2.1.66 Problem 66
Internal
problem
ID
[10324]
Book
:
First
order
enumerated
odes
Section
:
section
1
Problem
number
:
66
Date
solved
:
Thursday, November 27, 2025 at 10:34:06 AM
CAS
classification
:
[_separable]
Solved using first_order_ode_separable
Time used: 0.068 (sec)
Solve
\begin{align*}
y^{\prime }&={\mathrm e}^{x +y} \\
\end{align*}
The ode
\begin{equation}
y^{\prime } = {\mathrm e}^{x +y}
\end{equation}
is separable as it can be written as
\begin{align*} y^{\prime }&= {\mathrm e}^{x +y}\\ &= f(x) g(y) \end{align*}
Where
\begin{align*} f(x) &= {\mathrm e}^{x}\\ g(y) &= {\mathrm e}^{y} \end{align*}
Integrating gives
\begin{align*}
\int { \frac {1}{g(y)} \,dy} &= \int { f(x) \,dx} \\
\int { {\mathrm e}^{-y}\,dy} &= \int { {\mathrm e}^{x} \,dx} \\
\end{align*}
\[
-{\mathrm e}^{-y}={\mathrm e}^{x}+c_1
\]
Solving for
\(y\) gives
\begin{align*}
y &= -\ln \left (-{\mathrm e}^{x}-c_1 \right ) \\
\end{align*}
Figure 2.68: Slope field \(y^{\prime } = {\mathrm e}^{x +y}\)
Summary of solutions found
\begin{align*}
y &= -\ln \left (-{\mathrm e}^{x}-c_1 \right ) \\
\end{align*}
Solved using first_order_ode_exact
Time used: 0.118 (sec)
To solve an ode of the form
\begin{equation} M\left ( x,y\right ) +N\left ( x,y\right ) \frac {dy}{dx}=0\tag {A}\end{equation}
We assume there exists a function
\(\phi \left ( x,y\right ) =c\) where
\(c\) is constant,
that satisfies the ode. Taking derivative of
\(\phi \) w.r.t.
\(x\) gives
\[ \frac {d}{dx}\phi \left ( x,y\right ) =0 \]
Hence
\begin{equation} \frac {\partial \phi }{\partial x}+\frac {\partial \phi }{\partial y}\frac {dy}{dx}=0\tag {B}\end{equation}
Comparing (A,B) shows
that
\begin{align*} \frac {\partial \phi }{\partial x} & =M\\ \frac {\partial \phi }{\partial y} & =N \end{align*}
But since \(\frac {\partial ^{2}\phi }{\partial x\partial y}=\frac {\partial ^{2}\phi }{\partial y\partial x}\) then for the above to be valid, we require that
\[ \frac {\partial M}{\partial y}=\frac {\partial N}{\partial x}\]
If the above condition is satisfied, then
the original ode is called exact. We still need to determine
\(\phi \left ( x,y\right ) \) but at least we know now that we can
do that since the condition
\(\frac {\partial ^{2}\phi }{\partial x\partial y}=\frac {\partial ^{2}\phi }{\partial y\partial x}\) is satisfied. If this condition is not satisfied then this method will not
work and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness, which
is
\[ M(x,y) \mathop {\mathrm {d}x}+ N(x,y) \mathop {\mathrm {d}y}=0 \tag {1A} \]
Therefore
\begin{align*} \mathop {\mathrm {d}y} &= \left ({\mathrm e}^{x +y}\right )\mathop {\mathrm {d}x}\\ \left (-{\mathrm e}^{x +y}\right ) \mathop {\mathrm {d}x} + \mathop {\mathrm {d}y} &= 0 \tag {2A} \end{align*}
Comparing (1A) and (2A) shows that
\begin{align*} M(x,y) &= -{\mathrm e}^{x +y}\\ N(x,y) &= 1 \end{align*}
The next step is to determine if the ODE is is exact or not. The ODE is exact when the following
