2.5.10 second order ode flip role

Table 2.1131: second order ode flip role [26]

#

ODE

CAS classification

Solved

Maple

Mma

Sympy

time(sec)

6312

\begin{align*} y^{\prime \prime }&=f \left (y\right ) \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.915

6342

\begin{align*} g \left (y\right )+f \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.266

6344

\begin{align*} f \left (y\right ) y^{\prime }+g \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

1.655

6348

\begin{align*} \left ({\mathrm e}^{2 y}+x \right ) {y^{\prime }}^{3}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_exponential_symmetries], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1]]

0.429

6352

\begin{align*} \left (a x +b y\right ) {y^{\prime }}^{3}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_exponential_symmetries], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.487

6564

\begin{align*} y \left (1+a^{2}-2 a^{2} y^{2}\right )+b \sqrt {\left (1-y^{2}\right ) \left (1-a^{2} y^{2}\right )}\, {y^{\prime }}^{2}+\left (1-y^{2}\right ) \left (1-a^{2} y^{2}\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

27.697

8246

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (\frac {\pi }{4}\right ) &= 3 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.912

9781

\begin{align*} 2 y^{\prime \prime }&=\sin \left (2 y\right ) \\ y \left (0\right ) &= \frac {\pi }{2} \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

65.632

9782

\begin{align*} 2 y^{\prime \prime }&=\sin \left (2 y\right ) \\ y \left (0\right ) &= -\frac {\pi }{2} \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

47.704

13002

\begin{align*} 2 \left (1-y\right ) y y^{\prime \prime }-\left (1-3 y\right ) {y^{\prime }}^{2}+h \left (y\right )&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.960

13003

\begin{align*} 3 \left (1-y\right ) y y^{\prime \prime }-2 \left (1-2 y\right ) {y^{\prime }}^{2}-h \left (y\right )&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.125

13004

\begin{align*} \left (1-y\right ) y^{\prime \prime }-3 \left (1-2 y\right ) {y^{\prime }}^{2}-h \left (y\right )&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.369

13005

\begin{align*} a y \left (y-1\right ) y^{\prime \prime }+\left (b y+c \right ) {y^{\prime }}^{2}+h \left (y\right )&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.509

13025

\begin{align*} h \left (y\right ) y^{\prime \prime }+a h \left (y\right ) {y^{\prime }}^{2}+j \left (y\right )&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.125

13057

\begin{align*} y^{\prime \prime }-f \left (y\right )&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.401

14432

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (\frac {\pi }{2}\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.602

14433

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (\frac {\pi }{2}\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.705

15094

\begin{align*} m x^{\prime \prime }&=f \left (x\right ) \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.134

21260

\begin{align*} x^{\prime \prime }&=x-x^{3} \\ x \left (0\right ) &= \frac {\sqrt {2}}{2} \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

7.002

21264

\begin{align*} x^{\prime \prime }-x+3 x^{2}&=0 \\ x \left (0\right ) &= {\frac {1}{4}} \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

34.511

22287

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (\frac {\pi }{2}\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.136

22805

\begin{align*} y^{\prime \prime }&={y^{\prime }}^{2} \left (2+y^{\prime } x -4 y^{2} y^{\prime }\right ) \\ \end{align*}

[[_2nd_order, _with_exponential_symmetries], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1]]

0.241

23354

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (\frac {\pi }{2}\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

4.965

24886

\begin{align*} 2 y^{\prime \prime }&=\sin \left (2 y\right ) \\ y \left (0\right ) &= \frac {\pi }{2} \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

53.602

24887

\begin{align*} 2 y^{\prime \prime }&=\sin \left (2 y\right ) \\ y \left (0\right ) &= -\frac {\pi }{2} \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

40.592

25724

\begin{align*} y^{\prime \prime }+9 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (\frac {\pi }{6}\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.006