2.4.23 first order ode riccati guess

Table 2.1095: first order ode riccati guess [477]

#

ODE

CAS classification

Solved

Maple

Mma

Sympy

time(sec)

50

\begin{align*} \left (x +1\right )^{2} y^{\prime }&=\left (1+y\right )^{2} \\ \end{align*}

[_separable]

3.480

58

\begin{align*} x^{2} y^{\prime }&=1-x^{2}+y^{2}-y^{2} x^{2} \\ \end{align*}

[_separable]

3.529

60

\begin{align*} y^{\prime }&=3 x^{2} \left (1+y^{2}\right ) \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

3.790

121

\begin{align*} y^{\prime }&=\left (4 x +y\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

1.024

167

\begin{align*} y^{\prime }+y^{2}&=x^{2}+1 \\ \end{align*}

[_Riccati]

1.477

168

\begin{align*} y^{\prime }+2 y x&=1+x^{2}+y^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

1.213

188

\begin{align*} y^{\prime }&=1+x^{2}+y^{2}+y^{2} x^{2} \\ \end{align*}

[_separable]

2.375

194

\begin{align*} y^{\prime }&=x^{2}-2 y x +y^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

1.075

686

\begin{align*} \left (x^{2}+1\right ) y^{\prime }&=\left (1+y\right )^{2} \\ \end{align*}

[_separable]

3.063

693

\begin{align*} x^{2} y^{\prime }&=1-x^{2}+y^{2}-y^{2} x^{2} \\ \end{align*}

[_separable]

3.131

695

\begin{align*} y^{\prime }&=3 x^{2} \left (1+y^{2}\right ) \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

3.048

745

\begin{align*} y^{\prime }&=\left (4 x +y\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

1.057

780

\begin{align*} y^{\prime }&=1+x^{2}+y^{2}+y^{2} x^{2} \\ \end{align*}

[_separable]

2.441

786

\begin{align*} y^{\prime }&=x^{2}-2 y x +y^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

1.062

1154

\begin{align*} y^{\prime }&=2 \left (x +1\right ) \left (1+y^{2}\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

2.876

1158

\begin{align*} y^{\prime }&=\frac {x^{2}+y x +y^{2}}{x^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

2.931

1163

\begin{align*} x^{2}+3 y x +y^{2}-x^{2} y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

2.429

1230

\begin{align*} y^{\prime }&=1+2 x +y^{2}+2 x y^{2} \\ \end{align*}

[_separable]

2.346

1522

\begin{align*} 2 y^{\prime }+x \left (y^{2}-1\right )&=0 \\ \end{align*}

[_separable]

2.073

1523

\begin{align*} y^{\prime }&=x^{2} \left (1+y^{2}\right ) \\ \end{align*}

[_separable]

2.003

1532

\begin{align*} y^{\prime }&=x \left (1+y^{2}\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

2.336

1583

\begin{align*} y^{\prime }&=x^{2} \left (1+y^{2}\right ) \\ \end{align*}

[_separable]

2.532

1585

\begin{align*} y^{\prime }&=\left (x -1\right ) \left (y-1\right ) \left (y-2\right ) \\ \end{align*}

[_separable]

3.971

1593

\begin{align*} \left (x^{2}+2\right ) y^{\prime }&=4 x \left (y^{2}+2 y+1\right ) \\ \end{align*}

[_separable]

3.853

1600

\begin{align*} y^{\prime }&=\frac {1+y^{2}}{x^{2}+1} \\ \end{align*}

[_separable]

2.902

1628

\begin{align*} x^{2} y^{\prime }&=y^{2}+y x -x^{2} \\ y \left (1\right ) &= 2 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

5.069

1646

\begin{align*} x^{2} y^{\prime }&=x^{2}+y x +y^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

2.713

1652

\begin{align*} y^{\prime }&=\frac {y^{2}-3 y x -5 x^{2}}{x^{2}} \\ y \left (1\right ) &= 1 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

5.050

1653

\begin{align*} x^{2} y^{\prime }&=2 x^{2}+y^{2}+4 y x \\ y \left (1\right ) &= 1 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

2.639

1662

\begin{align*} x^{2} y^{\prime }&=y^{2}+y x -4 x^{2} \\ y \left (-1\right ) &= 0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

4.775

1671

\begin{align*} x^{3} y^{\prime }&=2 y^{2}+2 x^{2} y-2 x^{4} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Riccati]

3.089

1672

\begin{align*} y^{\prime }&=y^{2} {\mathrm e}^{-x}+4 y+2 \,{\mathrm e}^{x} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Riccati]

2.103

1674

\begin{align*} x \ln \left (x \right )^{2} y^{\prime }&=-4 \ln \left (x \right )^{2}+y \ln \left (x \right )+y^{2} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _Riccati]

3.070

1679

\begin{align*} y^{\prime }&=1+x -\left (2 x +1\right ) y+x y^{2} \\ \end{align*}

[_Riccati]

2.575

1798

\begin{align*} x^{2} \left (y^{\prime }+y^{2}\right )-x \left (2+x \right ) y+x +2&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

2.095

1799

\begin{align*} y^{\prime }+y^{2}+4 y x +4 x^{2}+2&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

1.601

1800

\begin{align*} \left (2 x +1\right ) \left (y^{\prime }+y^{2}\right )-2 y-2 x -3&=0 \\ \end{align*}

[_rational, _Riccati]

4.131

1801

\begin{align*} \left (3 x -1\right ) \left (y^{\prime }+y^{2}\right )-\left (3 x +2\right ) y-6 x +8&=0 \\ \end{align*}

[_rational, _Riccati]

4.498

1802

\begin{align*} x^{2} \left (y^{\prime }+y^{2}\right )+y x +x^{2}-\frac {1}{4}&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

2.033

1803

\begin{align*} x^{2} \left (y^{\prime }+y^{2}\right )-7 y x +7&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Riccati]

3.625

2317

\begin{align*} \left (t^{2}+1\right ) y^{\prime }&=1+y^{2} \\ \end{align*}

[_separable]

2.372

2319

\begin{align*} y^{\prime }&=1-t +y^{2}-t y^{2} \\ \end{align*}

[_separable]

2.578

2488

\begin{align*} \left (t^{2}+1\right ) y^{\prime }&=1+y^{2} \\ \end{align*}

[_separable]

2.707

2490

\begin{align*} y^{\prime }&=1-t +y^{2}-t y^{2} \\ \end{align*}

[_separable]

2.780

2842

\begin{align*} 1+y^{2}+\left (x^{2}+1\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

2.830

2866

\begin{align*} 1+y^{2}&=\frac {y^{\prime }}{x^{3} \left (x -1\right )} \\ y \left (2\right ) &= 0 \\ \end{align*}

[_separable]

3.991

2868

\begin{align*} \left (x^{2}+x +1\right ) y^{\prime }&=y^{2}+2 y+5 \\ y \left (1\right ) &= 1 \\ \end{align*}

[_separable]

7.496

2869

\begin{align*} \left (x^{2}-2 x -8\right ) y^{\prime }&=y^{2}+y-2 \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

5.473

3475

\begin{align*} y^{\prime }-\frac {y^{2}}{x^{2}}&={\frac {1}{4}} \\ y \left (1\right ) &= 1 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

6.211

3476

\begin{align*} y^{\prime }-\frac {y^{2}}{x^{2}}&={\frac {1}{4}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

4.599

3522

\begin{align*} y^{\prime }&=\frac {x \left (y^{2}-1\right )}{2 \left (x -2\right ) \left (x -1\right )} \\ \end{align*}

[_separable]

2.968

3525

\begin{align*} \left (x^{2}+1\right ) y^{\prime }+y^{2}&=-1 \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

2.389

3544

\begin{align*} y^{\prime }&=\frac {\left (x +y\right )^{2}}{2 x^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

2.513

3552

\begin{align*} x^{2} y^{\prime }&=y^{2}+3 y x +x^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

2.583

3600

\begin{align*} y^{\prime }&=\frac {x \left (y^{2}-1\right )}{2 \left (x -2\right ) \left (x -1\right )} \\ \end{align*}

[_separable]

3.405

3603

\begin{align*} \left (x^{2}+1\right ) y^{\prime }+y^{2}&=-1 \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

2.137

3635

\begin{align*} y^{\prime }&=\frac {x^{2}+y x +y^{2}}{x^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

2.288

3637

\begin{align*} y^{\prime }&=\frac {\left (x +y\right )^{2}}{2 x^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

2.228

3645

\begin{align*} x^{2} y^{\prime }&=y^{2}+3 y x +x^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

2.181

3671

\begin{align*} y^{\prime }&=\left (9 x -y\right )^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

2.495

3672

\begin{align*} y^{\prime }&=\left (4 x +y+2\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

4.997

3675

\begin{align*} y^{\prime }&=2 x \left (x +y\right )^{2}-1 \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Riccati]

2.375

3678

\begin{align*} y^{\prime }+\frac {2 y}{x}-y^{2}&=-\frac {2}{x^{2}} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Riccati]

2.939

3679

\begin{align*} y^{\prime }+\frac {7 y}{x}-3 y^{2}&=\frac {3}{x^{2}} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Riccati]

2.066

4089

\begin{align*} x^{2} y^{\prime }&=\left (y-1\right ) x +\left (y-1\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, _Riccati]

2.295

4102

\begin{align*} y^{\prime }&=\frac {y^{2}+x^{2}}{2 x^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

2.496

4231

\begin{align*} 2 y^{\prime } x&=1-y^{2} \\ y \left (1\right ) &= 0 \\ \end{align*}

[_separable]

2.535

4234

\begin{align*} y^{\prime }&={\mathrm e}^{x} \left (1+y^{2}\right ) \\ \end{align*}

[_separable]

2.424

4245

\begin{align*} y^{\prime }&=\left (x +y\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

1.133

4265

\begin{align*} y^{\prime } x&=x^{5}+x^{3} y^{2}+y \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Riccati]

1.936

4267

\begin{align*} y^{\prime } x&=y+x^{2}+9 y^{2} \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Riccati]

1.122

4324

\begin{align*} y^{\prime }&=\left (x +1\right )^{2}+\left (4 y+1\right )^{2}+8 y x +1 \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

22.996

4345

\begin{align*} x^{2}+y+y^{2}-y^{\prime } x&=0 \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Riccati]

1.339

4654

\begin{align*} y^{\prime }+1-x&=y \left (x +y\right ) \\ \end{align*}

[_Riccati]

2.599

4655

\begin{align*} y^{\prime }&=\left (x +y\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

1.481

4656

\begin{align*} y^{\prime }&=\left (x -y\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

1.286

4657

\begin{align*} y^{\prime }&=3 y-3 x +3+\left (x -y\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

