| # |
ODE |
CAS classification |
Solved |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{\prime }&=\sqrt {x} \\
y \left (4\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.566 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{x^{2}} \\
y \left (1\right ) &= 5 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.395 |
|
| \begin{align*}
y^{\prime }&=2 y^{2} x^{2} \\
y \left (1\right ) &= -1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.416 |
|
| \begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.858 |
|
| \begin{align*}
y^{\prime }&=x y^{3} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.207 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (a \right ) &= b \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.192 |
|
| \begin{align*}
{y^{\prime }}^{2}&=4 y \\
y \left (a \right ) &= b \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
0.773 |
|
| \begin{align*}
y^{\prime } x +2 y&=3 x \\
y \left (1\right ) &= 5 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.947 |
|
| \begin{align*}
y^{\prime } x +5 y&=7 x^{2} \\
y \left (2\right ) &= 5 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.072 |
|
| \begin{align*}
2 y^{\prime } x +y&=10 \sqrt {x} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.072 |
|
| \begin{align*}
y+3 y^{\prime } x&=12 x \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.042 |
|
| \begin{align*}
-y+y^{\prime } x&=x \\
y \left (1\right ) &= 7 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.819 |
|
| \begin{align*}
2 y^{\prime } x -3 y&=9 x^{3} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.638 |
|
| \begin{align*}
y^{\prime } x +3 y&=2 x^{5} \\
y \left (2\right ) &= 1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.048 |
|
| \begin{align*}
y^{\prime } x -3 y&=x^{3} \\
y \left (1\right ) &= 10 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.553 |
|
| \begin{align*}
\frac {1-4 x y^{2}}{x^{\prime }}&=y^{3} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.500 |
|
| \begin{align*}
\left (x +y\right ) y^{\prime }&=x -y \\
\end{align*} | [[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] | ✓ | ✓ | ✓ | ✓ | 3.019 |
|
| \begin{align*}
2 x y^{\prime } y&=x^{2}+2 y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.129 |
|
| \begin{align*}
\left (x -y\right ) y^{\prime }&=x +y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.206 |
|
| \begin{align*}
x \left (x +y\right ) y^{\prime }&=y \left (x -y\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
4.256 |
|
| \begin{align*}
\left (x +2 y\right ) y^{\prime }&=y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.967 |
|
| \begin{align*}
y^{2} y^{\prime } x&=x^{3}+y^{3} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.318 |
|
| \begin{align*}
x^{2} y^{\prime }&=y x +x^{2} {\mathrm e}^{\frac {y}{x}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
2.846 |
|
| \begin{align*}
x^{2} y^{\prime }&=y x +y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.986 |
|
| \begin{align*}
x y^{\prime } y&=x^{2}+3 y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.206 |
|
| \begin{align*}
\left (x^{2}-y^{2}\right ) y^{\prime }&=2 y x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
2.934 |
|
| \begin{align*}
x \left (x +y\right ) y^{\prime }+y \left (3 x +y\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
4.526 |
|
| \begin{align*}
x^{2} y^{\prime }+2 y x&=5 y^{3} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.137 |
|
| \begin{align*}
x^{2} y^{\prime }+2 y x&=5 y^{4} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.707 |
|
| \begin{align*}
3 y^{2} y^{\prime } x&=3 x^{4}+y^{3} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.174 |
|
| \begin{align*}
2 x +3 y+\left (2 y+3 x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.286 |
|
| \begin{align*}
4 x -y+\left (6 y-x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.165 |
|
| \begin{align*}
3 x^{2}+2 y^{2}+\left (4 y x +6 y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
6.661 |
|
| \begin{align*}
\frac {2 x^{{5}/{2}}-3 y^{{5}/{3}}}{2 x^{{5}/{2}} y^{{2}/{3}}}+\frac {\left (3 y^{{5}/{3}}-2 x^{{5}/{2}}\right ) y^{\prime }}{3 x^{{3}/{2}} y^{{5}/{3}}}&=0 \\
\end{align*} | [[_1st_order, _with_linear_symmetries], _exact, _rational] | ✓ | ✓ | ✓ | ✗ | 2.213 |
|
| \begin{align*}
y^{\prime }&=-\frac {y \left (2 x^{3}-y^{3}\right )}{x \left (2 y^{3}-x^{3}\right )} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
5.274 |
|
| \begin{align*}
x^{3}+3 y-y^{\prime } x&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.412 |
|
| \begin{align*}
y x +y^{2}-x^{2} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.273 |
|
| \begin{align*}
2 x^{2} y+x^{3} y^{\prime }&=1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.421 |
|
| \begin{align*}
x^{2} y^{\prime }+2 y x&=y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.813 |
|
| \begin{align*}
x^{2} y^{\prime }&=y x +3 y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.372 |
|
| \begin{align*}
x^{3} y^{\prime }&=x^{2} y-y^{3} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
58.067 |
|
| \begin{align*}
2 x^{2} y-x^{3} y^{\prime }&=y^{3} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
62.662 |
|
| \begin{align*}
y^{\prime } x +3 y&=\frac {3}{x^{{3}/{2}}} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.396 |
|
| \begin{align*}
3 y+y^{4} x^{3}+3 y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.108 |
|
| \begin{align*}
y^{\prime }&=-\frac {3 x^{2}+2 y^{2}}{4 y x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.190 |
|
| \begin{align*}
y^{\prime }&=\frac {x +3 y}{-3 x +y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.795 |
|
| \begin{align*}
y^{\prime }+y^{2}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.984 |
|
| \begin{align*}
y^{\prime }&=\sqrt {x} \\
y \left (4\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.537 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{x^{2}} \\
y \left (1\right ) &= 5 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.382 |
|
| \begin{align*}
y^{\prime }&=2 y^{2} x^{2} \\
y \left (1\right ) &= -1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.378 |
|
| \begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.319 |
|
| \begin{align*}
y^{\prime }&=x y^{3} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.922 |
|
| \begin{align*}
y^{\prime } x +2 y&=3 x \\
y \left (1\right ) &= 5 \\
\end{align*} | [_linear] | ✓ | ✓ | ✓ | ✓ | 3.587 |
|
| \begin{align*}
2 y^{\prime } x +y&=10 \sqrt {x} \\
y \left (2\right ) &= 5 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.981 |
|
| \begin{align*}
2 y^{\prime } x +y&=10 \sqrt {x} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.230 |
|
| \begin{align*}
y+3 y^{\prime } x&=12 x \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.887 |
|
| \begin{align*}
-y+y^{\prime } x&=x \\
y \left (1\right ) &= 7 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.635 |
|
| \begin{align*}
2 y^{\prime } x -3 y&=9 x^{3} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.512 |
|
| \begin{align*}
y^{\prime } x +3 y&=2 x^{5} \\
y \left (2\right ) &= 1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.997 |
|
| \begin{align*}
y^{\prime } x -3 y&=x^{3} \\
y \left (1\right ) &= 10 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.177 |
|
| \begin{align*}
\left (x +y\right ) y^{\prime }&=x -y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.433 |
|
| \begin{align*}