condition is satisfied
\[ \frac {\partial M}{\partial y} = \frac {\partial N}{\partial x} \]
Using result found above gives
\begin{align*} \frac {\partial M}{\partial y} &= \frac {\partial }{\partial y} \left (-{\mathrm e}^{x +y}\right )\\ &= -{\mathrm e}^{x +y} \end{align*}
And
\begin{align*} \frac {\partial N}{\partial x} &= \frac {\partial }{\partial x} \left (1\right )\\ &= 0 \end{align*}
Since \(\frac {\partial M}{\partial y} \neq \frac {\partial N}{\partial x}\) , then the ODE is not exact . Since the ODE is not exact, we will try to find an integrating
factor to make it exact. Let
\begin{align*} A &= \frac {1}{N} \left (\frac {\partial M}{\partial y} - \frac {\partial N}{\partial x} \right ) \\ &=1\left ( \left ( -{\mathrm e}^{x +y}\right ) - \left (0 \right ) \right ) \\ &=-{\mathrm e}^{x +y} \end{align*}
Since \(A\) depends on \(y\) , it can not be used to obtain an integrating factor. We will now try a second
method to find an integrating factor. Let
\begin{align*} B &= \frac {1}{M} \left ( \frac {\partial N}{\partial x} - \frac {\partial M}{\partial y} \right ) \\ &=-{\mathrm e}^{-x -y}\left ( \left ( 0\right ) - \left (-{\mathrm e}^{x +y} \right ) \right ) \\ &=-1 \end{align*}
Since \(B\) does not depend on \(x\) , it can be used to obtain an integrating factor. Let the integrating
factor be \(\mu \) . Then
\begin{align*} \mu &= e^{\int B \mathop {\mathrm {d}y}} \\ &= e^{\int -1\mathop {\mathrm {d}y} } \end{align*}
The result of integrating gives
\begin{align*} \mu &= e^{-y } \\ &= {\mathrm e}^{-y} \end{align*}
\(M\) and \(N\) are now multiplied by this integrating factor, giving new \(M\) and new \(N\) which are called \(\overline {M}\) and \(\overline {N}\) so
not to confuse them with the original \(M\) and \(N\) .
\begin{align*} \overline {M} &=\mu M \\ &= {\mathrm e}^{-y}\left (-{\mathrm e}^{x +y}\right ) \\ &= -{\mathrm e}^{x} \end{align*}
And
\begin{align*} \overline {N} &=\mu N \\ &= {\mathrm e}^{-y}\left (1\right ) \\ &= {\mathrm e}^{-y} \end{align*}
So now a modified ODE is obtained from the original ODE which will be exact and can be solved
using the standard method. The modified ODE is
\begin{align*} \overline {M} + \overline {N} \frac { \mathop {\mathrm {d}y}}{\mathop {\mathrm {d}x}} &= 0 \\ \left (-{\mathrm e}^{x}\right ) + \left ({\mathrm e}^{-y}\right ) \frac { \mathop {\mathrm {d}y}}{\mathop {\mathrm {d}x}} &= 0 \end{align*}
The following equations are now set up to solve for the function \(\phi \left (x,y\right )\)
\begin{align*} \frac {\partial \phi }{\partial x } &= \overline {M}\tag {1} \\ \frac {\partial \phi }{\partial y } &= \overline {N}\tag {2} \end{align*}
Integrating (1) w.r.t. \(x\) gives
\begin{align*}
\int \frac {\partial \phi }{\partial x} \mathop {\mathrm {d}x} &= \int \overline {M}\mathop {\mathrm {d}x} \\
\int \frac {\partial \phi }{\partial x} \mathop {\mathrm {d}x} &= \int -{\mathrm e}^{x}\mathop {\mathrm {d}x} \\
\tag{3} \phi &= -{\mathrm e}^{x}+ f(y) \\