2.539

4658

\begin{align*} y^{\prime }&=2 x -\left (x^{2}+1\right ) y+y^{2} \\ \end{align*}

[_Riccati]

2.256

4659

\begin{align*} y^{\prime }&=x \left (x^{3}+2\right )-\left (2 x^{2}-y\right ) y \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Riccati]

1.447

4660

\begin{align*} y^{\prime }&=1+x \left (-x^{3}+2\right )+\left (2 x^{2}-y\right ) y \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Riccati]

1.720

4663

\begin{align*} y^{\prime }&=f \left (x \right )+x f \left (x \right ) y+y^{2} \\ \end{align*}

[_Riccati]

3.003

4664

\begin{align*} y^{\prime }&=\left (3+x -4 y\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

6.497

4665

\begin{align*} y^{\prime }&=\left (1+4 x +9 y\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

15.109

4674

\begin{align*} y^{\prime }&=1+a \left (x -y\right ) y \\ \end{align*}

[_Riccati]

2.743

4677

\begin{align*} y^{\prime }&=1-x -x^{3}+\left (2 x^{2}+1\right ) y-x y^{2} \\ \end{align*}

[_Riccati]

4.540

4678

\begin{align*} y^{\prime }&=x \left (2+x^{2} y-y^{2}\right ) \\ \end{align*}

[_Riccati]

3.150

4679

\begin{align*} y^{\prime }&=x +\left (1-2 x \right ) y-\left (1-x \right ) y^{2} \\ \end{align*}

[_Riccati]

4.359

4681

\begin{align*} y^{\prime }&=x^{n} \left (a +b y^{2}\right ) \\ \end{align*}

[_separable]

5.339

4687

\begin{align*} y^{\prime }+\tan \left (x \right ) \left (1-y^{2}\right )&=0 \\ \end{align*}

[_separable]

3.808

4689

\begin{align*} y^{\prime }&=\left (a +b y+c y^{2}\right ) f \left (x \right ) \\ \end{align*}

[_separable]

6.622

4773

\begin{align*} y^{\prime } x&=x^{2}+y \left (1+y\right ) \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Riccati]

1.198

4775

\begin{align*} y^{\prime } x&=a +b y^{2} \\ \end{align*}

[_separable]

2.344

4776

\begin{align*} y^{\prime } x&=a \,x^{2}+y+b y^{2} \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Riccati]

0.803

4777

\begin{align*} y^{\prime } x&=a \,x^{2 n}+\left (n +b y\right ) y \\ \end{align*}

[_rational, _Riccati]

2.368

4785

\begin{align*} y^{\prime } x&=x^{3}+\left (2 x^{2}+1\right ) y+x y^{2} \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Riccati]

2.539

4787

\begin{align*} y^{\prime } x +b x +\left (2+a x y\right ) y&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

2.650

4790

\begin{align*} y^{\prime } x +x^{m}+\frac {\left (n -m \right ) y}{2}+x^{n} y^{2}&=0 \\ \end{align*}

[_rational, _Riccati]

2.897

4793

\begin{align*} y^{\prime } x&=2 x -y+a \,x^{n} \left (x -y\right )^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Riccati]

4.925

4795

\begin{align*} y^{\prime } x&=y+\left (x^{2}-y^{2}\right ) f \left (x \right ) \\ \end{align*}

[[_homogeneous, ‘class D‘], _Riccati]

3.040

4861

\begin{align*} 3 y^{\prime } x&=3 x^{{2}/{3}}+\left (1-3 y\right ) y \\ \end{align*}

[_rational, _Riccati]

3.288

4872

\begin{align*} x^{2} y^{\prime }+x^{2}+y x +y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

5.111

4873

\begin{align*} x^{2} y^{\prime }&=\left (1+2 x -y\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, _Riccati]

6.839

4874

\begin{align*} x^{2} y^{\prime }&=a +b y^{2} \\ \end{align*}

[_separable]

4.404

4877

\begin{align*} x^{2} y^{\prime }+a \,x^{2}+b x y+c y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

62.256

4879

\begin{align*} x^{2} y^{\prime }+2+x y \left (4+y x \right )&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Riccati]

5.807

4880

\begin{align*} x^{2} y^{\prime }+2+a x \left (-y x +1\right )-y^{2} x^{2}&=0 \\ \end{align*}

[_rational, _Riccati]

3.713

4881

\begin{align*} x^{2} y^{\prime }&=a +b \,x^{2} y^{2} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

6.015

4883

\begin{align*} x^{2} y^{\prime }&=a +b x y+c \,x^{2} y^{2} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Riccati]

4.303

4914

\begin{align*} \left (x^{2}+1\right ) y^{\prime }&=1+y^{2} \\ \end{align*}

[_separable]

3.310

4915

\begin{align*} \left (x^{2}+1\right ) y^{\prime }&=-1-y^{2} \\ \end{align*}

[_separable]

2.338

4916

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }&=1-y^{2} \\ \end{align*}

[_separable]

3.707

4917

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }&=y^{2}-1 \\ \end{align*}

[_separable]

3.687

4918

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }&=1-y \left (2 x -y\right ) \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

3.448

4944

\begin{align*} \left (x -a \right )^{2} y^{\prime }+k \left (x +y-a \right )^{2}+y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, _Riccati]

16.660

4948

\begin{align*} \left (x -a \right ) \left (-b +x \right ) y^{\prime }+k \left (y-a \right ) \left (y-b \right )&=0 \\ \end{align*}

[_separable]

10.528

4949

\begin{align*} \left (x -a \right ) \left (-b +x \right ) y^{\prime }+k \left (x +y-a \right ) \left (x +y-b \right )+y^{2}&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

11.143

4952

\begin{align*} 2 x^{2} y^{\prime }+1+2 y x -y^{2} x^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Riccati]

3.902

4953

\begin{align*} 2 x^{2} y^{\prime }&=2 y x +\left (-x \cot \left (x \right )+1\right ) \left (x^{2}-y^{2}\right ) \\ \end{align*}

[[_homogeneous, ‘class D‘], _Riccati]

99.829

4956

\begin{align*} x \left (1-2 x \right ) y^{\prime }&=4 x -\left (4 x +1\right ) y+y^{2} \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

5.013

4961

\begin{align*} a \,x^{2} y^{\prime }&=x^{2}+a x y+b^{2} y^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

27.248

4962

\begin{align*} \left (b \,x^{2}+a \right ) y^{\prime }&=A +B y^{2} \\ \end{align*}

[_separable]

4.829

4963

\begin{align*} \left (b \,x^{2}+a \right ) y^{\prime }&=-A -B y^{2} \\ \end{align*}

[_separable]

4.665

4969

\begin{align*} x^{3} y^{\prime }&=x^{4}+y^{2} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Riccati]

2.078

4971

\begin{align*} x^{3} y^{\prime }&=\left (y-1\right ) x^{2}+y^{2} \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Riccati]

5.849

4973

\begin{align*} x^{3} y^{\prime }+20+x^{2} y \left (1-x^{2} y\right )&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Riccati]

4.879

4974

\begin{align*} x^{3} y^{\prime }+3+\left (3-2 x \right ) x^{2} y-x^{6} y^{2}&=0 \\ \end{align*}

[_rational, _Riccati]

1.429

4991

\begin{align*} x \left (c \,x^{2}+b x +a \right ) y^{\prime }+x^{2}-\left (c \,x^{2}+b x +a \right ) y&=y^{2} \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Riccati]

3.891

4995

\begin{align*} \left (-x^{4}+1\right ) y^{\prime }&=2 x \left (1-y^{2}\right ) \\ \end{align*}

[_separable]

3.471

4997

\begin{align*} x \left (-x^{3}+1\right ) y^{\prime }&=x^{2}+\left (1-2 y x \right ) y \\ \end{align*}

[_rational, _Riccati]

2.502

5002

\begin{align*} x \left (-x^{4}+1\right ) y^{\prime }&=2 x \left (x^{2}-y^{2}\right )+\left (-x^{4}+1\right ) y \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Riccati]

2.876

5006

\begin{align*} x^{n} y^{\prime }+x^{2 n -2}+y^{2}+\left (1-n \right ) x^{n -1} y&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _Riccati]

4.109

5007

\begin{align*} x^{n} y^{\prime }&=a^{2} x^{2 n -2}+b^{2} y^{2} \\ \end{align*}

[[_homogeneous, ‘class G‘], _Riccati]

9.289

5008

\begin{align*} x^{n} y^{\prime }&=x^{n -1} \left (a \,x^{2 n}+n y-b y^{2}\right ) \\ \end{align*}

[_rational, _Riccati]

3.514

5011

\begin{align*} y^{\prime } \sqrt {-x^{2}+1}&=1+y^{2} \\ \end{align*}

[_separable]

3.935

6986

\begin{align*} y^{\prime }&=x^{3}+\frac {2 y}{x}-\frac {y^{2}}{x} \\ \end{align*}

[_rational, _Riccati]

1.756

6988

\begin{align*} y^{\prime }&=\frac {1}{x^{2}}-\frac {y}{x}-y^{2} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Riccati]

3.424

6989

\begin{align*} y^{\prime }&=1+\frac {y}{x}-\frac {y^{2}}{x^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

4.465

7006

\begin{align*} y^{\prime }&=\left (x +y\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

1.258

7010

\begin{align*} y^{\prime } x -y^{2}+1&=0 \\ \end{align*}

[_separable]

3.124

7020

\begin{align*} x^{2} y^{\prime }+x^{2}+y x +y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3.231

7161

\begin{align*} y^{\prime }&=\frac {1+y^{2}}{x^{2}+1} \\ \end{align*}

[_separable]

2.431

7256

\begin{align*} y^{\prime }&=x y^{2}-\frac {2 y}{x}-\frac {1}{x^{3}} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Riccati]

3.880

7257

\begin{align*} y^{\prime }&=\frac {2 y^{2}}{x}+\frac {y}{x}-2 x \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Riccati]

1.733

7258

\begin{align*} y^{\prime }&=y^{2} {\mathrm e}^{-x}+y-{\mathrm e}^{x} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Riccati]

2.138

7396

\begin{align*} y^{\prime }&=\left (1+y^{2}\right ) \tan \left (x \right ) \\ y \left (0\right ) &= \sqrt {3} \\ \end{align*}

[_separable]

5.653

7408

\begin{align*} y^{\prime }&=\sqrt {1+\sin \left (x \right )}\, \left (1+y^{2}\right ) \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

25.092

7490

\begin{align*} \left (y-4 x -1\right )^{2}-y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

7.717

7506

\begin{align*} y^{\prime }&=\left (x +y+2\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