2 x y^{\prime } y&=y^{2}+x^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.165 |
|
| \begin{align*}
\left (x -y\right ) y^{\prime }&=x +y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.745 |
|
| \begin{align*}
x \left (x +y\right ) y^{\prime }&=y \left (x -y\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
4.330 |
|
| \begin{align*}
\left (x +2 y\right ) y^{\prime }&=y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.987 |
|
| \begin{align*}
y^{2} y^{\prime } x&=x^{3}+y^{3} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.567 |
|
| \begin{align*}
x^{2} y^{\prime }&=y x +x^{2} {\mathrm e}^{\frac {y}{x}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
3.191 |
|
| \begin{align*}
x^{2} y^{\prime }&=y x +y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.198 |
|
| \begin{align*}
x y^{\prime } y&=x^{2}+3 y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.296 |
|
| \begin{align*}
\left (x^{2}-y^{2}\right ) y^{\prime }&=2 y x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
3.131 |
|
| \begin{align*}
x \left (x +y\right ) y^{\prime }+y \left (3 x +y\right )&=0 \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] | ✓ | ✓ | ✓ | ✓ | 4.401 |
|
| \begin{align*}
x^{2} y^{\prime }+2 y x&=5 y^{3} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.984 |
|
| \begin{align*}
x^{2} y^{\prime }+2 y x&=5 y^{4} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.686 |
|
| \begin{align*}
3 y^{2} y^{\prime } x&=3 x^{4}+y^{3} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.178 |
|
| \begin{align*}
2 x +3 y+\left (2 y+3 x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.332 |
|
| \begin{align*}
4 x -y+\left (6 y-x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.289 |
|
| \begin{align*}
3 x^{2}+2 y^{2}+\left (4 y x +6 y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
6.542 |
|
| \begin{align*}
\frac {2 x^{{5}/{2}}-3 y^{{5}/{3}}}{2 x^{{5}/{2}} y^{{2}/{3}}}+\frac {\left (3 y^{{5}/{3}}-2 x^{{5}/{2}}\right ) y^{\prime }}{3 x^{{3}/{2}} y^{{5}/{3}}}&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _exact, _rational] |
✓ |
✓ |
✓ |
✗ |
2.186 |
|
| \begin{align*}
x^{3}+3 y-y^{\prime } x&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.441 |
|
| \begin{align*}
y x +y^{2}-x^{2} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.275 |
|
| \begin{align*}
2 x^{2} y+x^{3} y^{\prime }&=1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.526 |
|
| \begin{align*}
x^{2} y^{\prime }+2 y x&=y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.824 |
|
| \begin{align*}
x^{2} y^{\prime }&=y x +3 y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.386 |
|
| \begin{align*}
x^{3} y^{\prime }&=x^{2} y-y^{3} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
54.609 |
|
| \begin{align*}
2 x^{2} y-x^{3} y^{\prime }&=y^{3} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
58.489 |
|
| \begin{align*}
y^{\prime } x +3 y&=\frac {3}{x^{{3}/{2}}} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.331 |
|
| \begin{align*}
3 y+y^{4} x^{3}+3 y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.095 |
|
| \begin{align*}
y^{\prime }&=\frac {-3 x^{2}-2 y^{2}}{4 y x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.849 |
|
| \begin{align*}
y^{\prime }&=\frac {x +3 y}{-3 x +y} \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] | ✓ | ✓ | ✓ | ✓ | 3.673 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.075 |
|
| \begin{align*}
y^{\prime } x&=\sqrt {1-y^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.070 |
|
| \begin{align*}
r^{\prime }&=\frac {r^{2}}{x} \\
r \left (1\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.218 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}+y x +y^{2}}{x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
2.931 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}+3 y^{2}}{2 y x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.464 |
|
| \begin{align*}
y^{\prime }&=\frac {4 y-3 x}{2 x -y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.248 |
|
| \begin{align*}
y^{\prime }&=-\frac {4 x +3 y}{2 x +y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
15.332 |
|
| \begin{align*}
y^{\prime }&=\frac {x +3 y}{x -y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
3.535 |
|
| \begin{align*}
x^{2}+3 y x +y^{2}-x^{2} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
2.429 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}-3 y^{2}}{2 y x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.132 |
|
| \begin{align*}
y^{\prime }&=\frac {3 y^{2}-x^{2}}{2 y x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
60.890 |
|
| \begin{align*}
y^{\prime }&=-\frac {4 t}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.226 |
|
| \begin{align*}
y^{\prime }&=2 t y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.556 |
|
| \begin{align*}
y^{3}+y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.346 |
|
| \begin{align*}
2 x +4 y+\left (2 x -2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
8.624 |
|
| \begin{align*}
y^{\prime }&=\frac {-a x -b y}{b x +c y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.178 |
|
| \begin{align*}
y^{\prime }&=\frac {-a x +b y}{b x -c y} \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] | ✓ | ✓ | ✓ | ✗ | 5.073 |
|
| \begin{align*}
\frac {x}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.998 |
|
| \begin{align*}
2 x -y+\left (-x +2 y\right ) y^{\prime }&=0 \\
y \left (1\right ) &= 3 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.322 |
|
| \begin{align*}
3 y x +y^{2}+\left (x^{2}+y x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
4.971 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{3}-2 y}{x} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.092 |
|
| \begin{align*}
x +y+\left (x +2 y\right ) y^{\prime }&=0 \\
y \left (2\right ) &= 3 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.979 |
|
| \begin{align*}
y^{\prime } x&={\mathrm e}^{\frac {y}{x}} x +y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
3.560 |
|
| \begin{align*}
3 t +2 y&=-t y^{\prime } \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.783 |
|
| \begin{align*}
y^{\prime }&=\frac {x +y}{x -y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.743 |
|
| \begin{align*}
2 y x +3 y^{2}-\left (x^{2}+2 y x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
5.053 |
|
| \begin{align*}
y^{\prime }&=\frac {-3 x^{2} y-y^{2}}{2 x^{3}+3 y x} \\
y \left (1\right ) &= -2 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
4.156 |
|
| \begin{align*}
y^{\prime } x +y&=x^{2} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.416 |
|
| \begin{align*}
y^{\prime }&=-x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.220 |
|
| \begin{align*}
y^{\prime }&=-\frac {y \left (1+y\right )}{x} \\
y \left (1\right ) &= -2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.444 |
|
| \begin{align*}
y^{\prime } x +3 y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.909 |
|
| \begin{align*}
y^{\prime }+\frac {k y}{x}&=0 \\
y \left (1\right ) &= 3 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.124 |
|
| \begin{align*}
y^{\prime } x +2 y&=8 x^{2} \\
y \left (1\right ) &= 3 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.491 |
|
| \begin{align*}
y^{\prime } x -2 y&=-x^{2} \\
y \left (1\right ) &= 1 \\
\end{align*} | [_linear] | ✓ | ✓ | ✓ | ✓ | 1.862 |
|
| \begin{align*}
y^{\prime } x +y^{2}+y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.670 |
|
| \begin{align*}
y^{\prime } y+x&=0 \\