\end{align*}
Where
\(f(y)\) is used for the constant of integration since
\(\phi \) is a function of
both
\(x\) and
\(y\) . Taking derivative of equation (3) w.r.t
\(y\) gives
\begin{equation}
\tag{4} \frac {\partial \phi }{\partial y} = 0+f'(y)
\end{equation}
But equation (2) says that
\(\frac {\partial \phi }{\partial y} = {\mathrm e}^{-y}\) . Therefore
equation (4) becomes
\begin{equation}
\tag{5} {\mathrm e}^{-y} = 0+f'(y)
\end{equation}
Solving equation (5) for
\( f'(y)\) gives
\[
f'(y) = {\mathrm e}^{-y}
\]
Integrating the above w.r.t
\(y\) gives
\begin{align*}
\int f'(y) \mathop {\mathrm {d}y} &= \int \left ( {\mathrm e}^{-y}\right ) \mathop {\mathrm {d}y} \\
f(y) &= -{\mathrm e}^{-y}+ c_1 \\
\end{align*}
Where
\(c_1\) is constant of integration. Substituting result found above for
\(f(y)\) into equation (3)
gives
\(\phi \) \[
\phi = -{\mathrm e}^{x}-{\mathrm e}^{-y}+ c_1
\]
But since
\(\phi \) itself is a constant function, then let
\(\phi =c_2\) where
\(c_2\) is new constant and
combining
\(c_1\) and
\(c_2\) constants into the constant
\(c_1\) gives the solution as
\[
c_1 = -{\mathrm e}^{x}-{\mathrm e}^{-y}
\]
Solving for
\(y\) gives
\begin{align*}
y &= -\ln \left (-{\mathrm e}^{x}-c_1 \right ) \\
\end{align*}
Figure 2.69: Slope field \(y^{\prime } = {\mathrm e}^{x +y}\)
Summary of solutions found
\begin{align*}
y &= -\ln \left (-{\mathrm e}^{x}-c_1 \right ) \\
\end{align*}
Solved using first_order_ode_dAlembert
Time used: 0.233 (sec)
Solve
\begin{align*}
y^{\prime }&={\mathrm e}^{x +y} \\
\end{align*}
Let
\(p=y^{\prime }\) the ode becomes
\begin{align*} p = {\mathrm e}^{x +y} \end{align*}
Solving for \(y\) from the above results in
\begin{align*}
\tag{1} y &= -x +\ln \left (p \right ) \\
\end{align*}
This has the form
\begin{align*} y=x f(p)+g(p)\tag {*} \end{align*}
Where \(f,g\) are functions of \(p=y'(x)\) . The above ode is dAlembert ode which is now solved.
Taking derivative of (*) w.r.t. \(x\) gives
\begin{align*} p &= f+(x f'+g') \frac {dp}{dx}\\ p-f &= (x f'+g') \frac {dp}{dx}\tag {2} \end{align*}
Comparing the form \(y=x f + g\) to (1A) shows that
\begin{align*} f &= -1\\ g &= \ln \left (p \right ) \end{align*}
Hence (2) becomes
\begin{equation}
\tag{2A} p +1 = \frac {p^{\prime }\left (x \right )}{p}
\end{equation}
The singular solution is found by setting
\(\frac {dp}{dx}=0\) in the above which gives
\begin{align*} p +1 = 0 \end{align*}
Solving the above for \(p\) results in
\begin{align*} p_{1} &=-1 \end{align*}
Substituting these in (1A) and keeping singular solution that verifies the ode gives
\begin{align*} y = i \pi -x \end{align*}
The general solution is found when \( \frac { \mathop {\mathrm {d}p}}{\mathop {\mathrm {d}x}}\neq 0\) . From eq. (2A). This results in
\begin{equation}
\tag{3} p^{\prime }\left (x \right ) = \left (p \left (x \right )+1\right ) p \left (x \right )
\end{equation}
This ODE is now solved for
\(p \left (x \right )\) .
No inversion is needed.