4.077

7507

\begin{align*} y^{\prime }&=\left (x -y+5\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

3.945

7524

\begin{align*} y^{\prime }&=x^{3} \left (y-x \right )^{2}+\frac {y}{x} \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Riccati]

4.069

7541

\begin{align*} y^{\prime }&=\left (2 x +y-1\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

4.912

7696

\begin{align*} \left (x +1\right )^{2} y^{\prime }&=1+y^{2} \\ \end{align*}

[_separable]

3.200

7748

\begin{align*} y^{\prime }+x +x y^{2}&=0 \\ y \left (1\right ) &= 0 \\ \end{align*}

[_separable]

4.434

7879

\begin{align*} y^{\prime }&=-2 \left (2 x +3 y\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

10.306

7908

\begin{align*} 1+y^{2}&=\left (x^{2}+x \right ) y^{\prime } \\ \end{align*}

[_separable]

3.914

8160

\begin{align*} y^{2}-1+y^{\prime } x&=0 \\ \end{align*}

[_separable]

2.825

8347

\begin{align*} y^{\prime }&=\frac {\left (3+2 y\right )^{2}}{\left (5+4 x \right )^{2}} \\ \end{align*}

[_separable]

3.928

8361

\begin{align*} y^{\prime }&=\frac {y^{2}-1}{x^{2}-1} \\ y \left (2\right ) &= 2 \\ \end{align*}

[_separable]

3.093

8365

\begin{align*} \left (x^{4}+1\right ) y^{\prime }+x \left (1+4 y^{2}\right )&=0 \\ y \left (1\right ) &= 0 \\ \end{align*}

[_separable]

3.329

8370

\begin{align*} y^{\prime }&=\left (1+y^{2}\right ) \sqrt {1+\cos \left (x^{3}\right )} \\ y \left (1\right ) &= 1 \\ \end{align*}

[_separable]

42.881

8689

\begin{align*} y^{\prime }&=\left (x +y+1\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

3.864

8707

\begin{align*} x^{2}+y x +y^{2}&=x^{2} y^{\prime } \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

4.427

8777

\begin{align*} y^{\prime }&=x^{2} \left (1+y^{2}\right ) \\ \end{align*}

[_separable]

2.790

8787

\begin{align*} y^{\prime }&=-\frac {2}{t}+\frac {y}{t}+\frac {y^{2}}{t} \\ \end{align*}

[_separable]

3.972

8837

\begin{align*} -y+y^{\prime } x&=y^{2}+x^{2} \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Riccati]

1.335

9010

\begin{align*} y^{\prime }&=y^{2} x^{2}-4 x^{2} \\ \end{align*}

[_separable]

3.261

9016

\begin{align*} y^{\prime }&=\frac {x^{2}+y x +y^{2}}{x^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

2.786

9021

\begin{align*} y^{\prime }&=\frac {\left (x +y-1\right )^{2}}{2 \left (2+x \right )^{2}} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, _Riccati]

3.434

9055

\begin{align*} y^{\prime } x&=y+y^{2}+x^{2} \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Riccati]

1.079

9085

\begin{align*} 1+y^{2}+\left (x^{2}+1\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

2.400

9972

\begin{align*} \left (x^{2}+1\right ) y^{\prime }+y^{2}&=-1 \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

3.612

10016

\begin{align*} y^{\prime }&=\frac {5 x^{2}-y x +y^{2}}{x^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

2.792

10022

\begin{align*} y^{\prime } x -2 y+b y^{2}&=c \,x^{4} \\ \end{align*}

[_rational, _Riccati]

2.266

11317

\begin{align*} y^{\prime }+y^{2}-2 x^{2} y+x^{4}-2 x -1&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Riccati]

2.243

11318

\begin{align*} y^{\prime }+y^{2}+\left (y x -1\right ) f \left (x \right )&=0 \\ \end{align*}

[_Riccati]

4.198

11320

\begin{align*} y^{\prime }-y^{2}-y x -x +1&=0 \\ \end{align*}

[_Riccati]

3.767

11321

\begin{align*} y^{\prime }-\left (x +y\right )^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

1.996

11322

\begin{align*} y^{\prime }-y^{2}+\left (x^{2}+1\right ) y-2 x&=0 \\ \end{align*}

[_Riccati]

2.832

11329

\begin{align*} y^{\prime }+a y \left (y-x \right )-1&=0 \\ \end{align*}

[_Riccati]

2.735

11330

\begin{align*} y^{\prime }+x y^{2}-x^{3} y-2 x&=0 \\ \end{align*}

[_Riccati]

4.074

11333

\begin{align*} y^{\prime }-a \,x^{n} \left (1+y^{2}\right )&=0 \\ \end{align*}

[_separable]

2.663

11337

\begin{align*} y^{\prime }+f \left (x \right ) \left (y^{2}+2 a y+b \right )&=0 \\ \end{align*}

[_separable]

6.823

11396

\begin{align*} y^{\prime } x -y^{2}+1&=0 \\ \end{align*}

[_separable]

2.603

11397

\begin{align*} y^{\prime } x +a y^{2}-y+b \,x^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Riccati]

1.427

11398

\begin{align*} y^{\prime } x +a y^{2}-b y+c \,x^{2 b}&=0 \\ \end{align*}

[_rational, _Riccati]

3.283

11402

\begin{align*} y^{\prime } x +x y^{2}-y-a \,x^{3}&=0 \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Riccati]

3.356

11403

\begin{align*} y^{\prime } x +x y^{2}-\left (2 x^{2}+1\right ) y-x^{3}&=0 \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Riccati]

4.073

11404

\begin{align*} y^{\prime } x +a x y^{2}+2 y+b x&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

2.677

11406

\begin{align*} y^{\prime } x +x^{a} y^{2}+\frac {\left (a -b \right ) y}{2}+x^{b}&=0 \\ \end{align*}

[_rational, _Riccati]

3.596

11410

\begin{align*} y^{\prime } x +f \left (x \right ) \left (y^{2}-x^{2}\right )-y&=0 \\ \end{align*}

[[_homogeneous, ‘class D‘], _Riccati]

3.594

11435

\begin{align*} x^{2} y^{\prime }+x^{2}+y x +y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3.185

11437

\begin{align*} x^{2} y^{\prime }-y^{2}-y x -x^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3.091

11439

\begin{align*} x^{2} \left (y^{\prime }+y^{2}\right )+4 y x +2&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Riccati]

3.411

11440

\begin{align*} x^{2} \left (y^{\prime }+y^{2}\right )+a x y+b&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Riccati]

3.604

11441

\begin{align*} x^{2} \left (y^{\prime }-y^{2}\right )-a \,x^{2} y+a x +2&=0 \\ \end{align*}

[_rational, _Riccati]

2.696

11442

\begin{align*} x^{2} \left (y^{\prime }+a y^{2}\right )-b&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

3.454

11454

\begin{align*} \left (x^{2}-1\right ) y^{\prime }+y^{2}-2 y x +1&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

2.937

11461

\begin{align*} \left (x -a \right ) \left (-b +x \right ) y^{\prime }+k \left (x +y-a \right ) \left (x +y-b \right )+y^{2}&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

11.668

11462

\begin{align*} 2 x^{2} y^{\prime }-2 y^{2}-y x +2 a^{2} x&=0 \\ \end{align*}

[_rational, _Riccati]

2.550

11464

\begin{align*} x \left (2 x -1\right ) y^{\prime }+y^{2}-\left (4 x +1\right ) y+4 x&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

4.636

11466

\begin{align*} 3 x^{2} y^{\prime }-7 y^{2}-3 y x -x^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

4.063

11469

\begin{align*} x^{3} y^{\prime }-y^{2}-x^{4}&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Riccati]

2.589

11471

\begin{align*} x^{3} y^{\prime }-x^{4} y^{2}+x^{2} y+20&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Riccati]

4.300

11472

\begin{align*} x^{3} y^{\prime }-x^{6} y^{2}-\left (2 x -3\right ) x^{2} y+3&=0 \\ \end{align*}

[_rational, _Riccati]

1.952

11477

\begin{align*} 2 x \left (x^{2}-1\right ) y^{\prime }+2 \left (x^{2}-1\right ) y^{2}-\left (3 x^{2}-5\right ) y+x^{2}-3&=0 \\ \end{align*}

[_rational, _Riccati]

3.615

11479

\begin{align*} \left (a \,x^{2}+b x +c \right ) \left (-y+y^{\prime } x \right )-y^{2}+x^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Riccati]

3.649

11481

\begin{align*} x \left (x^{3}-1\right ) y^{\prime }-2 x y^{2}+y+x^{2}&=0 \\ \end{align*}

[_rational, _Riccati]

2.627

11485

\begin{align*} x^{n} y^{\prime }+y^{2}-\left (n -1\right ) x^{n -1} y+x^{2 n -2}&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _Riccati]

4.556

11486

\begin{align*} x^{n} y^{\prime }-a y^{2}-b \,x^{2 n -2}&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _Riccati]

5.928

11493

\begin{align*} x \ln \left (x \right ) y^{\prime }-y^{2} \ln \left (x \right )-\left (2 \ln \left (x \right )^{2}+1\right ) y-\ln \left (x \right )^{3}&=0 \\ \end{align*}

[_Riccati]

4.417

11958

\begin{align*} y^{\prime }&=\frac {y+x^{3} a \,{\mathrm e}^{x}+a \,x^{4}+a \,x^{3}-x y^{2} {\mathrm e}^{x}-y^{2} x^{2}-x y^{2}}{x} \\ \end{align*}

[[_homogeneous, ‘class D‘], _Riccati]

7.027

11960

\begin{align*} y^{\prime }&=\frac {y+x^{3} a \ln \left (x +1\right )+a \,x^{4}+a \,x^{3}-x y^{2} \ln \left (x +1\right )-y^{2} x^{2}-x y^{2}}{x} \\ \end{align*}

[[_homogeneous, ‘class D‘], _Riccati]

9.237

11962

\begin{align*} y^{\prime }&=\frac {y+x^{3} \ln \left (x \right )+x^{4}+x^{3}+7 x y^{2} \ln \left (x \right )+7 y^{2} x^{2}+7 x y^{2}}{x} \\ \end{align*}

[[_homogeneous, ‘class D‘], _Riccati]

8.836

11964

\begin{align*} y^{\prime }&=\frac {y+x^{3} b \ln \left (\frac {1}{x}\right )+b \,x^{4}+b \,x^{3}+x a y^{2} \ln \left (\frac {1}{x}\right )+a \,x^{2} y^{2}+a x y^{2}}{x} \\ \end{align*}

[[_homogeneous, ‘class D‘], _Riccati]