y \left (3\right ) &= -4 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.931 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x +3 y}{x -4 y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
6.944 |
|
| \begin{align*}
y^{\prime }&=\frac {y+{\mathrm e}^{-\frac {y}{x}} x}{x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
3.656 |
|
| \begin{align*}
x^{2} y^{\prime }&=y^{2}+y x -x^{2} \\
y \left (1\right ) &= 2 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
5.069 |
|
| \begin{align*}
y^{\prime }&=\frac {x +y}{x} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.724 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}+2 y x}{x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.059 |
|
| \begin{align*}
x y^{3} y^{\prime }&=y^{4}+x^{4} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.239 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x}+\sec \left (\frac {y}{x}\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
3.974 |
|
| \begin{align*}
x^{2} y^{\prime }&=x^{2}+y x +y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
2.713 |
|
| \begin{align*}
x y^{\prime } y&=x^{2}+2 y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.544 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y^{2}+x^{2} {\mathrm e}^{-\frac {y^{2}}{x^{2}}}}{2 y x} \\
\end{align*} |
[[_homogeneous, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.835 |
|
| \begin{align*}
y^{\prime }&=\frac {y x +y^{2}}{x^{2}} \\
y \left (-1\right ) &= 2 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.740 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{3}+y^{3}}{y^{2} x} \\
y \left (1\right ) &= 3 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.164 |
|
| \begin{align*}
x y^{\prime } y+x^{2}+y^{2}&=0 \\
y \left (1\right ) &= 2 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.008 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}-3 y x -5 x^{2}}{x^{2}} \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
5.050 |
|
| \begin{align*}
x^{2} y^{\prime }&=2 x^{2}+y^{2}+4 y x \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
2.639 |
|
| \begin{align*}
x y^{\prime } y&=3 x^{2}+4 y^{2} \\
y \left (1\right ) &= \sqrt {3} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.839 |
|
| \begin{align*}
y^{\prime }&=\frac {x +y}{x -y} \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] | ✓ | ✓ | ✓ | ✓ | 3.522 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{3}+2 x y^{2}+x^{2} y+x^{3}}{x \left (x +y\right )^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
5.960 |
|
| \begin{align*}
y^{\prime }&=\frac {x +2 y}{2 x +y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.493 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{y-2 x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.218 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{3}+x^{2} y+3 y^{3}}{x^{3}+3 x y^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
6.572 |
|
| \begin{align*}
x^{2} y^{\prime }&=y^{2}+y x -4 x^{2} \\
y \left (-1\right ) &= 0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
4.775 |
|
| \begin{align*}
x y^{\prime } y&=x^{2}-y x +y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
6.434 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y^{2}-y x +2 x^{2}}{y x +2 x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
34.039 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}+y x +y^{2}}{y x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
6.388 |
|
| \begin{align*}
3 y^{2} y^{\prime } x&=y^{3}+x \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.006 |
|
| \begin{align*}
x y^{\prime } y&=3 x^{6}+6 y^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.707 |
|
| \begin{align*}
x^{3} y^{\prime }&=2 y^{2}+2 x^{2} y-2 x^{4} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
3.089 |
|
| \begin{align*}
2 x \left (y+2 \sqrt {x}\right ) y^{\prime }&=\left (y+\sqrt {x}\right )^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
3.436 |
|
| \begin{align*}
y^{\prime }+\frac {2 y}{x}&=\frac {3 y^{2} x^{2}+6 y x +2}{x^{2} \left (2 y x +3\right )} \\
y \left (2\right ) &= 2 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
5.914 |
|
| \begin{align*}
y^{\prime }+\frac {3 y}{x}&=\frac {3 x^{4} y^{2}+10 x^{2} y+6}{x^{3} \left (2 x^{2} y+5\right )} \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
5.865 |
|
| \begin{align*}
4 x +7 y+\left (3 x +4 y\right ) y^{\prime }&=0 \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] | ✓ | ✓ | ✓ | ✓ | 4.460 |
|
| \begin{align*}
2 x +y+\left (2 y+2 x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.809 |
|
| \begin{align*}
\frac {x}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.704 |
|
| \begin{align*}
7 x +4 y+\left (4 x +3 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.189 |
|
| \begin{align*}
x^{2}+y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.438 |
|
| \begin{align*}
y+\left (2 x +\frac {1}{y}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
2.108 |
|
| \begin{align*}
x^{2} y^{\prime }-y^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.517 |
|
| \begin{align*}
y-y^{\prime } x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.579 |
|
| \begin{align*}
3 x^{2} y+2 x^{3} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.112 |
|
| \begin{align*}
\sin \left (y\right ) y+x \left (\sin \left (y\right )-y \cos \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.925 |
|
| \begin{align*}
y^{3} x^{4}+y+\left (x^{5} y^{2}-x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
2.839 |
|
| \begin{align*}
12 y x +6 y^{3}+\left (9 x^{2}+10 x y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
3.216 |
|
| \begin{align*}
3 y^{2} x^{2}+2 y+2 y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.567 |
|
| \begin{align*}
x^{2} \left (y^{\prime }+y^{2}\right )-7 y x +7&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
3.625 |
|
| \begin{align*}
2 t y y^{\prime }&=3 y^{2}-t^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
58.309 |
|
| \begin{align*}
y^{\prime }&=\frac {t +y}{t -y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.000 |
|
| \begin{align*}
{\mathrm e}^{\frac {t}{y}} \left (y-t \right ) y^{\prime }+y \left (1+{\mathrm e}^{\frac {t}{y}}\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
5.609 |
|
| \begin{align*}
3 t y+y^{2}+\left (t^{2}+t y\right ) y^{\prime }&=0 \\
y \left (2\right ) &= 1 \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] | ✓ | ✓ | ✓ | ✓ | 6.517 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y}{t}+\frac {y^{2}}{t^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.027 |
|
| \begin{align*}
2 t y y^{\prime }&=3 y^{2}-t^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
61.787 |
|
| \begin{align*}
y^{\prime }&=\frac {t +y}{t -y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.504 |
|
| \begin{align*}
{\mathrm e}^{\frac {t}{y}} \left (y-t \right ) y^{\prime }+y \left (1+{\mathrm e}^{\frac {t}{y}}\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
4.638 |
|
| \begin{align*}
3 t y+y^{2}+\left (t^{2}+t y\right ) y^{\prime }&=0 \\
y \left (2\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
4.421 |
|
| \begin{align*}
x^{\prime }&=x^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.431 |
|
| \begin{align*}
y^{\prime } x +y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.301 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.572 |
|
| \begin{align*}
y^{\prime } x +y&=y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.483 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x} \\