Integrating gives
\begin{align*} \int \frac {1}{\left (p +1\right ) p}d p &= dx\\ -\ln \left (p +1\right )+\ln \left (p \right )&= x +c_1 \end{align*}
Singular solutions are found by solving
\begin{align*} \left (p +1\right ) p&= 0 \end{align*}
for \(p \left (x \right )\) . This is because we had to divide by this in the above step. This gives the following singular
solution(s), which also have to satisfy the given ODE.
\begin{align*} p \left (x \right ) = -1\\ p \left (x \right ) = 0 \end{align*}
Substituing the above solution for \(p\) in (2A) gives
\begin{align*}
y &= -x +\ln \left (-\frac {{\mathrm e}^{x +c_1}}{-1+{\mathrm e}^{x +c_1}}\right ) \\
y &= i \pi -x \\
\end{align*}
Simplifying the above gives
\begin{align*}
y &= i \pi -x \\
y &= -x +\ln \left (\frac {1}{{\mathrm e}^{-x -c_1}-1}\right ) \\
y &= i \pi -x \\
\end{align*}
Figure 2.70: Slope field \(y^{\prime } = {\mathrm e}^{x +y}\)
Summary of solutions found
\begin{align*}
y &= i \pi -x \\
y &= -x +\ln \left (\frac {1}{{\mathrm e}^{-x -c_1}-1}\right ) \\
\end{align*}
Time used: 0.042 (sec)
Solve
\begin{align*}
y^{\prime }&={\mathrm e}^{x +y} \\
\end{align*}
The given ode has the general form
\begin{align*} y^{\prime } & = B+C f\left ( ax +b y +c\right ) \tag {1} \end{align*}
Comparing (1) to the ode given shows the parameters in the ODE have these values
\begin{align*} B &= 0\\ C &= 1\\ a &= 1\\ b &= 1\\ c &= 0 \end{align*}
This form of ode can be solved by change of variables \(u=ax+b y +c\) which makes the ode separable.
\begin{align*} u^{\prime }\left (x \right ) &=a+b y^{\prime } \end{align*}
Or
\begin{align*} y^{\prime } &= \frac { u^{\prime }\left (x \right ) - a} {b} \end{align*}
The ode becomes
\begin{align*} \frac {u' - a}{b} & = B+C f\left ( u\right ) \\ u' & =b B+ b C f\left ( u\right ) +a \\ \frac {du}{b B+b C f\left ( u\right ) +a} &= d x \end{align*}
Integrating gives
\begin{align*} \int \frac {du}{b B+ b C f(u) +a} &=x+c_1\\ \int ^{u}\frac {d\tau }{b B + b C f(\tau ) +a} & = x+c_1 \end{align*}
Replacing back \(u=ax+b y +c\) the above becomes
\begin{equation} \int ^{ax+b y +c}\frac {d\tau }{b B+b C f\left ( \tau \right ) +a} = x+c_{1}\tag {2} \end{equation}
If initial conditions are given as
\(y\left ( x_{0}\right ) = y_{0}\) , the above becomes
\begin{align*} \int _{0}^{a x_{0}+b y_{0}+c}\frac {d\tau }{b B + b C f\left ( \tau \right ) +a} & =x_{0}+c_{1}\\ c_{1} & =\int _{0}^{ax+by_{0}+c}\frac {d\tau }{b B+ b C f\left ( \tau \right )+a}-x_{0} \end{align*}
Substituting this into (2) gives
\begin{align*} \int ^{ax+by+c}\frac {d\tau }{bB+bC f\left ( \tau \right ) +a}= x+\int _{0}^{ax+by_{0}+c}\frac {d\tau }{bB+bC f\left ( \tau \right ) +a}-x_{0} \tag {3} \end{align*}
Solving for \(y\) gives
\begin{align*}
y &= \ln \left (-\frac {1}{-1+{\mathrm e}^{x +c_1}}\right )+c_1 \\
\end{align*}
Figure 2.71: Slope field \(y^{\prime } = {\mathrm e}^{x +y}\)
