Internal
problem
ID
[24157] Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010 Section
:
Chapter
2.
Equations
of
the
first
order
and
first
degree.
Exercises
at
page
27 Problem
number
:
8 Date
solved
:
Friday, December 12, 2025 at 09:50:04 AM CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
2.2.8.1 Solved using first_order_ode_isobaric
0.738 (sec)
Entering first order ode isobaric solver
\begin{align*}
x^{2}+2 y x -4 y^{2}-\left (x^{2}-8 y x -4 y^{2}\right ) y^{\prime }&=0 \\
\end{align*}
Solving for \(y'\) gives
\begin{align*}
\tag{1} y' &= \frac {-x^{2}-2 y x +4 y^{2}}{-x^{2}+8 y x +4 y^{2}} \\
\end{align*}
Each of the above ode’s is now
solved An ode \(y^{\prime }=f(x,y)\) is isobaric if
\[ f(t x, t^m y) = t^{m-1} f(x,y)\tag {1} \]
Where here
\[ f(x,y) = \frac {-x^{2}-2 y x +4 y^{2}}{-x^{2}+8 y x +4 y^{2}}\tag {2} \]
\(m\) is the order of isobaric. Substituting (2) into
(1) and solving for \(m\) gives
\[ m = 1 \]
Since the ode is isobaric of order \(m=1\), then the substitution
\begin{align*} y&=u x^m \\ &=u x \end{align*}
Converts the ODE to a separable in \(u \left (x \right )\). Performing this substitution gives
\[ u \left (x \right )+x u^{\prime }\left (x \right ) = \frac {-x^{2}-2 x^{2} u \left (x \right )+4 x^{2} u \left (x \right )^{2}}{-x^{2}+8 x^{2} u \left (x \right )+4 x^{2} u \left (x \right )^{2}} \]
The ode
\begin{equation}
u^{\prime }\left (x \right ) = -\frac {\left (u \left (x \right )+1\right ) \left (4 u \left (x \right )^{2}+1\right )}{x \left (4 u \left (x \right )^{2}+8 u \left (x \right )-1\right )}
\end{equation}
is separable as
it can be written as
\begin{align*} u^{\prime }\left (x \right )&= -\frac {\left (u \left (x \right )+1\right ) \left (4 u \left (x \right )^{2}+1\right )}{x \left (4 u \left (x \right )^{2}+8 u \left (x \right )-1\right )}\\ &= f(x) g(u) \end{align*}
Where
\begin{align*} f(x) &= -\frac {1}{x}\\ g(u) &= \frac {\left (u +1\right ) \left (4 u^{2}+1\right )}{4 u^{2}+8 u -1} \end{align*}
We now need to
find the singular solutions, these are found by finding for what values \(g(u)\) is zero, since we had to
divide by this above. Solving \(g(u)=0\) or
\[
\frac {\left (u +1\right ) \left (4 u^{2}+1\right )}{4 u^{2}+8 u -1}=0
\]
for \(u \left (x \right )\) gives
\begin{align*} u \left (x \right )&=-1\\ u \left (x \right )&=-\frac {i}{2} \end{align*}
Now we go over each such singular solution and check if it verifies the ode itself and any initial
conditions given. If it does not then the singular solution will not be used.
\begin{align*}
y &= -\frac {i x}{2} \\
y &= -x \\
y &= \frac {c_1}{8}-\frac {\sqrt {c_1^{2}+16 c_1 x -16 x^{2}}}{8} \\
y &= \frac {c_1}{8}+\frac {\sqrt {c_1^{2}+16 c_1 x -16 x^{2}}}{8} \\
\end{align*}
Figure 2.132: Slope field \(x^{2}+2 y x -4 y^{2}-\left (x^{2}-8 y x -4 y^{2}\right ) y^{\prime } = 0\)
Summary of solutions found
\begin{align*}
y &= -\frac {i x}{2} \\
y &= -x \\
y &= \frac {c_1}{8}-\frac {\sqrt {c_1^{2}+16 c_1 x -16 x^{2}}}{8} \\
y &= \frac {c_1}{8}+\frac {\sqrt {c_1^{2}+16 c_1 x -16 x^{2}}}{8} \\
\end{align*}
2.2.8.2 Solved using first_order_ode_homog_A
1.580 (sec)
Entering first order ode homog A solver
\begin{align*}
x^{2}+2 y x -4 y^{2}-\left (x^{2}-8 y x -4 y^{2}\right ) y^{\prime }&=0 \\
\end{align*}
In canonical form, the ODE is
\begin{align*} y' &= F(x,y)\\ &= \frac {-x^{2}-2 y x +4 y^{2}}{-x^{2}+8 y x +4 y^{2}}\tag {1} \end{align*}
An ode of the form \(y' = \frac {M(x,y)}{N(x,y)}\) is called homogeneous if the functions \(M(x,y)\) and \(N(x,y)\) are both homogeneous functions
and of the same order. Recall that a function \(f(x,y)\) is homogeneous of order \(n\) if
\[ f(t^n x, t^n y)= t^n f(x,y) \]
In this case, it can be
seen that both \(M=x^{2}+2 y x -4 y^{2}\) and \(N=x^{2}-8 y x -4 y^{2}\) are both homogeneous and of the same order \(n=2\). Therefore this is a
homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the
substitution \(u=\frac {y}{x}\), or \(y=ux\). Hence
We now need to
find the singular solutions, these are found by finding for what values \(g(u)\) is zero, since we had to
divide by this above. Solving \(g(u)=0\) or
\[
\frac {\left (u +1\right ) \left (4 u^{2}+1\right )}{4 u^{2}+8 u -1}=0
\]
for \(u \left (x \right )\) gives
\begin{align*} u \left (x \right )&=-1\\ u \left (x \right )&=-\frac {i}{2} \end{align*}
Now we go over each such singular solution and check if it verifies the ode itself and any initial
conditions given. If it does not then the singular solution will not be used.