11.129

11968

\begin{align*} y^{\prime }&=\frac {y+\ln \left (\left (x -1\right ) \left (x +1\right )\right ) x^{3}+7 \ln \left (\left (x -1\right ) \left (x +1\right )\right ) x y^{2}}{x} \\ \end{align*}

[[_homogeneous, ‘class D‘], _Riccati]

9.810

11970

\begin{align*} y^{\prime }&=\frac {y-\ln \left (\frac {x +1}{x -1}\right ) x^{3}+\ln \left (\frac {x +1}{x -1}\right ) x y^{2}}{x} \\ \end{align*}

[[_homogeneous, ‘class D‘], _Riccati]

13.322

11971

\begin{align*} y^{\prime }&=\frac {y+{\mathrm e}^{\frac {x +1}{x -1}} x^{3}+{\mathrm e}^{\frac {x +1}{x -1}} x y^{2}}{x} \\ \end{align*}

[[_homogeneous, ‘class D‘], _Riccati]

8.989

11972

\begin{align*} y^{\prime }&=\frac {y x -y-{\mathrm e}^{x +1} x^{3}+{\mathrm e}^{x +1} x y^{2}}{\left (x -1\right ) x} \\ \end{align*}

[[_homogeneous, ‘class D‘], _Riccati]

9.589

11978

\begin{align*} y^{\prime }&=\frac {y \ln \left (x -1\right )+x^{4}+x^{3}+y^{2} x^{2}+x y^{2}}{\ln \left (x -1\right ) x} \\ \end{align*}

[[_homogeneous, ‘class D‘], _Riccati]

9.882

11979

\begin{align*} y^{\prime }&=\frac {y \ln \left (x -1\right )+{\mathrm e}^{x +1} x^{3}+7 \,{\mathrm e}^{x +1} x y^{2}}{\ln \left (x -1\right ) x} \\ \end{align*}

[[_homogeneous, ‘class D‘], _Riccati]

10.148

11984

\begin{align*} y^{\prime }&=\frac {2 x \,{\mathrm e}^{x}-2 x -\ln \left (x \right )-1+x^{4} \ln \left (x \right )+x^{4}-2 y \ln \left (x \right ) x^{2}-2 x^{2} y+y^{2} \ln \left (x \right )+y^{2}}{{\mathrm e}^{x}-1} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

21.471

11985

\begin{align*} y^{\prime }&=\frac {-{\mathrm e}^{x} y+y x -x^{3} \ln \left (x \right )-x^{3}-x y^{2} \ln \left (x \right )-x y^{2}}{\left (x -{\mathrm e}^{x}\right ) x} \\ \end{align*}

[[_homogeneous, ‘class D‘], _Riccati]

9.355

11987

\begin{align*} y^{\prime }&=\frac {x y \ln \left (x \right )-y+2 x^{5} b +2 a \,x^{3} y^{2}}{\left (x \ln \left (x \right )-1\right ) x} \\ \end{align*}

[[_homogeneous, ‘class D‘], _Riccati]

10.147

12003

\begin{align*} y^{\prime }&=\frac {\left (18 x^{{3}/{2}}+36 y^{2}-12 x^{3} y+x^{6}\right ) \sqrt {x}}{36} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

10.546

12007

\begin{align*} y^{\prime }&=\frac {-\ln \left (x \right )+2 \ln \left (2 x \right ) x y+\ln \left (2 x \right )+\ln \left (2 x \right ) y^{2}+\ln \left (2 x \right ) x^{2}}{\ln \left (x \right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

16.125

12015

\begin{align*} y^{\prime }&=\frac {2 x \sin \left (x \right )-\ln \left (2 x \right )+\ln \left (2 x \right ) x^{4}-2 \ln \left (2 x \right ) x^{2} y+\ln \left (2 x \right ) y^{2}}{\sin \left (x \right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

5.082

12018

\begin{align*} y^{\prime }&=\frac {2 x^{2}+2 x +x^{4}-2 x^{2} y-1+y^{2}}{x +1} \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

13.323

12066

\begin{align*} y^{\prime }&=\frac {-\sinh \left (x \right )+\ln \left (x \right ) x^{2}+2 x y \ln \left (x \right )+\ln \left (x \right )+y^{2} \ln \left (x \right )}{\sinh \left (x \right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

34.141

12067

\begin{align*} y^{\prime }&=-\frac {\ln \left (x \right )-\sinh \left (x \right ) x^{2}-2 \sinh \left (x \right ) x y-\sinh \left (x \right )-\sinh \left (x \right ) y^{2}}{\ln \left (x \right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

75.561

12068

\begin{align*} y^{\prime }&=\frac {y \ln \left (x \right )+\cosh \left (x \right ) x a y^{2}+\cosh \left (x \right ) x^{3} b}{x \ln \left (x \right )} \\ \end{align*}

[[_homogeneous, ‘class D‘], _Riccati]

45.248

12072

\begin{align*} y^{\prime }&=\frac {2 x \ln \left (\frac {1}{x -1}\right )-\coth \left (\frac {x +1}{x -1}\right )+\coth \left (\frac {x +1}{x -1}\right ) y^{2}-2 \coth \left (\frac {x +1}{x -1}\right ) x^{2} y+\coth \left (\frac {x +1}{x -1}\right ) x^{4}}{\ln \left (\frac {1}{x -1}\right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

124.306

12073

\begin{align*} y^{\prime }&=\frac {2 x^{2} \cosh \left (\frac {1}{x -1}\right )-2 x \cosh \left (\frac {1}{x -1}\right )-1+y^{2}-2 x^{2} y+x^{4}-x +x y^{2}-2 x^{3} y+x^{5}}{\left (x -1\right ) \cosh \left (\frac {1}{x -1}\right )} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

17.259

12092

\begin{align*} y^{\prime }&=\frac {x +y+y^{2}-2 x y \ln \left (x \right )+\ln \left (x \right )^{2} x^{2}}{x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

11.627

12123

\begin{align*} y^{\prime }&=\frac {y+x^{2} \ln \left (x \right )^{3}+2 x^{2} \ln \left (x \right )^{2} y+x^{2} \ln \left (x \right ) y^{2}}{x \ln \left (x \right )} \\ \end{align*}

[_Riccati]

15.141

12124

\begin{align*} y^{\prime }&=\frac {y+x^{3} \ln \left (x \right )^{3}+2 x^{3} \ln \left (x \right )^{2} y+x^{3} \ln \left (x \right ) y^{2}}{x \ln \left (x \right )} \\ \end{align*}

[_Riccati]

12.839

12267

\begin{align*} y^{\prime }&=-F \left (x \right ) \left (-a \,x^{2}+y^{2}\right )+\frac {y}{x} \\ \end{align*}

[[_homogeneous, ‘class D‘], _Riccati]

8.538

12268

\begin{align*} y^{\prime }&=-F \left (x \right ) \left (y^{2}-2 y x -x^{2}\right )+\frac {y}{x} \\ \end{align*}

[[_homogeneous, ‘class D‘], _Riccati]

10.454

12269

\begin{align*} y^{\prime }&=-F \left (x \right ) \left (-a y^{2}-b \,x^{2}\right )+\frac {y}{x} \\ \end{align*}

[[_homogeneous, ‘class D‘], _Riccati]

10.156

12271

\begin{align*} y^{\prime }&=-F \left (x \right ) \left (x^{2}+2 y x -y^{2}\right )+\frac {y}{x} \\ \end{align*}

[[_homogeneous, ‘class D‘], _Riccati]

8.858

12272

\begin{align*} y^{\prime }&=-F \left (x \right ) \left (-7 x y^{2}-x^{3}\right )+\frac {y}{x} \\ \end{align*}

[[_homogeneous, ‘class D‘], _Riccati]

6.974

12274

\begin{align*} y^{\prime }&=-x^{3} \left (-y^{2}-2 y \ln \left (x \right )-\ln \left (x \right )^{2}\right )+\frac {y}{x \ln \left (x \right )} \\ \end{align*}

[_Riccati]

13.730

12275

\begin{align*} y^{\prime }&=\left (-{\mathrm e}^{x}+y\right )^{2}+{\mathrm e}^{x} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

14.172

12280

\begin{align*} y^{\prime }&=\frac {2 x^{2} y+x^{3}+x y \ln \left (x \right )-y^{2}-y x}{x^{2} \left (\ln \left (x \right )+x \right )} \\ \end{align*}

[_Riccati]

11.231

13208

\begin{align*} y^{\prime }&=y^{2}-a^{2} x^{2}+3 a \\ \end{align*}

[_Riccati]

2.990

13211

\begin{align*} y^{\prime }&=y^{2}+x^{n -1} a n -a^{2} x^{2 n} \\ \end{align*}

[_Riccati]

59.898

13213

\begin{align*} y^{\prime }&=a \,x^{n} y^{2}+b \,x^{-n -2} \\ \end{align*}

[[_homogeneous, ‘class G‘], _Riccati]

6.651

13215

\begin{align*} y^{\prime }&=a \,x^{n} y^{2}+b m \,x^{m -1}-a \,b^{2} x^{n +2 m} \\ \end{align*}

[_Riccati]

64.591

13218

\begin{align*} x^{2} y^{\prime }&=a \,x^{2} y^{2}+b \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

4.262

13219

\begin{align*} x^{2} y^{\prime }&=y^{2} x^{2}-a^{2} x^{4}+a \left (1-2 b \right ) x^{2}-b \left (b +1\right ) \\ \end{align*}

[_rational, _Riccati]

4.186

13226

\begin{align*} \left (a \,x^{n}+b \right ) y^{\prime }&=b y^{2}+a \,x^{-2+n} \\ \end{align*}

[_rational, _Riccati]

8.760

13229

\begin{align*} y^{\prime }&=y^{2}+a \,x^{n} y+a \,x^{n -1} \\ \end{align*}

[_Riccati]

4.980

13232

\begin{align*} y^{\prime }&=y^{2}+a \,x^{n} y-a b \,x^{n}-b^{2} \\ \end{align*}

[_Riccati]

4.224

13233

\begin{align*} y^{\prime }&=a \,x^{n} y^{2}+b \,x^{m} y+x^{m} b c -a \,c^{2} x^{n} \\ \end{align*}

[_Riccati]

6.318

13236

\begin{align*} y^{\prime }&=a \,x^{n} y^{2}+b \,x^{m} y+c k \,x^{-1+k}-b c \,x^{m +k}-a \,c^{2} x^{n +2 k} \\ \end{align*}

[_Riccati]

11.565

13237

\begin{align*} y^{\prime } x&=a y^{2}+b y+c \,x^{2 b} \\ \end{align*}

[_rational, _Riccati]