Summary of solutions found
\begin{align*}
y &= \ln \left (-\frac {1}{-1+{\mathrm e}^{x +c_1}}\right )+c_1 \\
\end{align*}
Solved using first_order_ode_LIE
Time used: 0.355 (sec)
Solve
\begin{align*}
y^{\prime }&={\mathrm e}^{x +y} \\
\end{align*}
Writing the ode as
\begin{align*} y^{\prime }&={\mathrm e}^{x +y}\\ y^{\prime }&= \omega \left ( x,y\right ) \end{align*}
The condition of Lie symmetry is the linearized PDE given by
\begin{align*} \eta _{x}+\omega \left ( \eta _{y}-\xi _{x}\right ) -\omega ^{2}\xi _{y}-\omega _{x}\xi -\omega _{y}\eta =0\tag {A} \end{align*}
To determine \(\xi ,\eta \) then (A) is solved using ansatz. Using these anstaz
\begin{align*}
\tag{1E} \xi &= 1 \\
\tag{2E} \eta &= \frac {A x +B y}{C x} \\
\end{align*}
Where the unknown coefficients
are
\[
\{A, B, C\}
\]
Substituting equations (1E,2E) and
\(\omega \) into (A) gives
\begin{equation}
\tag{5E} \frac {A}{C x}-\frac {A x +B y}{C \,x^{2}}+\frac {{\mathrm e}^{x +y} B}{C x}-{\mathrm e}^{x +y}-\frac {{\mathrm e}^{x +y} \left (A x +B y \right )}{C x} = 0
\end{equation}
Putting the above in normal form gives
\[
-\frac {A \,{\mathrm e}^{x +y} x^{2}+B \,{\mathrm e}^{x +y} x y +{\mathrm e}^{x +y} C \,x^{2}-{\mathrm e}^{x +y} B x +B y}{C \,x^{2}} = 0
\]
Setting the numerator to zero gives
\begin{equation}
\tag{6E} -A \,{\mathrm e}^{x +y} x^{2}-B \,{\mathrm e}^{x +y} x y -{\mathrm e}^{x +y} C \,x^{2}+{\mathrm e}^{x +y} B x -B y = 0
\end{equation}
Looking at the above PDE shows the following are all the
terms with
\(\{x, y\}\) in them.
\[
\{x, y, {\mathrm e}^{x +y}\}
\]
The following substitution is now made to be able to collect on all terms
with
\(\{x, y\}\) in them
\[
\{x = v_{1}, y = v_{2}, {\mathrm e}^{x +y} = v_{3}\}
\]
The above PDE (6E) now becomes
\begin{equation}
\tag{7E} -A v_{3} v_{1}^{2}-B v_{3} v_{1} v_{2}-v_{3} C v_{1}^{2}+v_{3} B v_{1}-B v_{2} = 0
\end{equation}
Collecting the above on the terms
\(v_i\) introduced,
and these are
\[
\{v_{1}, v_{2}, v_{3}\}
\]
Equation (7E) now becomes
\begin{equation}
\tag{8E} \left (-A -C \right ) v_{1}^{2} v_{3}-B v_{3} v_{1} v_{2}+v_{3} B v_{1}-B v_{2} = 0
\end{equation}
Setting each coefficients in (8E) to zero gives the
following equations to solve
\begin{align*} B&=0\\ -B&=0\\ -A -C&=0 \end{align*}
Solving the above equations for the unknowns gives
\begin{align*} A&=-C\\ B&=0\\ C&=C \end{align*}
Substituting the above solution in the anstaz (1E,2E) (using \(1\) as arbitrary value for any unknown
in the RHS) gives
\begin{align*}
\xi &= 1 \\
\eta &= -1 \\
\end{align*}
The next step is to determine the canonical coordinates
\(R,S\) . The canonical
coordinates map
\(\left ( x,y\right ) \to \left ( R,S \right )\) where
\(\left ( R,S \right )\) are the canonical coordinates which make the original ode become a
quadrature and hence solved by integration.
