2.1.14 Problem 14
Internal
problem
ID
[10272]
Book
:
First
order
enumerated
odes
Section
:
section
1
Problem
number
:
14
Date
solved
:
Thursday, November 27, 2025 at 10:29:26 AM
CAS
classification
:
[_quadrature]
Solved using first_order_ode_quadrature
Time used: 0.052 (sec)
Solve
\begin{align*}
c y^{\prime }&=a x \\
\end{align*}
Since the ode has the form
\(y^{\prime }=f(x)\), then we only need to integrate
\(f(x)\).
\begin{align*} \int {dy} &= \int {\frac {a x}{c}\, dx}\\ y &= \frac {a \,x^{2}}{2 c} + c_1 \end{align*}
Summary of solutions found
\begin{align*}
y &= \frac {a \,x^{2}}{2 c}+c_1 \\
\end{align*}
Solved using first_order_ode_exact
Time used: 0.085 (sec)
To solve an ode of the form
\begin{equation} M\left ( x,y\right ) +N\left ( x,y\right ) \frac {dy}{dx}=0\tag {A}\end{equation}
We assume there exists a function
\(\phi \left ( x,y\right ) =c\) where
\(c\) is constant,
that satisfies the ode. Taking derivative of
\(\phi \) w.r.t.
\(x\) gives
\[ \frac {d}{dx}\phi \left ( x,y\right ) =0 \]
Hence
\begin{equation} \frac {\partial \phi }{\partial x}+\frac {\partial \phi }{\partial y}\frac {dy}{dx}=0\tag {B}\end{equation}
Comparing (A,B) shows
that
\begin{align*} \frac {\partial \phi }{\partial x} & =M\\ \frac {\partial \phi }{\partial y} & =N \end{align*}
But since \(\frac {\partial ^{2}\phi }{\partial x\partial y}=\frac {\partial ^{2}\phi }{\partial y\partial x}\) then for the above to be valid, we require that
\[ \frac {\partial M}{\partial y}=\frac {\partial N}{\partial x}\]
If the above condition is satisfied, then
the original ode is called exact. We still need to determine
\(\phi \left ( x,y\right ) \) but at least we know now that we can
do that since the condition
\(\frac {\partial ^{2}\phi }{\partial x\partial y}=\frac {\partial ^{2}\phi }{\partial y\partial x}\) is satisfied. If this condition is not satisfied then this method will not
work and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness, which
is
\[ M(x,y) \mathop {\mathrm {d}x}+ N(x,y) \mathop {\mathrm {d}y}=0 \tag {1A} \]
Therefore
\begin{align*} \left (c\right )\mathop {\mathrm {d}y} &= \left (a x\right )\mathop {\mathrm {d}x}\\ \left (-a x\right )\mathop {\mathrm {d}x} + \left (c\right )\mathop {\mathrm {d}y} &= 0 \tag {2A} \end{align*}
Comparing (1A) and (2A) shows that
\begin{align*} M(x,y) &= -a x\\ N(x,y) &= c \end{align*}
The next step is to determine if the ODE is is exact or not. The ODE is exact when the following
condition is satisfied
\[ \frac {\partial M}{\partial y} = \frac {\partial N}{\partial x} \]
Using result found above gives
\begin{align*} \frac {\partial M}{\partial y} &= \frac {\partial }{\partial y} \left (-a x\right )\\ &= 0 \end{align*}
And
\begin{align*} \frac {\partial N}{\partial x} &= \frac {\partial }{\partial x} \left (c\right )\\ &= 0 \end{align*}
Since \(\frac {\partial M}{\partial y}= \frac {\partial N}{\partial x}\), then the ODE is exact The following equations are now set up to solve for the function \(\phi \left (x,y\right )\)
\begin{align*} \frac {\partial \phi }{\partial x } &= M\tag {1} \\ \frac {\partial \phi }{\partial y } &= N\tag {2} \end{align*}
Integrating (1) w.r.t. \(x\) gives
\begin{align*}
\int \frac {\partial \phi }{\partial x} \mathop {\mathrm {d}x} &= \int M\mathop {\mathrm {d}x} \\
\int \frac {\partial \phi }{\partial x} \mathop {\mathrm {d}x} &= \int -a x\mathop {\mathrm {d}x} \\
\tag{3} \phi &= -\frac {a \,x^{2}}{2}+ f(y) \\
\end{align*}
Where
\(f(y)\) is used for the constant of integration since
\(\phi \) is a function of
both
\(x\) and
\(y\). Taking derivative of equation (3) w.r.t
\(y\) gives
\begin{equation}
\tag{4} \frac {\partial \phi }{\partial y} = 0+f'(y)