We now need to find the singular solutions, these are found by finding
for what values \(g(p)\) is zero, since we had to divide by this above. Solving \(g(p)=0\) or
\begin{align*} p \left (x \right )&=-1\\ p \left (x \right )&=-\frac {i}{2} \end{align*}
Now we go over each such singular solution and check if it verifies the ode itself and any initial
conditions given. If it does not then the singular solution will not be used.
We now need to find the singular solutions, these are found by finding
for what values \(g(p)\) is zero, since we had to divide by this above. Solving \(g(p)=0\) or
\begin{align*} p \left (x \right )&=1\\ p \left (x \right )&=-\frac {i}{2} \end{align*}
Now we go over each such singular solution and check if it verifies the ode itself and any initial
conditions given. If it does not then the singular solution will not be used.
We now need to
find the singular solutions, these are found by finding for what values \(g(u)\) is zero, since we had to
divide by this above. Solving \(g(u)=0\) or
\[
\frac {\left (u +1\right ) \left (4 u^{2}+1\right )}{4 u^{2}+8 u -1}=0
\]
for \(u \left (x \right )\) gives
\begin{align*} u \left (x \right )&=-1\\ u \left (x \right )&=-\frac {i}{2} \end{align*}
Now we go over each such singular solution and check if it verifies the ode itself and any initial
conditions given. If it does not then the singular solution will not be used.
\begin{align*}
y &= -\frac {i x}{2} \\
y &= -x \\
y &= \frac {c_1}{8}-\frac {\sqrt {c_1^{2}+16 c_1 x -16 x^{2}}}{8} \\
y &= \frac {c_1}{8}+\frac {\sqrt {c_1^{2}+16 c_1 x -16 x^{2}}}{8} \\
\end{align*}
Figure 2.135: Slope field \(x^{2}+2 y x -4 y^{2}-\left (x^{2}-8 y x -4 y^{2}\right ) y^{\prime } = 0\)
Summary of solutions found
\begin{align*}
y &= -\frac {i x}{2} \\
y &= -x \\
y &= \frac {c_1}{8}-\frac {\sqrt {c_1^{2}+16 c_1 x -16 x^{2}}}{8} \\
y &= \frac {c_1}{8}+\frac {\sqrt {c_1^{2}+16 c_1 x -16 x^{2}}}{8} \\
\end{align*}
2.2.8.5 Solved using first_order_ode_homog_type_G
0.138 (sec)
Entering first order ode homog type G solver
\begin{align*}
x^{2}+2 y x -4 y^{2}-\left (x^{2}-8 y x -4 y^{2}\right ) y^{\prime }&=0 \\
\end{align*}
Multiplying the right side of the ode, which is \(\frac {-x^{2}-2 y x +4 y^{2}}{-x^{2}+8 y x +4 y^{2}}\) by \(\frac {x}{y}\)
gives
\begin{align*} y^{\prime } &= \left (\frac {x}{y}\right ) \frac {-x^{2}-2 y x +4 y^{2}}{-x^{2}+8 y x +4 y^{2}}\\ &= \frac {x \left (x^{2}+2 y x -4 y^{2}\right )}{\left (x^{2}-8 y x -4 y^{2}\right ) y}\\ &= F(x,y) \end{align*}
Since \(F \left (x , y\right )\) has \(y\), then let
\begin{align*} f_x&= x \left (\frac {\partial }{\partial x}F \left (x , y\right )\right )\\ &= \frac {x \left (x^{4}-16 x^{3} y -24 y^{2} x^{2}-16 x \,y^{3}+16 y^{4}\right )}{\left (x^{2}-8 y x -4 y^{2}\right )^{2} y}\\ f_y&= y \left (\frac {\partial }{\partial y}F \left (x , y\right )\right )\\ &= -\frac {x \left (x^{4}-16 x^{3} y -24 y^{2} x^{2}-16 x \,y^{3}+16 y^{4}\right )}{\left (x^{2}-8 y x -4 y^{2}\right )^{2} y}\\ \alpha &= \frac {f_x}{f_y} \\ &=-1 \end{align*}
Since \(\alpha \) is independent of \(x,y\) then this is Homogeneous type G.