3.905

13239

\begin{align*} y^{\prime } x&=a y^{2}+\left (n +b \,x^{n}\right ) y+c \,x^{2 n} \\ \end{align*}

[_rational, _Riccati]

5.819

13242

\begin{align*} y^{\prime } x&=a \,x^{n} y^{2}+b y+c \,x^{-n} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Riccati]

6.484

13243

\begin{align*} y^{\prime } x&=a \,x^{n} y^{2}+m y-a \,b^{2} x^{n +2 m} \\ \end{align*}

[_rational, _Riccati]

4.184

13244

\begin{align*} y^{\prime } x&=x^{2 n} y^{2}+\left (m -n \right ) y+x^{2 m} \\ \end{align*}

[_rational, _Riccati]

4.376

13246

\begin{align*} y^{\prime } x&=x^{2 n} a y^{2}+\left (b \,x^{n}-n \right ) y+c \\ \end{align*}

[_rational, _Riccati]

6.228

13247

\begin{align*} y^{\prime } x&=a \,x^{2 n +m} y^{2}+\left (b \,x^{n +m}-n \right ) y+c \,x^{m} \\ \end{align*}

[_rational, _Riccati]

38.549

13249

\begin{align*} \left (a x +c \right ) y^{\prime }&=\alpha \left (b x +a y\right )^{2}+\beta \left (b x +a y\right )-b x +\gamma \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Riccati]

8.238

13250

\begin{align*} 2 x^{2} y^{\prime }&=2 y^{2}+y x -2 a^{2} x \\ \end{align*}

[_rational, _Riccati]

3.224

13252

\begin{align*} x^{2} y^{\prime }&=a \,x^{2} y^{2}+b x y+c \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Riccati]

4.981

13261

\begin{align*} \left (a \,x^{2}+b \right ) y^{\prime }+y^{2}-2 y x +\left (-a +1\right ) x^{2}-b&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

5.616

13262

\begin{align*} \left (a \,x^{2}+b x +c \right ) y^{\prime }&=y^{2}+\left (2 \lambda x +b \right ) y+\lambda \left (\lambda -a \right ) x^{2}+\mu \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

9.829

13266

\begin{align*} \left (x -a \right ) \left (-b +x \right ) y^{\prime }+k \left (x +y-a \right ) \left (x +y-b \right )+y^{2}&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

16.976

13272

\begin{align*} \left (a \,x^{2}+b x +e \right ) \left (-y+y^{\prime } x \right )-y^{2}+x^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Riccati]

5.539

13275

\begin{align*} x \left (a \,x^{k}+b \right ) y^{\prime }&=\alpha \,x^{n} y^{2}+\left (\beta -a n \,x^{k}\right ) y+\gamma \,x^{-n} \\ \end{align*}

[_rational, _Riccati]

74.086

13277

\begin{align*} \left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime }&=c y^{2}-b \,x^{m -1} y+a \,x^{-2+n} \\ \end{align*}

[_rational, _Riccati]

1.888

13278

\begin{align*} \left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime }&=a \,x^{-2+n} y^{2}+b \,x^{m -1} y+c \\ \end{align*}

[_rational, _Riccati]

97.312

13279

\begin{align*} \left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime }&=\alpha \,x^{k} y^{2}+\beta \,x^{s} y-\alpha \,\lambda ^{2} x^{k}+\beta \lambda \,x^{s} \\ \end{align*}

[_rational, _Riccati]

3.169

13280

\begin{align*} \left (a \,x^{n}+b \,x^{m}+c \right ) \left (-y+y^{\prime } x \right )+s \,x^{k} \left (y^{2}-\lambda \,x^{2}\right )&=0 \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Riccati]

45.987

13282

\begin{align*} y^{\prime }&=y^{2}+a \lambda \,{\mathrm e}^{\lambda x}-a^{2} {\mathrm e}^{2 \lambda x} \\ \end{align*}

[_Riccati]

4.431

13285

\begin{align*} y^{\prime }&=y^{2}+b y+a \left (\lambda -b \right ) {\mathrm e}^{\lambda x}-a^{2} {\mathrm e}^{2 \lambda x} \\ \end{align*}

[_Riccati]

4.978

13286

\begin{align*} y^{\prime }&=y^{2}+a \,{\mathrm e}^{\lambda x} y-a b \,{\mathrm e}^{\lambda x}-b^{2} \\ \end{align*}

[_Riccati]

4.533

13290

\begin{align*} y^{\prime }&=b \,{\mathrm e}^{\mu x} y^{2}+a \lambda \,{\mathrm e}^{\lambda x}-a^{2} b \,{\mathrm e}^{\left (2 \lambda +\mu \right ) x} \\ \end{align*}

[_Riccati]

90.135

13291

\begin{align*} y^{\prime }&=a \,{\mathrm e}^{\lambda x} y^{2}+b y+c \,{\mathrm e}^{-\lambda x} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Riccati]

92.642

13299

\begin{align*} \left (a \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\mu x}+c \right ) y^{\prime }&=y^{2}+k \,{\mathrm e}^{\nu x} y-m^{2}+k m \,{\mathrm e}^{\nu x} \\ \end{align*}

[_Riccati]

28.092

13301

\begin{align*} y^{\prime }&=y^{2}+a x \,{\mathrm e}^{\lambda x} y+a \,{\mathrm e}^{\lambda x} \\ \end{align*}

[_Riccati]

3.688

13302

\begin{align*} y^{\prime }&=a \,{\mathrm e}^{\lambda x} y^{2}+b \,{\mathrm e}^{-\lambda x} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Riccati]

6.164

13303

\begin{align*} y^{\prime }&=a \,{\mathrm e}^{\lambda x} y^{2}+b n \,x^{n -1}-a \,b^{2} {\mathrm e}^{\lambda x} x^{2 n} \\ \end{align*}

[_Riccati]

7.940

13304

\begin{align*} y^{\prime }&={\mathrm e}^{\lambda x} y^{2}+a \,x^{n} y+a \lambda \,x^{n} {\mathrm e}^{-\lambda x} \\ \end{align*}

[_Riccati]

128.510

13306

\begin{align*} y^{\prime }&=a \,{\mathrm e}^{\lambda x} y^{2}-a b \,x^{n} {\mathrm e}^{\lambda x} y+b n \,x^{n -1} \\ \end{align*}

[_Riccati]

10.000

13307

\begin{align*} y^{\prime }&=a \,x^{n} y^{2}+b \lambda \,{\mathrm e}^{\lambda x}-a \,b^{2} x^{n} {\mathrm e}^{2 \lambda x} \\ \end{align*}

[_Riccati]

102.967

13308

\begin{align*} y^{\prime }&=a \,x^{n} y^{2}+\lambda y-a \,b^{2} x^{n} {\mathrm e}^{2 \lambda x} \\ \end{align*}

[_Riccati]

4.585

13310

\begin{align*} y^{\prime }&=-\left (1+k \right ) x^{k} y^{2}+a \,x^{1+k} {\mathrm e}^{\lambda x} y-a \,{\mathrm e}^{\lambda x} \\ \end{align*}

[_Riccati]

9.502

13313

\begin{align*} y^{\prime }&=a \,{\mathrm e}^{\lambda x} \left (y-b \,x^{n}-c \right )^{2}+b n \,x^{n -1} \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

10.312

13314

\begin{align*} y^{\prime } x&=a \,{\mathrm e}^{\lambda x} y^{2}+k y+a \,b^{2} x^{2 k} {\mathrm e}^{\lambda x} \\ \end{align*}

[_Riccati]

9.684

13315

\begin{align*} y^{\prime } x&=a \,x^{2 n} {\mathrm e}^{\lambda x} y^{2}+\left (b \,x^{n} {\mathrm e}^{\lambda x}-n \right ) y+c \,{\mathrm e}^{\lambda x} \\ \end{align*}

[_Riccati]

13.606

13316

\begin{align*} y^{\prime }&=y^{2}+2 a \lambda x \,{\mathrm e}^{\lambda \,x^{2}}-a^{2} {\mathrm e}^{2 \lambda \,x^{2}} \\ \end{align*}

[_Riccati]

163.724

13318

\begin{align*} y^{\prime }&=a \,x^{n} y^{2}+\lambda x y+a \,b^{2} x^{n} {\mathrm e}^{\lambda \,x^{2}} \\ \end{align*}

[_Riccati]

7.033

13321

\begin{align*} y^{\prime }&=y^{2}+a \sinh \left (\beta x \right ) y+a b \sinh \left (\beta x \right )-b^{2} \\ \end{align*}

[_Riccati]

8.477

13322

\begin{align*} y^{\prime }&=y^{2}+a x \sinh \left (b x \right )^{m} y+a \sinh \left (b x \right )^{m} \\ \end{align*}

[_Riccati]

11.816

13325

\begin{align*} \left (\sinh \left (\lambda x \right ) a +b \right ) y^{\prime }&=y^{2}+c \sinh \left (\mu x \right ) y-d^{2}+c d \sinh \left (\mu x \right ) \\ \end{align*}

[_Riccati]

107.322

13328

\begin{align*} y^{\prime }&=y^{2}+a \cosh \left (\beta x \right ) y+a b \cosh \left (\beta x \right )-b^{2} \\ \end{align*}

[_Riccati]

10.646

13329

\begin{align*} y^{\prime }&=y^{2}+a x \cosh \left (b x \right )^{m} y+a \cosh \left (b x \right )^{m} \\ \end{align*}

[_Riccati]

10.998

13334

\begin{align*} \left (a \cosh \left (\lambda x \right )+b \right ) y^{\prime }&=y^{2}+c \cosh \left (\mu x \right ) y-d^{2}+c d \cosh \left (\mu x \right ) \\ \end{align*}

[_Riccati]

110.319

13338

\begin{align*} y^{\prime }&=y^{2}+a x \tanh \left (b x \right )^{m} y+a \tanh \left (b x \right )^{m} \\ \end{align*}

[_Riccati]

10.401

13339

\begin{align*} \left (a \tanh \left (\lambda x \right )+b \right ) y^{\prime }&=y^{2}+c \tanh \left (\mu x \right ) y-d^{2}+c d \tanh \left (\mu x \right ) \\ \end{align*}

[_Riccati]

233.962

13342

\begin{align*} y^{\prime }&=y^{2}+a x \coth \left (b x \right )^{m} y+a \coth \left (b x \right )^{m} \\ \end{align*}

[_Riccati]

10.704

13343

\begin{align*} \left (a \coth \left (\lambda x \right )+b \right ) y^{\prime }&=y^{2}+c \coth \left (\mu x \right ) y-d^{2}+c d \coth \left (\mu x \right ) \\ \end{align*}

[_Riccati]