y \left (1\right ) &= 3 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.248 |
|
| \begin{align*}
y^{\prime } x +2 y&=0 \\
y \left (2\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.928 |
|
| \begin{align*}
x^{2} y^{\prime }+y^{2}&=0 \\
y \left (3\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.070 |
|
| \begin{align*}
x +y&=y^{\prime } x \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.333 |
|
| \begin{align*}
\left (x +y\right ) y^{\prime }+x&=y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.582 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x -y}{x +4 y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.675 |
|
| \begin{align*}
y^{\prime } y+x&=2 y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
4.482 |
|
| \begin{align*}
y^{2}+x^{2}&=x y^{\prime } y \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 5.523 |
|
| \begin{align*}
\left (y x -x^{2}\right ) y^{\prime }-y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
11.190 |
|
| \begin{align*}
x +y+\left (x -y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.273 |
|
| \begin{align*}
y \left (x^{2}-y x +y^{2}\right )+x y^{\prime } \left (x^{2}+y x +y^{2}\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
58.076 |
|
| \begin{align*}
y^{\prime } x -y-x \sin \left (\frac {y}{x}\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.547 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x}+\cosh \left (\frac {y}{x}\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
5.877 |
|
| \begin{align*}
y^{2}+x^{2}&=2 x y^{\prime } y \\
y \left (-1\right ) &= 0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.456 |
|
| \begin{align*}
\left (\frac {x}{y}+\frac {y}{x}\right ) y^{\prime }+1&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
6.342 |
|
| \begin{align*}
{\mathrm e}^{\frac {y}{x}} x +y&=y^{\prime } x \\
y \left (1\right ) &= 0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
12.150 |
|
| \begin{align*}
y^{\prime }&=\frac {x +y}{x -y} \\
y \left (1\right ) &= 0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
11.019 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x}+\tan \left (\frac {y}{x}\right ) \\
y \left (6\right ) &= \pi \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
6.251 |
|
| \begin{align*}
\left (3 y x -2 x^{2}\right ) y^{\prime }&=2 y^{2}-y x \\
y \left (1\right ) &= -1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
11.307 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x}+\tanh \left (\frac {y}{x}\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
9.340 |
|
| \begin{align*}
x +y+\left (x -2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
6.004 |
|
| \begin{align*}
3 x +y+\left (x +3 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.563 |
|
| \begin{align*}
2 y x -\left (y^{2}+x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
15.737 |
|
| \begin{align*}
\frac {2}{y}-\frac {y}{x^{2}}+\left (\frac {1}{x}-\frac {2 x}{y^{2}}\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.158 |
|
| \begin{align*}
\frac {y \left (2+x^{3} y\right )}{x^{3}}&=\frac {\left (1-2 x^{3} y\right ) y^{\prime }}{x^{2}} \\
\end{align*} | [[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] | ✓ | ✓ | ✓ | ✓ | 4.891 |
|
| \begin{align*}
\frac {2 y}{x^{3}}+\frac {2 x}{y^{2}}&=\left (\frac {1}{x^{2}}+\frac {2 x^{2}}{y^{3}}\right ) y^{\prime } \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational] |
✓ |
✓ |
✓ |
✗ |
6.727 |
|
| \begin{align*}
\frac {x^{2}+3 y^{2}}{x \left (3 x^{2}+4 y^{2}\right )}+\frac {\left (2 x^{2}+y^{2}\right ) y^{\prime }}{y \left (3 x^{2}+4 y^{2}\right )}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
16.471 |
|
| \begin{align*}
\frac {x^{2}-y^{2}}{x \left (2 x^{2}+y^{2}\right )}+\frac {\left (x^{2}+2 y^{2}\right ) y^{\prime }}{y \left (2 x^{2}+y^{2}\right )}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
28.859 |
|
| \begin{align*}
y x +\left (y+x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
4.662 |
|
| \begin{align*}
\left (-2 y x +x \right ) y^{\prime }+2 y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.773 |
|
| \begin{align*}
x^{2} y+y^{2}+x^{3} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.039 |
|
| \begin{align*}
x y^{3}-1+x^{2} y^{2} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.901 |
|
| \begin{align*}
\left (x^{3} y^{3}-1\right ) y^{\prime }+x^{2} y^{4}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
4.441 |
|
| \begin{align*}
y \left (y-x^{2}\right )+x^{3} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.410 |
|
| \begin{align*}
y+x y^{2}+\left (x -x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
6.156 |
|
| \begin{align*}
2 y x +\left (y-x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
6.049 |
|
| \begin{align*}
y&=x \left (x^{2} y-1\right ) y^{\prime } \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
11.744 |
|
| \begin{align*}
\left (2 x +3 x^{2} y\right ) y^{\prime }+y+2 x y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
4.270 |
|
| \begin{align*}
y \left (1-x^{4} y^{2}\right )+y^{\prime } x&=0 \\
y \left (1\right ) &= -1 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.602 |
|
| \begin{align*}
y^{2} x^{2}-y+\left (2 x^{3} y+x \right ) y^{\prime }&=0 \\
y \left (2\right ) &= -2 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
4.553 |
|
| \begin{align*}
y \left (x +y^{2}\right )+x \left (x -y^{2}\right ) y^{\prime }&=0 \\
y \left (2\right ) &= 2 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✗ |
✗ |
7.056 |
|
| \begin{align*}
y^{\prime } x +2 y&=x^{2} \\
\end{align*} | [_linear] | ✓ | ✓ | ✓ | ✓ | 2.897 |
|
| \begin{align*}
y+\left (2 x -3 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
21.665 |
|
| \begin{align*}
y^{\prime } x -2 x^{4}-2 y&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.654 |
|
| \begin{align*}
2 y&=\left (y^{4}+x \right ) y^{\prime } \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
4.423 |
|
| \begin{align*}
y+2 \left (x -2 y^{2}\right ) y^{\prime }&=0 \\
y \left (2\right ) &= -1 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
5.486 |
|
| \begin{align*}
x y^{\prime } y&=x^{2}-y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
9.098 |
|
| \begin{align*}
t x^{\prime }+x \left (1-x^{2} t^{4}\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.898 |
|
| \begin{align*}
x^{2} y^{\prime }+y^{2}&=y x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.777 |
|
| \begin{align*}
2 y&=\left (x^{2} y^{4}+x \right ) y^{\prime } \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
4.582 |
|
| \begin{align*}
y^{2}+\left (x^{2}+y x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
57.204 |
|
| \begin{align*}
2 x +y-\left (x -2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.042 |
|
| \begin{align*}
6+2 y&=x y^{\prime } y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.603 |
|
| \begin{align*}
2 y x +y^{4}+\left (x y^{3}-2 x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
4.316 |
|
| \begin{align*}
y+\left (3 x -2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
22.938 |
|
| \begin{align*}
\left (3 x +4 y\right ) y^{\prime }+2 x +y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.945 |
|
| \begin{align*}
1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
7.621 |
|
| \begin{align*}
2 y^{\prime } x -y+\frac {x^{2}}{y^{2}}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.190 |
|
| \begin{align*}