Solving for possible values of \(x_{0}\) and \(y_{0}\) which makes the above ode a homogeneous ode
results in
\begin{align*} x_{0}&=0\\ y_{0}&=0 \end{align*}
Using these values now it is possible to easily solve for \(Y \left (X \right )\). The above ode now becomes
\begin{align*} \frac {d}{d X}Y \left (X \right ) = \frac {-X^{2}-2 Y \left (X \right ) X +4 Y \left (X \right )^{2}}{-X^{2}+8 Y \left (X \right ) X +4 Y \left (X \right )^{2}} \end{align*}
In canonical form, the ODE is
\begin{align*} Y' &= F(X,Y)\\ &= \frac {-X^{2}-2 Y X +4 Y^{2}}{-X^{2}+8 Y X +4 Y^{2}}\tag {1} \end{align*}
An ode of the form \(Y' = \frac {M(X,Y)}{N(X,Y)}\) is called homogeneous if the functions \(M(X,Y)\) and \(N(X,Y)\) are both homogeneous functions
and of the same order. Recall that a function \(f(X,Y)\) is homogeneous of order \(n\) if
\[ f(t^n X, t^n Y)= t^n f(X,Y) \]
In this case, it can be
seen that both \(M=X^{2}+2 Y X -4 Y^{2}\) and \(N=X^{2}-8 Y X -4 Y^{2}\) are both homogeneous and of the same order \(n=2\). Therefore this is a
homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the
substitution \(u=\frac {Y}{X}\), or \(Y=uX\). Hence
We now need to
find the singular solutions, these are found by finding for what values \(g(u)\) is zero, since we had to
divide by this above. Solving \(g(u)=0\) or
\[
\frac {\left (u +1\right ) \left (4 u^{2}+1\right )}{4 u^{2}+8 u -1}=0
\]
for \(u \left (X \right )\) gives
\begin{align*} u \left (X \right )&=-1\\ u \left (X \right )&=-\frac {i}{2} \end{align*}
Now we go over each such singular solution and check if it verifies the ode itself and any initial
conditions given. If it does not then the singular solution will not be used.
Substituting equations (1E,2E) and \(\omega \) into (A)
gives
\begin{equation}
\tag{5E} b_{2}+\frac {\left (-x^{2}-2 y x +4 y^{2}\right ) \left (b_{3}-a_{2}\right )}{-x^{2}+8 y x +4 y^{2}}-\frac {\left (-x^{2}-2 y x +4 y^{2}\right )^{2} a_{3}}{\left (-x^{2}+8 y x +4 y^{2}\right )^{2}}-\left (\frac {-2 x -2 y}{-x^{2}+8 y x +4 y^{2}}-\frac {\left (-x^{2}-2 y x +4 y^{2}\right ) \left (8 y -2 x \right )}{\left (-x^{2}+8 y x +4 y^{2}\right )^{2}}\right ) \left (x a_{2}+y a_{3}+a_{1}\right )-\left (\frac {8 y -2 x}{-x^{2}+8 y x +4 y^{2}}-\frac {\left (-x^{2}-2 y x +4 y^{2}\right ) \left (8 x +8 y \right )}{\left (-x^{2}+8 y x +4 y^{2}\right )^{2}}\right ) \left (x b_{2}+y b_{3}+b_{1}\right ) = 0
\end{equation}
Putting the above in normal form gives
\[
-\frac {x^{4} a_{2}+x^{4} a_{3}+9 x^{4} b_{2}-x^{4} b_{3}-16 x^{3} y a_{2}+4 x^{3} y a_{3}+16 x^{3} y b_{2}+16 x^{3} y b_{3}-24 x^{2} y^{2} a_{2}-14 x^{2} y^{2} a_{3}-16 x^{2} y^{2} b_{2}+24 x^{2} y^{2} b_{3}-16 x \,y^{3} a_{2}-16 x \,y^{3} a_{3}-64 x \,y^{3} b_{2}+16 x \,y^{3} b_{3}+16 y^{4} a_{2}-24 y^{4} a_{3}-16 y^{4} b_{2}-16 y^{4} b_{3}+10 x^{3} b_{1}-10 x^{2} y a_{1}+40 x \,y^{2} b_{1}-40 y^{3} a_{1}}{\left (x^{2}-8 y x -4 y^{2}\right )^{2}} = 0
\]
Setting the numerator to zero gives
\begin{equation}
\tag{6E} -x^{4} a_{2}-x^{4} a_{3}-9 x^{4} b_{2}+x^{4} b_{3}+16 x^{3} y a_{2}-4 x^{3} y a_{3}-16 x^{3} y b_{2}-16 x^{3} y b_{3}+24 x^{2} y^{2} a_{2}+14 x^{2} y^{2} a_{3}+16 x^{2} y^{2} b_{2}-24 x^{2} y^{2} b_{3}+16 x \,y^{3} a_{2}+16 x \,y^{3} a_{3}+64 x \,y^{3} b_{2}-16 x \,y^{3} b_{3}-16 y^{4} a_{2}+24 y^{4} a_{3}+16 y^{4} b_{2}+16 y^{4} b_{3}-10 x^{3} b_{1}+10 x^{2} y a_{1}-40 x \,y^{2} b_{1}+40 y^{3} a_{1} = 0
\end{equation}
Looking at
the above PDE shows the following are all the terms with \(\{x, y\}\) in them.