458.147

13346

\begin{align*} y^{\prime }&=a \ln \left (x \right )^{n} y^{2}+b m \,x^{m -1}-a \,b^{2} x^{2 m} \ln \left (x \right )^{n} \\ \end{align*}

[_Riccati]

11.097

13349

\begin{align*} y^{\prime } x&=x y^{2}-a^{2} x \ln \left (\beta x \right )^{2}+a \\ \end{align*}

[_Riccati]

241.592

13350

\begin{align*} y^{\prime } x&=a \,x^{n} y^{2}+b -a \,b^{2} x^{n} \ln \left (x \right )^{2} \\ \end{align*}

[_Riccati]

94.418

13352

\begin{align*} x^{2} \ln \left (a x \right ) \left (y^{\prime }-y^{2}\right )&=1 \\ \end{align*}

[_Riccati]

54.706

13353

\begin{align*} y^{\prime }&=y^{2}+a \ln \left (\beta x \right ) y-a b \ln \left (\beta x \right )-b^{2} \\ \end{align*}

[_Riccati]

4.927

13354

\begin{align*} y^{\prime }&=y^{2}+a x \ln \left (b x \right )^{m} y+a \ln \left (b x \right )^{m} \\ \end{align*}

[_Riccati]

5.013

13356

\begin{align*} y^{\prime }&=-\left (n +1\right ) x^{n} y^{2}+a \,x^{n +1} \ln \left (x \right )^{m} y-a \ln \left (x \right )^{m} \\ \end{align*}

[_Riccati]

8.562

13359

\begin{align*} y^{\prime }&=a \ln \left (x \right )^{n} y^{2}+b \ln \left (x \right )^{m} y+b c \ln \left (x \right )^{m}-a \,c^{2} \ln \left (x \right )^{n} \\ \end{align*}

[_Riccati]

7.161

13361

\begin{align*} y^{\prime } x&=a \ln \left (\lambda x \right )^{m} y^{2}+k y+a \,b^{2} x^{2 k} \ln \left (\lambda x \right )^{m} \\ \end{align*}

[_Riccati]

40.046

13362

\begin{align*} y^{\prime } x&=a \,x^{n} \left (y+b \ln \left (x \right )\right )^{2}-b \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

102.704

13363

\begin{align*} y^{\prime } x&=a \,x^{2 n} \ln \left (x \right ) y^{2}+\left (b \,x^{n} \ln \left (x \right )-n \right ) y+c \ln \left (x \right ) \\ \end{align*}

[_Riccati]

9.308

13365

\begin{align*} \left (a \ln \left (x \right )+b \right ) y^{\prime }&=y^{2}+c \ln \left (x \right )^{n} y-\lambda ^{2}+\lambda c \ln \left (x \right )^{n} \\ \end{align*}

[_Riccati]

9.664

13366

\begin{align*} \left (a \ln \left (x \right )+b \right ) y^{\prime }&=\ln \left (x \right )^{n} y^{2}+c y-\lambda ^{2} \ln \left (x \right )^{n}+\lambda c \\ \end{align*}

[_Riccati]

13.454

13369

\begin{align*} y^{\prime }&=y^{2}+a \sin \left (\beta x \right ) y+a b \sin \left (\beta x \right )-b^{2} \\ \end{align*}

[_Riccati]

9.251

13373

\begin{align*} y^{\prime }&=-\left (1+k \right ) x^{k} y^{2}+a \,x^{1+k} \sin \left (x \right )^{m} y-a \sin \left (x \right )^{m} \\ \end{align*}

[_Riccati]

62.165

13375

\begin{align*} y^{\prime } x&=a \sin \left (\lambda x \right )^{m} y^{2}+k y+a \,b^{2} x^{2 k} \sin \left (\lambda x \right )^{m} \\ \end{align*}

[_Riccati]

89.113

13376

\begin{align*} \left (\sin \left (\lambda x \right ) a +b \right ) y^{\prime }&=y^{2}+c \sin \left (\mu x \right ) y-d^{2}+c d \sin \left (\mu x \right ) \\ \end{align*}

[_Riccati]

1.542

13380

\begin{align*} y^{\prime }&=y^{2}+a \cos \left (\beta x \right ) y+a b \cos \left (\beta x \right )-b^{2} \\ \end{align*}

[_Riccati]

9.894

13384

\begin{align*} y^{\prime }&=-\left (1+k \right ) x^{k} y^{2}+a \,x^{1+k} \cos \left (x \right )^{m} y-a \cos \left (x \right )^{m} \\ \end{align*}

[_Riccati]

55.142

13386

\begin{align*} y^{\prime } x&=a \cos \left (\lambda x \right )^{m} y^{2}+k y+a \,b^{2} x^{2 k} \cos \left (\lambda x \right )^{m} \\ \end{align*}

[_Riccati]

97.864

13387

\begin{align*} \left (\cos \left (\lambda x \right ) a +b \right ) y^{\prime }&=y^{2}+c \cos \left (\mu x \right ) y-d^{2}+c d \cos \left (\mu x \right ) \\ \end{align*}

[_Riccati]

1.615

13393

\begin{align*} y^{\prime }&=y^{2}+a \tan \left (\beta x \right ) y+a b \tan \left (\beta x \right )-b^{2} \\ \end{align*}

[_Riccati]

23.769

13394

\begin{align*} y^{\prime }&=y^{2}+a x \tan \left (b x \right )^{m} y+a \tan \left (b x \right )^{m} \\ \end{align*}

[_Riccati]

33.868

13395

\begin{align*} y^{\prime }&=-\left (1+k \right ) x^{k} y^{2}+a \,x^{1+k} \tan \left (x \right )^{m} y-a \tan \left (x \right )^{m} \\ \end{align*}

[_Riccati]

48.358

13398

\begin{align*} y^{\prime } x&=a \tan \left (\lambda x \right )^{m} y^{2}+k y+a \,b^{2} x^{2 k} \tan \left (\lambda x \right )^{m} \\ \end{align*}

[_Riccati]

158.418

13399

\begin{align*} \left (a \tan \left (\lambda x \right )+b \right ) y^{\prime }&=y^{2}+k \tan \left (\mu x \right ) y-d^{2}+k d \tan \left (\mu x \right ) \\ \end{align*}

[_Riccati]

94.793

13403

\begin{align*} y^{\prime }&=y^{2}+a \cot \left (\beta x \right ) y+a b \cot \left (\beta x \right )-b^{2} \\ \end{align*}

[_Riccati]

13.837

13404

\begin{align*} y^{\prime }&=y^{2}+a x \cot \left (b x \right )^{m} y+a \cot \left (b x \right )^{m} \\ \end{align*}

[_Riccati]

35.927

13405

\begin{align*} y^{\prime }&=-\left (1+k \right ) x^{k} y^{2}+a \,x^{1+k} \cot \left (x \right )^{m} y-a \cot \left (x \right )^{m} \\ \end{align*}

[_Riccati]

67.869

13407

\begin{align*} y^{\prime } x&=a \cot \left (\lambda x \right )^{m} y^{2}+k y+a \,b^{2} x^{2 k} \cot \left (\lambda x \right )^{m} \\ \end{align*}

[_Riccati]

159.813

13408

\begin{align*} \left (a \cot \left (\lambda x \right )+b \right ) y^{\prime }&=y^{2}+c \cot \left (\mu x \right ) y-d^{2}+c d \cot \left (\mu x \right ) \\ \end{align*}

[_Riccati]

133.615

13419

\begin{align*} y^{\prime }&=y^{2}+\lambda \arcsin \left (x \right )^{n} y-a^{2}+a \lambda \arcsin \left (x \right )^{n} \\ \end{align*}

[_Riccati]

9.769

13420

\begin{align*} y^{\prime }&=y^{2}+\lambda x \arcsin \left (x \right )^{n} y+\arcsin \left (x \right )^{n} \lambda \\ \end{align*}

[_Riccati]

49.269

13421

\begin{align*} y^{\prime }&=-\left (1+k \right ) x^{k} y^{2}+\lambda \arcsin \left (x \right )^{n} \left (x^{1+k} y-1\right ) \\ \end{align*}

[_Riccati]

72.003

13422

\begin{align*} y^{\prime }&=\lambda \arcsin \left (x \right )^{n} y^{2}+a y+a b -b^{2} \lambda \arcsin \left (x \right )^{n} \\ \end{align*}

[_Riccati]

13.540

13423

\begin{align*} y^{\prime }&=\lambda \arcsin \left (x \right )^{n} y^{2}-b \lambda \,x^{m} \arcsin \left (x \right )^{n} y+b m \,x^{m -1} \\ \end{align*}

[_Riccati]

47.924

13424

\begin{align*} y^{\prime }&=\lambda \arcsin \left (x \right )^{n} y^{2}+\beta m \,x^{m -1}-\lambda \,\beta ^{2} x^{2 m} \arcsin \left (x \right )^{n} \\ \end{align*}

[_Riccati]

87.761

13426

\begin{align*} y^{\prime } x&=\lambda \arcsin \left (x \right )^{n} y^{2}+k y+\lambda \,b^{2} x^{2 k} \arcsin \left (x \right )^{n} \\ \end{align*}

[_Riccati]

68.152

13427

\begin{align*} y^{\prime }&=y^{2}+\lambda \arccos \left (x \right )^{n} y-a^{2}+a \lambda \arccos \left (x \right )^{n} \\ \end{align*}

[_Riccati]

10.638

13428

\begin{align*} y^{\prime }&=y^{2}+\lambda x \arccos \left (x \right )^{n} y+\arccos \left (x \right )^{n} \lambda \\ \end{align*}

[_Riccati]

47.253

13429

\begin{align*} y^{\prime }&=-\left (1+k \right ) x^{k} y^{2}+\lambda \arccos \left (x \right )^{n} \left (x^{1+k} y-1\right ) \\ \end{align*}

[_Riccati]

86.053

13430

\begin{align*} y^{\prime }&=\lambda \arccos \left (x \right )^{n} y^{2}+a y+a b -b^{2} \lambda \arccos \left (x \right )^{n} \\ \end{align*}

[_Riccati]

18.486

13431

\begin{align*} y^{\prime }&=\lambda \arccos \left (x \right )^{n} y^{2}-b \lambda \,x^{m} \arccos \left (x \right )^{n} y+b m \,x^{m -1} \\ \end{align*}

[_Riccati]

84.398

13432

\begin{align*} y^{\prime }&=\lambda \arccos \left (x \right )^{n} y^{2}+\beta m \,x^{m -1}-\lambda \,\beta ^{2} x^{2 m} \arccos \left (x \right )^{n} \\ \end{align*}

[_Riccati]