y^{\prime } x +y \left (1+y^{2}\right )&=0 \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 7.810 |
|
| \begin{align*}
y \cos \left (\frac {x}{y}\right )-\left (y+x \cos \left (\frac {x}{y}\right )\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
8.580 |
|
| \begin{align*}
y \left (3 x^{2}+y\right )-x \left (x^{2}-y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
9.382 |
|
| \begin{align*}
y x -y^{2}-x^{2} y^{\prime }&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.113 |
|
| \begin{align*}
y^{\prime } x -2 y-2 y^{3} x^{4}&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.078 |
|
| \begin{align*}
y^{\prime } x&=x^{4}+4 y \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.437 |
|
| \begin{align*}
y^{\prime } x +y&=x^{3} y^{6} \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.764 |
|
| \begin{align*}
y^{2}+x^{2}&=2 x y^{\prime } y \\
y \left (2\right ) &= 0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
7.489 |
|
| \begin{align*}
y^{2}+\left (x^{3}-2 y x \right ) y^{\prime }&=0 \\
y \left (2\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✗ |
✗ |
12.815 |
|
| \begin{align*}
y^{3}+2 x^{2} y+\left (-3 x^{3}-2 x y^{2}\right ) y^{\prime }&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✗ |
✗ |
24.710 |
|
| \begin{align*}
x \left (-1+{y^{\prime }}^{2}\right )&=2 y^{\prime } y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.964 |
|
| \begin{align*}
y^{2} {y^{\prime }}^{2}-2 x y^{\prime } y+2 y^{2}&=x^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
1.897 |
|
| \begin{align*}
y&=y^{\prime } x \left (1+y^{\prime }\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
2.483 |
|
| \begin{align*}
x \left (-1+{y^{\prime }}^{2}\right )&=2 y^{\prime } y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.931 |
|
| \begin{align*}
4 x -2 y^{\prime } y+x {y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.976 |
|
| \begin{align*}
x^{2}-3 y^{\prime } y+x {y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
1.116 |
|
| \begin{align*}
2 y^{\prime } x +y&=x {y^{\prime }}^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.160 |
|
| \begin{align*}
x +2 y^{\prime } y&=x {y^{\prime }}^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.983 |
|
| \begin{align*}
4 x -2 y^{\prime } y+x {y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.975 |
|
| \begin{align*}
2 x +x {y^{\prime }}^{2}&=2 y^{\prime } y \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _dAlembert] | ✓ | ✓ | ✓ | ✓ | 0.982 |
|
| \begin{align*}
4 x {y^{\prime }}^{2}+2 y^{\prime } x&=y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.059 |
|
| \begin{align*}
y&=y^{\prime } x \left (1+y^{\prime }\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
2.171 |
|
| \begin{align*}
y&=y^{\prime } x +\frac {1}{y^{\prime }} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Clairaut] |
✓ |
✓ |
✓ |
✗ |
0.807 |
|
| \begin{align*}
x {y^{\prime }}^{2}-y^{\prime } y-2&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Clairaut] |
✓ |
✓ |
✓ |
✗ |
0.790 |
|
| \begin{align*}
y^{\prime }&=2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.685 |
|
| \begin{align*}
y^{\prime }&=y^{2} x^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.484 |
|
| \begin{align*}
y^{\prime } x&=\sqrt {1-y^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.215 |
|
| \begin{align*}
y^{\prime }&=-y^{3} \\
y \left (1\right ) &= 3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
30.428 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{t} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.464 |
|
| \begin{align*}
y^{\prime }&=-\frac {t}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.222 |
|
| \begin{align*}
t y^{\prime }&=y+t^{3} \\
y \left (1\right ) &= -2 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.253 |
|
| \begin{align*}
t y^{\prime }&=-y+t^{3} \\
y \left (1\right ) &= 2 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.435 |
|
| \begin{align*}
y^{\prime }-x y^{3}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.106 |
|
| \begin{align*}
2 y^{\prime } x +3 x +y&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
12.274 |
|
| \begin{align*}
\left (y^{3}+x \right ) y^{\prime }&=y \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
4.257 |
|
| \begin{align*}
\left (y-x \right ) y^{\prime }+2 x +3 y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
6.307 |
|
| \begin{align*}
x \left (1-2 x^{2} y\right ) y^{\prime }+y&=3 y^{2} x^{2} \\
y \left (1\right ) &= {\frac {1}{2}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
5.303 |
|
| \begin{align*}
y^{\prime }-\frac {y}{x}&=1 \\
y \left (1\right ) &= -1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.492 |
|
| \begin{align*}
y^{\prime }-\frac {y^{2}}{x^{2}}&={\frac {1}{4}} \\
y \left (1\right ) &= 1 \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _Riccati] | ✓ | ✓ | ✓ | ✗ | 6.211 |
|
| \begin{align*}
y^{\prime }-\frac {y^{2}}{x^{2}}&={\frac {1}{4}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
4.599 |
|
| \begin{align*}
y^{\prime } x +y-\frac {y^{2}}{x^{{3}/{2}}}&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
12.043 |
|
| \begin{align*}
\left (3 x -y\right ) y^{\prime }&=3 y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.344 |
|
| \begin{align*}
y^{\prime }&=\frac {\left (x +y\right )^{2}}{2 x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
2.513 |
|
| \begin{align*}
\sin \left (\frac {y}{x}\right ) \left (-y+y^{\prime } x \right )&=x \cos \left (\frac {y}{x}\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
3.500 |
|
| \begin{align*}
x \left (x^{2}-y^{2}\right )-x \left (y^{2}+x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
4.651 |
|
| \begin{align*}
2 x y^{\prime } y-2 y^{2}-x^{2} {\mathrm e}^{-\frac {y^{2}}{x^{2}}}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.924 |
|
| \begin{align*}
x^{2} y^{\prime }&=y^{2}+3 y x +x^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
2.583 |
|
| \begin{align*}
2 x \left (2 x +y\right ) y^{\prime }&=y \left (4 x -y\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
4.915 |
|
| \begin{align*}
y^{\prime } x&=\tan \left (\frac {y}{x}\right ) x +y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
3.671 |
|
| \begin{align*}
y^{\prime }&=-y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.950 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{2 x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.193 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{x^{{2}/{3}}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.287 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}+y x +y^{2}}{x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
2.288 |
|
| \begin{align*}
\left (3 x -y\right ) y^{\prime }&=3 y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.508 |
|
| \begin{align*}
y^{\prime }&=\frac {\left (x +y\right )^{2}}{2 x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
2.228 |
|
| \begin{align*}
\sin \left (\frac {y}{x}\right ) \left (-y+y^{\prime } x \right )&=x \cos \left (\frac {y}{x}\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
3.918 |
|
| \begin{align*}
2 x y^{\prime } y-2 y^{2}-x^{2} {\mathrm e}^{-\frac {y^{2}}{x^{2}}}&=0 \\
\end{align*} | [[_homogeneous, ‘class A‘]] | ✓ | ✓ | ✓ | ✓ | 2.434 |
|
| \begin{align*}
x^{2} y^{\prime }&=y^{2}+3 y x +x^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
2.181 |
|
| \begin{align*}
2 x \left (2 x +y\right ) y^{\prime }&=y \left (4 x -y\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
3.840 |