The characteristic pde which is used to find the canonical coordinates is
\begin{align*} \frac {d x}{\xi } &= \frac {d y}{\eta } = dS \tag {1} \end{align*}
The above comes from the requirements that \(\left ( \xi \frac {\partial }{\partial x} + \eta \frac {\partial }{\partial y}\right ) S(x,y) = 1\) . Starting with the first pair of ode’s in (1) gives an
ode to solve for the independent variable \(R\) in the canonical coordinates, where \(S(R)\) . Therefore
\begin{align*} \frac {dy}{dx} &= \frac {\eta }{\xi }\\ &= \frac {-1}{1}\\ &= -1 \end{align*}
This is easily solved to give
\begin{align*} y = c_1 -x \end{align*}
Where now the coordinate \(R\) is taken as the constant of integration. Hence
\begin{align*} R &= x +y \end{align*}
And \(S\) is found from
\begin{align*} dS &= \frac {dx}{\xi } \\ &= \frac {dx}{1} \end{align*}
Integrating gives
\begin{align*} S &= \int { \frac {dx}{T}}\\ &= x \end{align*}
Where the constant of integration is set to zero as we just need one solution. Now that \(R,S\)
are found, we need to setup the ode in these coordinates. This is done by evaluating
\begin{align*} \frac {dS}{dR} &= \frac { S_{x} + \omega (x,y) S_{y} }{ R_{x} + \omega (x,y) R_{y} }\tag {2} \end{align*}
Where in the above \(R_{x},R_{y},S_{x},S_{y}\) are all partial derivatives and \(\omega (x,y)\) is the right hand side of the original ode given
by
\begin{align*} \omega (x,y) &= {\mathrm e}^{x +y} \end{align*}
Evaluating all the partial derivatives gives
\begin{align*} R_{x} &= 1\\ R_{y} &= 1\\ S_{x} &= 1\\ S_{y} &= 0 \end{align*}
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\begin{align*} \frac {dS}{dR} &= \frac {1}{1+{\mathrm e}^{x +y}}\tag {2A} \end{align*}
We now need to express the RHS as function of \(R\) only. This is done by solving for \(x,y\) in terms of \(R,S\) from
the result obtained earlier and simplifying. This gives
\begin{align*} \frac {dS}{dR} &= \frac {1}{1+{\mathrm e}^{R}} \end{align*}
The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an
ode, no matter how complicated it is, to one that can be solved by integration when the ode is in
the canonical coordiates \(R,S\) .
Since the ode has the form \(\frac {d}{d R}S \left (R \right )=f(R)\) , then we only need to integrate \(f(R)\) .
\begin{align*} \int {dS} &= \int {\frac {1}{1+{\mathrm e}^{R}}\, dR}\\ S \left (R \right ) &= -\ln \left (1+{\mathrm e}^{R}\right )+\ln \left ({\mathrm e}^{R}\right ) + c_2 \end{align*}
To complete the solution, we just need to transform the above back to \(x,y\) coordinates. This results in
\begin{align*} x = \ln \left (\frac {1}{1+{\mathrm e}^{x +y}}\right )+x +y+c_2 \end{align*}
The following diagram shows solution curves of the original ode and how they transform in the
canonical coordinates space using the mapping shown.
