*} t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y&=0 \\ \end{align*}

[_Laguerre]

0.246

10475

\begin{align*} \left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.257

10476

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.164

10477

\begin{align*} t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y&=0 \\ \end{align*}

[_Laguerre]

0.227

10478

\begin{align*} \left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.244

10479

\begin{align*} y^{\prime \prime }+y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.269

10480

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.220

10481

\begin{align*} \left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.260

10482

\begin{align*} 2 y^{\prime \prime }+y^{\prime } x +3 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.302

10483

\begin{align*} y^{\prime \prime }+y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.235

10484

\begin{align*} \left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.238

10485

\begin{align*} y^{\prime \prime }+y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.237

10486

\begin{align*} \left (-x^{2}+4\right ) y^{\prime \prime }+y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.826

10487

\begin{align*} 4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (-16 x^{2}+3\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.095

10488

\begin{align*} \left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.242

10489

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.165

10490

\begin{align*} \left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }+\left (2 x -2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.339

10491

\begin{align*} 4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.089

10492

\begin{align*} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.079

10493

\begin{align*} \left (2 x +1\right ) y^{\prime \prime }-2 y^{\prime }-\left (2 x +3\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.259

10494

\begin{align*} y^{\prime \prime } x -\left (2 x +2\right ) y^{\prime }+\left (2+x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.142

10495

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.163

10496

\begin{align*} 4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (-16 x^{2}+3\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.087

10497

\begin{align*} 4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}+3\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.173

10498

\begin{align*} x^{2} y^{\prime \prime }-2 y^{\prime } x -\left (x^{2}-2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.089

10499

\begin{align*} x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.087

10500

\begin{align*} x^{2} y^{\prime \prime }-2 x \left (2+x \right ) y^{\prime }+\left (x^{2}+4 x +6\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.094