|
| \begin{align*}
y^{\prime } x&=\tan \left (\frac {y}{x}\right ) x +y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
3.093 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x -y}{x +4 y} \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
6.577 |
|
| \begin{align*}
y^{\prime }&=\frac {x +a y}{a x -y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
6.136 |
|
| \begin{align*}
y^{\prime }&=\frac {x +\frac {y}{2}}{\frac {x}{2}-y} \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
10.549 |
|
| \begin{align*}
y^{\prime }+\frac {2 y}{x}&=6 x^{4} y^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.513 |
|
| \begin{align*}
2 x \left (y^{\prime }+x^{2} y^{3}\right )+y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.182 |
|
| \begin{align*}
y^{\prime }&=\frac {y \left (\ln \left (y x \right )-1\right )}{x} \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
2.072 |
|
| \begin{align*}
y^{\prime }+\frac {2 y}{x}-y^{2}&=-\frac {2}{x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
2.939 |
|
| \begin{align*}
y^{\prime }+\frac {7 y}{x}-3 y^{2}&=\frac {3}{x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
2.066 |
|
| \begin{align*}
4 x y^{2}+6 y+\left (5 x^{2} y+8 x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
4.304 |
|
| \begin{align*}
y^{\prime }&=\frac {y-2 x}{x} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.752 |
|
| \begin{align*}
x^{3}+y^{3}-y^{2} y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.422 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}+x^{2}}{2 x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
2.496 |
|
| \begin{align*}
y^{\prime } x&=x +y \\
y \left (-1\right ) &= -1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.884 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x -y}{2 x +y} \\
y \left (2\right ) &= 2 \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] | ✓ | ✓ | ✓ | ✗ | 26.700 |
|
| \begin{align*}
y^{\prime } y&=x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.386 |
|
| \begin{align*}
y^{\prime } x +y&=x \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.307 |
|
| \begin{align*}
-y+y^{\prime } x&=x^{3} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.535 |
|
| \begin{align*}
y^{\prime } x +n y&=x^{n} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.974 |
|
| \begin{align*}
y^{\prime } x -n y&=x^{n} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.642 |
|
| \begin{align*}
y^{\prime }&=6 x y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.628 |
|
| \begin{align*}
y^{\prime } x&=y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.463 |
|
| \begin{align*}
x^{2} y^{\prime }-y^{2}&=0 \\
y \left (1\right ) &= -1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.878 |
|
| \begin{align*}
x \cos \left (y\right ) y^{\prime }&=1+\sin \left (y\right ) \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.845 |
|
| \begin{align*}
y^{\prime } x&=2 y \left (y-1\right ) \\
y \left (\frac {1}{2}\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.565 |
|
| \begin{align*}
2 y^{\prime } x&=1-y^{2} \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.535 |
|
| \begin{align*}
x y^{\prime } y&=\sqrt {y^{2}-9} \\
y \left ({\mathrm e}^{4}\right ) &= 5 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
8.641 |
|
| \begin{align*}
x y^{\prime } y&=2 x^{2}-y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
7.196 |
|
| \begin{align*}
x^{2}-y^{2}+x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.287 |
|
| \begin{align*}
x^{2} y^{\prime }-2 y x -2 y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.522 |
|
| \begin{align*}
x^{2} y^{\prime }&=3 \left (y^{2}+x^{2}\right ) \arctan \left (\frac {y}{x}\right )+y x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
9.674 |
|
| \begin{align*}
x \sin \left (\frac {y}{x}\right ) y^{\prime }&=\sin \left (\frac {y}{x}\right ) y+x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
3.874 |
|
| \begin{align*}
\left (x +\frac {2}{y}\right ) y^{\prime }+y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
4.442 |
|
| \begin{align*}
-\frac {\sin \left (\frac {x}{y}\right )}{y}+\frac {x \sin \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}}&=0 \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 2.067 |
|
| \begin{align*}
\left (3 x^{2}-y^{2}\right ) y^{\prime }-2 y x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
5.173 |
|
| \begin{align*}
\left (x +3 y^{4} x^{3}\right ) y^{\prime }+y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
3.450 |
|
| \begin{align*}
y-\left (x +x y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.652 |
|
| \begin{align*}
\left (x +y\right ) y^{\prime }&=y-x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.899 |
|
| \begin{align*}
y^{\prime } x -3 y&=x^{4} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.003 |
|
| \begin{align*}
2 y-x^{3}&=y^{\prime } x \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
0.996 |
|
| \begin{align*}
\left (-y x +1\right ) y^{\prime }&=y^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
3.915 |
|
| \begin{align*}
y^{2}&=\left (x^{3}-y x \right ) y^{\prime } \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
3.885 |
|
| \begin{align*}
x^{2} y^{3}+y&=\left (x^{3} y^{2}-x \right ) y^{\prime } \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
3.347 |
|
| \begin{align*}
\left (y x -x^{2}\right ) y^{\prime }&=y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
9.531 |
|
| \begin{align*}
y+x^{2}&=y^{\prime } x \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.066 |
|
| \begin{align*}
y^{2}-3 y x -2 x^{2}&=\left (x^{2}-y x \right ) y^{\prime } \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
5.410 |
|
| \begin{align*}
x^{2} y^{\prime }+2 y x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.116 |
|
| \begin{align*}
\frac {x}{y^{2}+x^{2}}+\frac {y}{x^{2}}+\left (\frac {y}{y^{2}+x^{2}}-\frac {1}{x}\right ) y^{\prime }&=0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.299 |
|
| \begin{align*}
y^{\prime }+\frac {x}{y}+2&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
3.799 |
|
| \begin{align*}
-y+y^{\prime } x&=x \cot \left (\frac {y}{x}\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.433 |
|
| \begin{align*}
x \cos \left (\frac {y}{x}\right )^{2}-y+y^{\prime } x&=0 \\
\end{align*} | [[_homogeneous, ‘class A‘], _dAlembert] | ✓ | ✓ | ✓ | ✗ | 4.079 |
|
| \begin{align*}
y x +\left (y^{2}+x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.964 |
|
| \begin{align*}
\left (1-{\mathrm e}^{-\frac {y}{x}}\right ) y^{\prime }+1-\frac {y}{x}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
5.291 |
|
| \begin{align*}
x^{2}-y x +y^{2}-x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
7.070 |
|
| \begin{align*}
2 y x +\left (x^{2}+2 y x +y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
13.892 |
|
| \begin{align*}
y^{2}-\left (y x +x^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
2.365 |
|
| \begin{align*}
2 y^{2} x^{2}+y+\left (x^{3} y-x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
5.549 |
|
| \begin{align*}
y^{2}+\left (y x +\tan \left (y x \right )\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
3.591 |
|
| \begin{align*}
2 x^{2} y^{4}-y+\left (4 x^{3} y^{3}-x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
4.810 |
|
| \begin{align*}
y^{2} x^{2}-2 y+\left (x^{3} y-x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
4.698 |
|
| \begin{align*}
2 x^{3} y+y^{3}-\left (x^{4}+2 x y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