76.574

13434

\begin{align*} y^{\prime } x&=\lambda \arccos \left (x \right )^{n} y^{2}+k y+\lambda \,b^{2} x^{2 k} \arccos \left (x \right )^{n} \\ \end{align*}

[_Riccati]

133.343

13435

\begin{align*} y^{\prime }&=y^{2}+\lambda \arctan \left (x \right )^{n} y-a^{2}+a \lambda \arctan \left (x \right )^{n} \\ \end{align*}

[_Riccati]

10.141

13436

\begin{align*} y^{\prime }&=y^{2}+\lambda x \arctan \left (x \right )^{n} y+\arctan \left (x \right )^{n} \lambda \\ \end{align*}

[_Riccati]

10.454

13437

\begin{align*} y^{\prime }&=-\left (1+k \right ) x^{k} y^{2}+\lambda \arctan \left (x \right )^{n} \left (x^{1+k} y-1\right ) \\ \end{align*}

[_Riccati]

71.620

13438

\begin{align*} y^{\prime }&=\lambda \arctan \left (x \right )^{n} y^{2}+a y+a b -b^{2} \lambda \arctan \left (x \right )^{n} \\ \end{align*}

[_Riccati]

11.353

13439

\begin{align*} y^{\prime }&=\lambda \arctan \left (x \right )^{n} y^{2}-b \lambda \,x^{m} \arctan \left (x \right )^{n} y+b m \,x^{m -1} \\ \end{align*}

[_Riccati]

78.757

13441

\begin{align*} y^{\prime } x&=\lambda \arctan \left (x \right )^{n} y^{2}+k y+\lambda \,b^{2} x^{2 k} \arctan \left (x \right )^{n} \\ \end{align*}

[_Riccati]

62.167

13442

\begin{align*} y^{\prime }&=y^{2}+\lambda \operatorname {arccot}\left (x \right )^{n} y-a^{2}+a \lambda \operatorname {arccot}\left (x \right )^{n} \\ \end{align*}

[_Riccati]

11.562

13443

\begin{align*} y^{\prime }&=y^{2}+\lambda x \operatorname {arccot}\left (x \right )^{n} y+\operatorname {arccot}\left (x \right )^{n} \lambda \\ \end{align*}

[_Riccati]

11.826

13444

\begin{align*} y^{\prime }&=-\left (1+k \right ) x^{k} y^{2}+\lambda \operatorname {arccot}\left (x \right )^{n} \left (x^{1+k} y-1\right ) \\ \end{align*}

[_Riccati]

92.391

13445

\begin{align*} y^{\prime }&=\lambda \operatorname {arccot}\left (x \right )^{n} y^{2}+a y+a b -b^{2} \lambda \operatorname {arccot}\left (x \right )^{n} \\ \end{align*}

[_Riccati]

15.819

13446

\begin{align*} y^{\prime }&=\lambda \operatorname {arccot}\left (x \right )^{n} y^{2}-b \lambda \,x^{m} \operatorname {arccot}\left (x \right )^{n} y+b m \,x^{m -1} \\ \end{align*}

[_Riccati]

124.488

13448

\begin{align*} y^{\prime } x&=\lambda \operatorname {arccot}\left (x \right )^{n} y^{2}+k y+\lambda \,b^{2} x^{2 k} \operatorname {arccot}\left (x \right )^{n} \\ \end{align*}

[_Riccati]

70.153

13449

\begin{align*} y^{\prime }&=y^{2}+f \left (x \right ) y-a^{2}-a f \left (x \right ) \\ \end{align*}

[_Riccati]

6.205

13450

\begin{align*} y^{\prime }&=f \left (x \right ) y^{2}-a y-a b -b^{2} f \left (x \right ) \\ \end{align*}

[_Riccati]

8.105

13451

\begin{align*} y^{\prime }&=f \left (x \right )+x f \left (x \right ) y+y^{2} \\ \end{align*}

[_Riccati]

5.423

13452

\begin{align*} y^{\prime }&=f \left (x \right ) y^{2}-a \,x^{n} f \left (x \right ) y+x^{n -1} a n \\ \end{align*}

[_Riccati]

8.852

13453

\begin{align*} y^{\prime }&=f \left (x \right ) y^{2}+x^{n -1} a n -a^{2} x^{2 n} f \left (x \right ) \\ \end{align*}

[_Riccati]

23.670

13454

\begin{align*} y^{\prime }&=-\left (n +1\right ) x^{n} y^{2}+x^{n +1} f \left (x \right ) y-f \left (x \right ) \\ \end{align*}

[_Riccati]

25.589

13455

\begin{align*} y^{\prime } x&=f \left (x \right ) y^{2}+n y+a \,x^{2 n} f \left (x \right ) \\ \end{align*}

[_Riccati]

7.282

13456

\begin{align*} y^{\prime } x&=x^{2 n} f \left (x \right ) y^{2}+\left (a \,x^{n} f \left (x \right )-n \right ) y+b f \left (x \right ) \\ \end{align*}

[_Riccati]

24.010

13457

\begin{align*} y^{\prime }&=f \left (x \right ) y^{2}+g \left (x \right ) y-a^{2} f \left (x \right )-a g \left (x \right ) \\ \end{align*}

[_Riccati]

8.088

13458

\begin{align*} y^{\prime }&=f \left (x \right ) y^{2}+g \left (x \right ) y+x^{n -1} a n -a \,x^{n} g \left (x \right )-a^{2} x^{2 n} f \left (x \right ) \\ \end{align*}

[_Riccati]

88.035

13459

\begin{align*} y^{\prime }&=f \left (x \right ) y^{2}-a \,x^{n} g \left (x \right ) y+x^{n -1} a n +a^{2} x^{2 n} \left (g \left (x \right )-f \left (x \right )\right ) \\ \end{align*}

[_Riccati]

31.048

13462

\begin{align*} y^{\prime }&=f \left (x \right ) y^{2}+a \lambda \,{\mathrm e}^{\lambda x}-a^{2} {\mathrm e}^{2 \lambda x} f \left (x \right ) \\ \end{align*}

[_Riccati]

9.740

13463

\begin{align*} y^{\prime }&=f \left (x \right ) y^{2}+\lambda y+a^{2} {\mathrm e}^{2 \lambda x} f \left (x \right ) \\ \end{align*}

[_Riccati]

7.147

13465

\begin{align*} y^{\prime }&={\mathrm e}^{\lambda x} f \left (x \right ) y^{2}+\left (a f \left (x \right )-\lambda \right ) y+b \,{\mathrm e}^{-\lambda x} f \left (x \right ) \\ \end{align*}

[_Riccati]

25.233

13466

\begin{align*} y^{\prime }&=f \left (x \right ) y^{2}+g \left (x \right ) y+a \lambda \,{\mathrm e}^{\lambda x}-a \,{\mathrm e}^{\lambda x} g \left (x \right )-a^{2} {\mathrm e}^{2 \lambda x} f \left (x \right ) \\ \end{align*}

[_Riccati]

11.164

13467

\begin{align*} y^{\prime }&=f \left (x \right ) y^{2}-a \,{\mathrm e}^{\lambda x} g \left (x \right ) y+a \lambda \,{\mathrm e}^{\lambda x}+a^{2} {\mathrm e}^{2 \lambda x} \left (g \left (x \right )-f \left (x \right )\right ) \\ \end{align*}

[_Riccati]

314.335

13468

\begin{align*} y^{\prime }&=f \left (x \right ) y^{2}+2 a \lambda x \,{\mathrm e}^{\lambda \,x^{2}}-a^{2} f \left (x \right ) {\mathrm e}^{2 \lambda \,x^{2}} \\ \end{align*}

[_Riccati]

83.919

14005

\begin{align*} -y+y^{\prime } x&=y^{2}+x^{2} \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Riccati]

2.050

14014

\begin{align*} y^{\prime } x -a y+b y^{2}&=c \,x^{2 a} \\ \end{align*}

[_rational, _Riccati]

4.734

14053

\begin{align*} y^{\prime }+2 y x&=y^{2}+x^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

1.283

14222

\begin{align*} R^{\prime }&=\left (t +1\right ) \left (1+R^{2}\right ) \\ \end{align*}

[_separable]

7.244

14226

\begin{align*} x^{\prime }&=\left (4 t -x\right )^{2} \\ x \left (0\right ) &= 1 \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

4.206

14231

\begin{align*} T^{\prime }&=2 a t \left (T^{2}-a^{2}\right ) \\ T \left (0\right ) &= 0 \\ \end{align*}

[_separable]

9.231

14264

\begin{align*} x^{\prime }&=\left (t +x\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

1.063

14459

\begin{align*} 2 r \left (s^{2}+1\right )+\left (r^{4}+1\right ) s^{\prime }&=0 \\ \end{align*}

[_separable]

2.829

14515

\begin{align*} y^{\prime }&=\left (1-x \right ) y^{2}+\left (2 x -1\right ) y-x \\ \end{align*}

[_Riccati]

2.967

14516

\begin{align*} y^{\prime }&=-y^{2}+y x +1 \\ \end{align*}

[_Riccati]

1.678

14517

\begin{align*} y^{\prime }&=-8 x y^{2}+4 x \left (4 x +1\right ) y-8 x^{3}-4 x^{2}+1 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

4.174

14525

\begin{align*} 2 x^{2}+y x +y^{2}+2 x^{2} y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

10.933

14887

\begin{align*} y^{\prime }&=\left (1+y^{2}\right ) \tan \left (x \right ) \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

5.947

14914

\begin{align*} y x +y^{2}+x^{2}-x^{2} y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3.685

15116

\begin{align*} x^{2} y^{\prime }&=1+y^{2} \\ \end{align*}

[_separable]

1.861

15341

\begin{align*} y^{\prime }&=\frac {1+y^{2}}{x^{2}+1} \\ \end{align*}

[_separable]

2.228

15342

\begin{align*} 1+s^{2}-\sqrt {t}\, s^{\prime }&=0 \\ \end{align*}

[_separable]

2.490

15805

\begin{align*} y^{\prime }&=\left (1+y^{2}\right ) t \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

3.266

15817

\begin{align*} y^{\prime }&=\left (y+\frac {1}{2}\right ) \left (t +y\right ) \\ y \left (0\right ) &= {\frac {1}{2}} \\ \end{align*}

[_Riccati]

2.734

15965

\begin{align*} y^{\prime }&=\left (y-2\right ) \left (y+1-\cos \left (t \right )\right ) \\ \end{align*}

[_Riccati]

6.017

16200

\begin{align*} x^{2} y^{\prime }+x y^{2}&=x \\ \end{align*}

[_separable]

2.881

16206

\begin{align*} y^{\prime }+\left (8-x \right ) y-y^{2}&=-8 x \\ \end{align*}

[_Riccati]