Original ode in \(x,y\) coordinates
Canonical
coordinates
transformation
ODE in canonical coordinates \((R,S)\)
\( \frac {dy}{dx} = {\mathrm e}^{x +y}\)
\( \frac {d S}{d R} = \frac {1}{1+{\mathrm e}^{R}}\)
\(\!\begin {aligned} R&= x +y\\ S&= x \end {aligned} \)
Solving for \(y\) gives
\begin{align*}
y &= -\ln \left (-1+{\mathrm e}^{c_2 -x}\right )-x \\
\end{align*}
Figure 2.72: Slope field \(y^{\prime } = {\mathrm e}^{x +y}\)
Summary of solutions found
\begin{align*}
y &= -\ln \left (-1+{\mathrm e}^{c_2 -x}\right )-x \\
\end{align*}
Time used: 0.083 (sec)
Solve
\begin{align*}
y^{\prime }&={\mathrm e}^{x +y} \\
\end{align*}
Writing the ode as
\begin{align*} y^{\prime } &= {\mathrm e}^{x +y}\tag {1} \end{align*}
And using the substitution \(u={\mathrm e}^{-y}\) then
\begin{align*} u' &= -y^{\prime } {\mathrm e}^{-y} \end{align*}
The above shows that
\begin{align*} y^{\prime } &= -u^{\prime }\left (x \right ) {\mathrm e}^{y}\\ &= -\frac {u^{\prime }\left (x \right )}{u} \end{align*}
Substituting this in (1) gives
\begin{align*} -\frac {u^{\prime }\left (x \right )}{u}&=\frac {{\mathrm e}^{x}}{u} \end{align*}
The above simplifies to
\begin{align*} u^{\prime }\left (x \right )&=-{\mathrm e}^{x}\tag {2} \end{align*}
Now ode (2) is solved for \(u \left (x \right )\) .
Since the ode has the form \(u^{\prime }\left (x \right )=f(x)\) , then we only need to integrate \(f(x)\) .
\begin{align*} \int {du} &= \int {-{\mathrm e}^{x}\, dx}\\ u \left (x \right ) &= -{\mathrm e}^{x} + c_1 \end{align*}
Substituting the solution found for \(u \left (x \right )\) in \(u={\mathrm e}^{-y}\) gives
\begin{align*} {\mathrm e}^{-y} = -{\mathrm e}^{x}+c_1 \end{align*}
Solving for \(y\) gives
\begin{align*}
y &= -\ln \left (-{\mathrm e}^{x}+c_1 \right ) \\
\end{align*}
Figure 2.73: Slope field \(y^{\prime } = {\mathrm e}^{x +y}\)
Summary of solutions found
\begin{align*}
y &= -\ln \left (-{\mathrm e}^{x}+c_1 \right ) \\
\end{align*}
✓ Maple. Time used: 0.003 (sec). Leaf size: 13
ode := diff ( y ( x ), x ) = exp(x+y(x));
dsolve ( ode , y ( x ), singsol=all);
\[
y = \ln \left (-\frac {1}{{\mathrm e}^{x}+c_1}\right )
\]
Maple trace
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )={\mathrm e}^{x +y \left (x \right )} \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d x}y \left (x \right ) \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )={\mathrm e}^{x +y \left (x \right )} \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {\frac {d}{d x}y \left (x \right )}{{\mathrm e}^{y \left (x \right )}}={\mathrm e}^{x} \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \frac {\frac {d}{d x}y \left (x \right )}{{\mathrm e}^{y \left (x \right )}}d x =\int {\mathrm e}^{x}d x +\mathit {C1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & -\frac {1}{{\mathrm e}^{y \left (x \right )}}={\mathrm e}^{x}+\mathit {C1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} y \left (x \right ) \\ {} & {} & y \left (x \right )=\ln \left (-\frac {1}{{\mathrm e}^{x}+\mathit {C1}}\right ) \end {array} \]
✓ Mathematica. Time used: 0.606 (sec). Leaf size: 18
ode = D [ y [ x ], x ]== Exp [ x + y [ x ]];
ic ={};
DSolve [{ ode , ic }, y [ x ], x , IncludeSingularSolutions -> True ]
\begin{align*} y(x)&\to -\log \left (-e^x-c_1\right ) \end{align*}
✓ Sympy. Time used: 0.102 (sec). Leaf size: 12
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(-exp(x + y(x)) + Derivative(y(x), x),0)
ics = {}
dsolve ( ode , func = y ( x ), ics = ics )
\[
y{\left (x \right )} = \log {\left (- \frac {1}{C_{1} + e^{x}} \right )}
\]