4.583 |
|
| \begin{align*}
\left (y^{3}+\frac {x}{y}\right ) y^{\prime }&=1 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
3.130 |
|
| \begin{align*}
y^{\prime }&=\frac {4 x^{3} y^{2}}{x^{4} y+2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
18.325 |
|
| \begin{align*}
6 y^{2}-x \left (2 x^{3}+y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
16.532 |
|
| \begin{align*}
x y^{\prime } \left (y^{\prime }+2\right )&=y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.711 |
|
| \begin{align*}
y \left (y-2 y^{\prime } x \right )^{3}&={y^{\prime }}^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
1.943 |
|
| \begin{align*}
x y^{2} \left (y^{\prime } x +y\right )&=1 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.178 |
|
| \begin{align*}
5 y+{y^{\prime }}^{2}&=x \left (x +y^{\prime }\right ) \\
\end{align*} | [[_homogeneous, ‘class G‘]] | ✓ | ✓ | ✗ | ✓ | 0.642 |
|
| \begin{align*}
y^{\prime } x&=y-{\mathrm e}^{\frac {y}{x}} x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
5.361 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{\frac {x y^{\prime }}{y}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
5.217 |
|
| \begin{align*}
-y+y^{\prime } x&=\tan \left (\frac {y}{x}\right ) x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.339 |
|
| \begin{align*}
2 y-x \left (\ln \left (x^{2} y\right )-1\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
4.503 |
|
| \begin{align*}
4 x -2 y^{\prime } y+x {y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.757 |
|
| \begin{align*}
y^{3}+\left (3 x^{2}-2 x y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
3.780 |
|
| \begin{align*}
2 x^{3} y y^{\prime }+3 y^{2} x^{2}+7&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.405 |
|
| \begin{align*}
x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.473 |
|
| \begin{align*}
y^{4}+y x +\left (x y^{3}-x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
3.994 |
|
| \begin{align*}
x +\sin \left (\frac {y}{x}\right )^{2} \left (y-y^{\prime } x \right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
4.733 |
|
| \begin{align*}
x y^{3}-1+x^{2} y^{2} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.250 |
|
| \begin{align*}
y^{\prime }&=a x y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.980 |
|
| \begin{align*}
y^{\prime }&=x y^{3} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.518 |
|
| \begin{align*}
y^{\prime }&=\left (a +b x y\right ) y^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _Abel] |
✓ |
✓ |
✓ |
✓ |
4.759 |
|
| \begin{align*}
y^{\prime }&=a \,x^{\frac {n}{1-n}}+b y^{n} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _Chini] |
✓ |
✓ |
✓ |
✗ |
9.194 |
|
| \begin{align*}
2 y^{\prime }+a x&=\sqrt {a^{2} x^{2}-4 b \,x^{2}-4 c y} \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
44.829 |
|
| \begin{align*}
2 y^{\prime }+a x&=-\sqrt {a^{2} x^{2}-4 b \,x^{2}-4 c y} \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
43.662 |
|
| \begin{align*}
y^{\prime } x +x +y&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.199 |
|
| \begin{align*}
y^{\prime } x +x^{2}-y&=0 \\
\end{align*} | [_linear] | ✓ | ✓ | ✓ | ✓ | 0.979 |
|
| \begin{align*}
y^{\prime } x&=x^{3}-y \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.651 |
|
| \begin{align*}
y^{\prime } x&=x^{m}+y \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.570 |
|
| \begin{align*}
y^{\prime } x&=a y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.877 |
|
| \begin{align*}
y^{\prime } x&=-a y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.826 |
|
| \begin{align*}
y^{\prime } x&=a x +b y \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.550 |
|
| \begin{align*}
y^{\prime } x&=a \,x^{2}+b y \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.992 |
|
| \begin{align*}
y^{\prime } x&=a +b y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.344 |
|
| \begin{align*}
y^{\prime } x +\left (-y x +1\right ) y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.999 |
|
| \begin{align*}
y^{\prime } x&=\left (-y x +1\right ) y \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.455 |
|
| \begin{align*}
y^{\prime } x&=\left (y x +1\right ) y \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.495 |
|
| \begin{align*}
y^{\prime } x&=y \left (2 y x +1\right ) \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.476 |
|
| \begin{align*}
y^{\prime } x +\left (a +b \,x^{n} y\right ) y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.715 |
|
| \begin{align*}
y^{\prime } x&=y \left (1+y^{2}\right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.606 |
|
| \begin{align*}
y^{\prime } x +y \left (1-x y^{2}\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.637 |
|
| \begin{align*}
y^{\prime } x&=4 y-4 \sqrt {y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.976 |
|
| \begin{align*}
y^{\prime } x +2 y&=\sqrt {1+y^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.494 |
|
| \begin{align*}
y^{\prime } x +2 y&=-\sqrt {1+y^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.484 |
|
| \begin{align*}
y^{\prime } x +x -y+x \cos \left (\frac {y}{x}\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.111 |
|
| \begin{align*}
y^{\prime } x&=-x \cos \left (\frac {y}{x}\right )^{2}+y \\
\end{align*} | [[_homogeneous, ‘class A‘], _dAlembert] | ✓ | ✓ | ✓ | ✗ | 5.297 |
|
| \begin{align*}
y^{\prime } x&=y-x \cot \left (\frac {y}{x}\right )^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
7.047 |
|
| \begin{align*}
y^{\prime } x -y+x \sec \left (\frac {y}{x}\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
5.007 |
|
| \begin{align*}
y^{\prime } x&=y+x \sec \left (\frac {y}{x}\right )^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
4.289 |
|
| \begin{align*}
y^{\prime } x&=y+x \sin \left (\frac {y}{x}\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.749 |
|
| \begin{align*}
y^{\prime } x +\tan \left (y\right )&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.243 |
|
| \begin{align*}
y^{\prime } x&=y-\tan \left (\frac {y}{x}\right ) x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.869 |
|
| \begin{align*}
y^{\prime } x&={\mathrm e}^{\frac {y}{x}} x +y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
4.703 |
|
| \begin{align*}
y^{\prime } x&=x +y+{\mathrm e}^{\frac {y}{x}} x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
4.563 |
|
| \begin{align*}
y^{\prime } x&=y \ln \left (y\right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.200 |
|
| \begin{align*}
y^{\prime } x&=y-2 x \tanh \left (\frac {y}{x}\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
7.065 |
|
| \begin{align*}
y^{\prime } x&=y f \left (x^{m} y^{n}\right ) \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
5.097 |
|
| \begin{align*}
2 y^{\prime } x&=2 x^{3}-y \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
11.957 |
|
| \begin{align*}
2 y^{\prime } x&=y \left (1+y^{2}\right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.633 |
|
| \begin{align*}
2 y^{\prime } x +y \left (1+y^{2}\right )&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
7.075 |
|
| \begin{align*}
2 y^{\prime } x +4 y+a +\sqrt {a^{2}-4 b -4 c y}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
8.408 |
|
| \begin{align*}
2 y^{\prime } x +4 y+a -\sqrt {a^{2}-4 b -4 c y}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
8.236 |
|
| \begin{align*}
3 y^{\prime } x&=\left (2+x y^{3}\right ) y \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.251 |