\[
\{x, y\}
\]
The following substitution is
now made to be able to collect on all terms with \(\{x, y\}\) in them
Substituting the above solution in the anstaz (1E,2E) (using \(1\) as arbitrary value for any unknown
in the RHS) gives
\begin{align*}
\xi &= x \\
\eta &= y \\
\end{align*}
Shifting is now applied to make \(\xi =0\) in order to simplify the rest of the
computation
\begin{align*} \eta &= \eta - \omega \left (x,y\right ) \xi \\ &= y - \left (\frac {-x^{2}-2 y x +4 y^{2}}{-x^{2}+8 y x +4 y^{2}}\right ) \left (x\right ) \\ &= -\frac {\left (x +y \right ) \left (x^{2}+4 y^{2}\right )}{x^{2}-8 y x -4 y^{2}}\\ \xi &= 0 \end{align*}
The next step is to determine the canonical coordinates \(R,S\). The canonical coordinates map \(\left ( x,y\right ) \to \left ( R,S \right )\) where \(\left ( R,S \right )\)
are the canonical coordinates which make the original ode become a quadrature and hence solved
by integration.
The characteristic pde which is used to find the canonical coordinates is
The above comes from the requirements that \(\left ( \xi \frac {\partial }{\partial x} + \eta \frac {\partial }{\partial y}\right ) S(x,y) = 1\). Starting with the first pair of ode’s in (1) gives an
ode to solve for the independent variable \(R\) in the canonical coordinates, where \(S(R)\). Since \(\xi =0\) then in this
special case
\begin{align*} R = x \end{align*}
\(S\) is found from
\begin{align*} S &= \int { \frac {1}{\eta }} dy\\ &= \int { \frac {1}{-\frac {\left (x +y \right ) \left (x^{2}+4 y^{2}\right )}{x^{2}-8 y x -4 y^{2}}}} dy \end{align*}
We now need to express the RHS as function of \(R\) only. This is done by solving for \(x,y\) in terms of \(R,S\)
from the result obtained earlier and simplifying. This gives
\begin{align*} \frac {dS}{dR} &= 0 \end{align*}
The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an
ode, no matter how complicated it is, to one that can be solved by integration when the ode is in
the canonical coordiates \(R,S\).
Since the ode has the form \(\frac {d}{d R}S \left (R \right )=f(R)\), then we only need to integrate \(f(R)\).
\begin{align*}
y &= \frac {1-\sqrt {-16 c_1^{2} x^{2}+16 c_1 x +1}}{8 c_1} \\
y &= \frac {1+\sqrt {-16 c_1^{2} x^{2}+16 c_1 x +1}}{8 c_1} \\
\end{align*}
Maple trace
Methodsfor first order ODEs:---Trying classification methods ---tryinga quadraturetrying1st order lineartryingBernoullitryingseparabletryinginverse lineartryinghomogeneous types:tryinghomogeneous D<-homogeneous successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & x^{2}+2 x y \left (x \right )-4 y \left (x \right )^{2}-\left (x^{2}-8 x y \left (x \right )-4 y \left (x \right )^{2}\right ) \left (\frac {d}{d x}y \left (x \right )\right )=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d x}y \left (x \right ) \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=-\frac {-x^{2}-2 x y \left (x \right )+4 y \left (x \right )^{2}}{x^{2}-8 x y \left (x \right )-4 y \left (x \right )^{2}} \end {array} \]
2.2.8.9 ✓Mathematica. Time used: 0.838 (sec). Leaf size: 75