\end{equation}
But equation (2) says that
\(\frac {\partial \phi }{\partial y} = c\). Therefore
equation (4) becomes
\begin{equation}
\tag{5} c = 0+f'(y)
\end{equation}
Solving equation (5) for
\( f'(y)\) gives
\[
f'(y) = c
\]
Integrating the above w.r.t
\(y\) gives
\begin{align*}
\int f'(y) \mathop {\mathrm {d}y} &= \int \left ( c\right ) \mathop {\mathrm {d}y} \\
f(y) &= c y+ c_1 \\
\end{align*}
Where
\(c_1\) is constant of integration. Substituting result found above for
\(f(y)\) into equation (3)
gives
\(\phi \) \[
\phi = -\frac {a \,x^{2}}{2}+c y+ c_1
\]
But since
\(\phi \) itself is a constant function, then let
\(\phi =c_2\) where
\(c_2\) is new constant and
combining
\(c_1\) and
\(c_2\) constants into the constant
\(c_1\) gives the solution as
\[
c_1 = -\frac {a \,x^{2}}{2}+c y
\]
Solving for
\(y\) gives
\begin{align*}
y &= \frac {a \,x^{2}+2 c_1}{2 c} \\
\end{align*}
Summary of solutions found
\begin{align*}
y &= \frac {a \,x^{2}+2 c_1}{2 c} \\
\end{align*}
Solved using first_order_ode_homog_type_G
Time used: 0.068 (sec)
Solve
\begin{align*}
c y^{\prime }&=a x \\
\end{align*}
Multiplying the right side of the ode, which is
\(\frac {a x}{c}\) by
\(\frac {x}{y}\) gives
\begin{align*} y^{\prime } &= \left (\frac {x}{y}\right ) \frac {a x}{c}\\ &= \frac {x^{2} a}{y c}\\ &= F(x,y) \end{align*}
Since \(F \left (x , y\right )\) has \(y\), then let
\begin{align*} f_x&= x \left (\frac {\partial }{\partial x}F \left (x , y\right )\right )\\ &= \frac {2 x^{2} a}{y c}\\ f_y&= y \left (\frac {\partial }{\partial y}F \left (x , y\right )\right )\\ &= -\frac {x^{2} a}{y c}\\ \alpha &= \frac {f_x}{f_y} \\ &=-2 \end{align*}
Since \(\alpha \) is independent of \(x,y\) then this is Homogeneous type G.
Let
\begin{align*} y&=\frac {z}{x^ \alpha }\\ &=\frac {z}{\frac {1}{x^{2}}} \end{align*}
Substituting the above back into \(F(x,y)\) gives
\begin{align*} F \left (z \right ) &=\frac {a}{z c} \end{align*}
We see that \(F \left (z \right )\) does not depend on \(x\) nor on \(y\). If this was not the case, then this method will not
work.
Therefore, the implicit solution is given by
\begin{align*} \ln \left (x \right )- c_1 - \int ^{y x^\alpha } \frac {1}{z \left (\alpha + F(z)\right ) } \,dz & = 0 \end{align*}
Which gives
\[
\ln \left (x \right )-c_1 +\int _{}^{\frac {y}{x^{2}}}\frac {1}{z \left (2-\frac {a}{z c}\right )}d z = 0
\]
Summary of solutions found
\begin{align*}
\ln \left (x \right )-c_1 +\int _{}^{\frac {y}{x^{2}}}\frac {1}{z \left (2-\frac {a}{z c}\right )}d z &= 0 \\
\end{align*}
✓ Maple. Time used: 0.002 (sec). Leaf size: 15
ode:=c*diff(y(x),x) = a*x;
dsolve(ode,y(x), singsol=all);
\[
y = \frac {a \,x^{2}}{2 c}+c_1
\]
Maple trace
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & c \left (\frac {d}{d x}y \left (x \right )\right )=a x \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d x}y \left (x \right ) \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=\frac {a x}{c} \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \left (\frac {d}{d x}y \left (x \right )\right )d x =\int \frac {a x}{c}d x +\mathit {C1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & y \left (x \right )=\frac {a \,x^{2}}{2 c}+\mathit {C1} \end {array} \]
✓ Mathematica. Time used: 0.002 (sec). Leaf size: 19
ode=c*D[y[x],x]==a*x;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*} y(x)&\to \frac {a x^2}{2 c}+c_1 \end{align*}
✓ Sympy. Time used: 0.074 (sec). Leaf size: 12
from sympy import *
x = symbols("x")
a = symbols("a")
c = symbols("c")
y = Function("y")
ode = Eq(-a*x + c*Derivative(y(x), x),0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
\[
y{\left (x \right )} = C_{1} + \frac {a x^{2}}{2 c}
\]