2.500

16221

\begin{align*} y^{\prime }&=\frac {1+y^{2}}{x^{2}+1} \\ \end{align*}

[_separable]

3.051

16240

\begin{align*} \left (x^{2}+1\right ) y^{\prime }&=1+y^{2} \\ \end{align*}

[_separable]

2.786

16246

\begin{align*} y^{\prime }-3 y^{2} x^{2}&=-3 x^{2} \\ \end{align*}

[_separable]

3.448

16247

\begin{align*} y^{\prime }-3 y^{2} x^{2}&=3 x^{2} \\ \end{align*}

[_separable]

3.313

16288

\begin{align*} y^{\prime }&=1+\left (y-x \right )^{2} \\ y \left (0\right ) &= {\frac {1}{4}} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

1.362

16309

\begin{align*} y^{\prime }&=\left (x -y+3\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

2.419

16312

\begin{align*} y^{\prime }&=x \left (1+\frac {2 y}{x^{2}}+\frac {y^{2}}{x^{4}}\right ) \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Riccati]

2.352

16338

\begin{align*} y^{\prime }&=x^{2}-2 y x +y^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

1.224

16357

\begin{align*} y^{\prime }&=x y^{2}+3 y^{2}+x +3 \\ \end{align*}

[_separable]

2.694

17097

\begin{align*} y^{\prime }&=t^{2} y^{2}+y^{2}-t^{2}-1 \\ \end{align*}

[_separable]

3.358

17099

\begin{align*} 4 \left (x -1\right )^{2} y^{\prime }-3 \left (3+y\right )^{2}&=0 \\ \end{align*}

[_separable]

4.398

17130

\begin{align*} y^{\prime }&=\left (x +y-4\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

3.576

17876

\begin{align*} 1+y^{2}+\left (x^{2}+1\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

3.691

17879

\begin{align*} 1+y^{2}&=y^{\prime } x \\ \end{align*}

[_separable]

3.924

17913

\begin{align*} x^{2} y^{\prime }&=x^{2}-y x +y^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

4.802

17915

\begin{align*} 2 x^{2} y^{\prime }&=y^{2}+x^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

4.651

18023

\begin{align*} y^{\prime } x -y^{2}+\left (2 x +1\right ) y&=x^{2}+2 x \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Riccati]

1.987

18024

\begin{align*} x^{2} y^{\prime }&=1+y x +y^{2} x^{2} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Riccati]

1.953

18040

\begin{align*} y^{\prime }&=\left (x -y\right )^{2}+1 \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

1.154

18493

\begin{align*} y^{\prime }&=\left (1+y^{2}\right ) \tan \left (2 x \right ) \\ y \left (0\right ) &= -\sqrt {3} \\ \end{align*}

[_separable]

5.576

18506

\begin{align*} y^{\prime }&=2 \left (x +1\right ) \left (1+y^{2}\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

2.936

18615

\begin{align*} y^{\prime }+3 t y&=4-4 t^{2}+y^{2} \\ \end{align*}

[_Riccati]

2.541

19087

\begin{align*} y^{\prime }&=\frac {y^{2}}{3}+\frac {2}{3 x^{2}} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

2.378

19088

\begin{align*} y^{\prime }+y^{2}+\frac {y}{x}-\frac {4}{x^{2}}&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Riccati]

2.900

19089

\begin{align*} y^{\prime } x -3 y+y^{2}&=4 x^{2}-4 x \\ \end{align*}

[_rational, _Riccati]

1.848

19234

\begin{align*} y^{\prime } x&=y+y^{2}+x^{2} \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Riccati]

3.388

19257

\begin{align*} 1+y^{2}+\left (x^{2}+1\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

5.800

19285

\begin{align*} y^{\prime }&=\left (x +y\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

2.930

19328

\begin{align*} y^{\prime } x&=x^{5}+x^{3} y^{2}+y \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Riccati]

4.220

19330

\begin{align*} y^{\prime } x&=y+x^{2}+9 y^{2} \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Riccati]

3.247

19397

\begin{align*} y^{\prime }&=1+\frac {y}{x}-\frac {y^{2}}{x^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

23.794

19412

\begin{align*} x^{2} y^{\prime }&=x^{2}+y x +y^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

9.085

19735

\begin{align*} y^{\prime }&=\left (x +y\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

4.274

19740

\begin{align*} y^{\prime }&=x \left (a y^{2}+b \right ) \\ \end{align*}

[_separable]

9.432

19741

\begin{align*} n^{\prime }&=\left (n^{2}+1\right ) x \\ \end{align*}

[_separable]

5.446

19815

\begin{align*} 3 x^{2} y^{\prime }+2 x^{2}-3 y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

10.801

19991

\begin{align*} y^{\prime }+2 y x&=y^{2}+x^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

5.429

20300

\begin{align*} y^{\prime }&=\left (4 x +y+1\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

5.140

20831

\begin{align*} y^{\prime } x -y^{2}+\left (2 x +1\right ) y&=x^{2}+2 x \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Riccati]

9.926

20972

\begin{align*} y^{\prime }&=\left (x -y+3\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

9.120

20976

\begin{align*} y^{\prime }-y+y^{2} {\mathrm e}^{x}+5 \,{\mathrm e}^{-x}&=0 \\ y \left (0\right ) &= \eta \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Riccati]

14.710

21056

\begin{align*} x^{\prime }&={\mathrm e}^{t} \left (1+x^{2}\right ) \\ x \left (0\right ) &= 0 \\ \end{align*}

[_separable]

4.720

21348

\begin{align*} y^{\prime }&=\frac {1+y^{2}}{x^{2}+1} \\ \end{align*}

[_separable]

8.797

21372

\begin{align*} 1+y^{2}+\left (x^{2}+1\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

10.889

21465

\begin{align*} y^{\prime }&=-x^{2}-x -1-\left (2 x +1\right ) y-y^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

12.020

21603

\begin{align*} y^{\prime }&=\frac {y+y^{2}+x^{2}}{x} \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Riccati]

22.816

21606

\begin{align*} y^{\prime }+x \left (y-x \right )+x^{3} \left (y-x \right )^{2}&=1 \\ \end{align*}

[_Riccati]

13.724

21798

\begin{align*} 1+y+y^{2}+x \left (x^{2}-4\right ) y^{\prime }&=0 \\ \end{align*}

[_separable]

38.114

21826

\begin{align*} x^{2} y^{\prime }-y x&=x^{2}-y^{2} \\ y \left (1\right ) &= 0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

36.465

22044

\begin{align*} x^{2}+y+y^{2}-y^{\prime } x&=0 \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Riccati]

1.062

22054

\begin{align*} y+x^{3}+x y^{2}-y^{\prime } x&=0 \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Riccati]

2.902

22364

\begin{align*} y^{\prime } x&=1+y^{2} \\ \end{align*}

[_separable]

2.413

22394

\begin{align*} y^{\prime }&=\left (x +y\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

1.276

22464

\begin{align*} y+x^{3}+x y^{2}-y^{\prime } x&=0 \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Riccati]

3.337

22568

\begin{align*} y^{\prime }&=\frac {\left (3+y\right )^{2}}{4 x^{2}} \\ \end{align*}

[_separable]

2.558

22591

\begin{align*} y^{\prime }&=1-\left (x -y\right )^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

1.174

22595

\begin{align*} 1+y^{2}+\left (x^{2}+1\right ) y^{\prime }&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

2.491

22610

\begin{align*} y^{\prime }&=x y^{2}-2 y+4-4 x \\ \end{align*}

[_Riccati]

1.800

22611

\begin{align*} y^{\prime }+y^{2}&=x^{2}+1 \\ \end{align*}

[_Riccati]

1.461

22612

\begin{align*} y^{\prime }&=\frac {y^{2}}{x -1}-\frac {x y}{x -1}+1 \\ \end{align*}

[_rational, _Riccati]

1.826

22804

\begin{align*} y^{\prime } x&=y^{2} x^{2}-y+1 \\ \end{align*}

[_rational, _Riccati]

1.041

22949

\begin{align*} 1+y^{2}&=\left (x^{2}+1\right ) y^{\prime } \\ \end{align*}

[_separable]

2.084

22952

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }&=1-y^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

2.397

23130

\begin{align*} y^{\prime } x +y^{2}&=1 \\ y \left (-2\right ) &= 1 \\ \end{align*}

[_separable]

2.692

23176

\begin{align*} y^{\prime }&=\left (1-y\right ) \left (\frac {1}{t}-\frac {1}{10}+\frac {y}{10}\right ) \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Riccati]

1.976

23177

\begin{align*} y^{\prime }&=\left (1-y\right ) \left (-\frac {1}{t \ln \left (t \right )}-\frac {3}{100}+\frac {3 y}{100}\right ) \\ \end{align*}

[_Riccati]

2.988

24174

\begin{align*} y^{2}+7 y x +16 x^{2}+x^{2} y^{\prime }&=0 \\ y \left (1\right ) &= 1 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

5.745

24292

\begin{align*} a^{2} \left (y^{\prime }-1\right )&=x^{2} y^{\prime }+y^{2} \\ \end{align*}

[_separable]

4.073

24318

\begin{align*} y^{\prime }&=\left (9 x +4 y+1\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

32.637

24340

\begin{align*} y^{\prime }&=2 \left (3 x +y\right )^{2}-1 \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

31.937

24914

\begin{align*} y^{\prime }&=\frac {y^{2}-4 t y+6 t^{2}}{t^{2}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1.996

24953

\begin{align*} y^{\prime }&=t y^{2}-y^{2}+t -1 \\ \end{align*}

[_separable]

2.387

24978

\begin{align*} y^{\prime }&=\frac {1+y^{2}}{t} \\ y \left (1\right ) &= \sqrt {3} \\ \end{align*}

[_separable]

2.496

25003

\begin{align*} t^{2} y^{\prime }&=y^{2}+t y+t^{2} \\ y \left (1\right ) &= 1 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3.209

25005

\begin{align*} y^{\prime }&=\frac {y^{2}-4 t y+6 t^{2}}{t^{2}} \\ y \left (2\right ) &= 4 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Riccati]

2.321

25021

\begin{align*} y^{\prime }&=\left (t -y\right )^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

0.990

25046

\begin{align*} y^{\prime }&=1+\left (t -y\right )^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _Riccati]

1.471

25656

\begin{align*} y^{2}-1+y^{\prime } x&=0 \\ \end{align*}

[_separable]

2.868

25824

\begin{align*} y^{\prime }&=\frac {\left (3+2 y\right )^{2}}{\left (5+4 x \right )^{2}} \\ \end{align*}

[_separable]

3.658