|
| \begin{align*}
x^{2} y^{\prime }&=a +b x y \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.970 |
|
| \begin{align*}
x^{2} y^{\prime }+x^{2}+y x +y^{2}&=0 \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _Riccati] | ✓ | ✓ | ✓ | ✓ | 5.111 |
|
| \begin{align*}
x^{2} y^{\prime }&=\left (x +a y\right ) y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.850 |
|
| \begin{align*}
x^{2} y^{\prime }&=\left (a x +b y\right ) y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
42.598 |
|
| \begin{align*}
x^{2} y^{\prime }+a \,x^{2}+b x y+c y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✗ |
62.256 |
|
| \begin{align*}
x^{2} y^{\prime }+2+x y \left (4+y x \right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
5.807 |
|
| \begin{align*}
x^{2} y^{\prime }&=a +b \,x^{2} y^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]] |
✓ |
✓ |
✓ |
✓ |
6.015 |
|
| \begin{align*}
x^{2} y^{\prime }&=a +b x y+c \,x^{2} y^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
4.303 |
|
| \begin{align*}
x^{2} y^{\prime }&=2 y \left (x -y^{2}\right ) \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.618 |
|
| \begin{align*}
x^{2} y^{\prime }&=\left (a x +y^{3} b \right ) y \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.315 |
|
| \begin{align*}
2 x^{2} y^{\prime }+1+2 y x -y^{2} x^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
3.902 |
|
| \begin{align*}
a \,x^{2} y^{\prime }&=x^{2}+a x y+b^{2} y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✗ |
27.248 |
|
| \begin{align*}
x^{3} y^{\prime }&=b \,x^{2} y+a \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.973 |
|
| \begin{align*}
x^{3} y^{\prime }&=x^{4}+y^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
2.078 |
|
| \begin{align*}
x^{3} y^{\prime }&=y \left (y+x^{2}\right ) \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.371 |
|
| \begin{align*}
x^{3} y^{\prime }+20+x^{2} y \left (1-x^{2} y\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
4.879 |
|
| \begin{align*}
x^{3} y^{\prime }&=\left (2 x^{2}+y^{2}\right ) y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
74.351 |
|
| \begin{align*}
2 x^{3} y^{\prime }&=y \left (x^{2}-y^{2}\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
41.958 |
|
| \begin{align*}
2 x^{3} y^{\prime }&=\left (3 x^{2}+a y^{2}\right ) y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
12.137 |
|
| \begin{align*}
x^{4} y^{\prime }&=\left (x^{3}+y\right ) y \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.155 |
|
| \begin{align*}
x^{5} y^{\prime }&=1-3 x^{4} y \\
\end{align*} | [_linear] | ✓ | ✓ | ✓ | ✓ | 1.908 |
|
| \begin{align*}
x^{n} y^{\prime }&=a +b \,x^{n -1} y \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✗ |
2.962 |
|
| \begin{align*}
x^{n} y^{\prime }+x^{2 n -2}+y^{2}+\left (1-n \right ) x^{n -1} y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _Riccati] |
✓ |
✓ |
✓ |
✗ |
4.109 |
|
| \begin{align*}
x^{n} y^{\prime }&=a^{2} x^{2 n -2}+b^{2} y^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _Riccati] |
✓ |
✓ |
✓ |
✗ |
9.289 |
|
| \begin{align*}
y^{\prime } y+x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.723 |
|
| \begin{align*}
y^{\prime } y+a x +b y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
54.310 |
|
| \begin{align*}
\left (x +y\right ) y^{\prime }+y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
7.340 |
|
| \begin{align*}
\left (x -y\right ) y^{\prime }&=y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
7.210 |
|
| \begin{align*}
\left (x +y\right ) y^{\prime }+x -y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.312 |
|
| \begin{align*}
\left (x +y\right ) y^{\prime }&=x -y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
7.295 |
|
| \begin{align*}
\left (x -y\right ) y^{\prime }&=\left ({\mathrm e}^{-\frac {x}{y}}+1\right ) y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
8.522 |
|
| \begin{align*}
\left (2 x +y\right ) y^{\prime }+x -2 y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.261 |
|
| \begin{align*}
\left (4 x -y\right ) y^{\prime }+2 x -5 y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
12.431 |
|
| \begin{align*}
\left (x^{2}-y\right ) y^{\prime }&=4 y x \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
7.148 |
|
| \begin{align*}
\left (x -2 y\right ) y^{\prime }&=y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.885 |
|
| \begin{align*}
\left (x +2 y\right ) y^{\prime }+2 x -y&=0 \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] | ✓ | ✓ | ✓ | ✓ | 3.556 |
|
| \begin{align*}
\left (x -2 y\right ) y^{\prime }+2 x +y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.364 |
|
| \begin{align*}
\left (x +4 y\right ) y^{\prime }+4 x -y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.782 |
|
| \begin{align*}
\left (7 x +5 y\right ) y^{\prime }+10 x +8 y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.705 |
|
| \begin{align*}
\left (a x +b y\right ) y^{\prime }+x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
31.006 |
|
| \begin{align*}
\left (a x +b y\right ) y^{\prime }+y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
5.223 |
|
| \begin{align*}
\left (a x +b y\right ) y^{\prime }+b x +a y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.691 |
|
| \begin{align*}
\left (a x +b y\right ) y^{\prime }&=b x +a y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
5.464 |
|
| \begin{align*}
x y^{\prime } y+1+y^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.253 |
|
| \begin{align*}
x y^{\prime } y&=x +y^{2} \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.377 |
|
| \begin{align*}
x y^{\prime } y+x^{2}+y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.776 |
|
| \begin{align*}
x y^{\prime } y+x^{4}-y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.319 |
|
| \begin{align*}
x y^{\prime } y&=x^{2}-y x +y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
6.949 |
|
| \begin{align*}
x y^{\prime } y+2 x^{2}-2 y x -y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
4.596 |
|
| \begin{align*}
x y^{\prime } y&=a +b y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.636 |
|
| \begin{align*}
x y^{\prime } y&=a \,x^{n}+b y^{2} \\
\end{align*} | [[_homogeneous, ‘class G‘], _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✗ | 4.084 |
|
| \begin{align*}
x y^{\prime } y+x^{2} \operatorname {arccot}\left (\frac {y}{x}\right )-y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
5.243 |
|
| \begin{align*}
x y^{\prime } y+x^{2} {\mathrm e}^{-\frac {2 y}{x}}-y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
3.030 |
|
| \begin{align*}
\left (y x +1\right ) y^{\prime }+y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
2.562 |
|
| \begin{align*}
x \left (x +y\right ) y^{\prime }+y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
45.013 |
|
| \begin{align*}
x \left (x -y\right ) y^{\prime }+y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
7.846 |
|
| \begin{align*}
x \left (x +y\right ) y^{\prime }&=y^{2}+x^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
4.710 |
|
| \begin{align*}
x \left (x -y\right ) y^{\prime }+2 x^{2}+3 y x -y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
5.401 |
|
| \begin{align*}
x \left (2 x +y\right ) y^{\prime }&=x^{2}+y x -y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
9.906 |
|
| \begin{align*}
x \left (4 x -y\right ) y^{\prime }+4 x^{2}-6 y x -y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
39.422 |
|
| \begin{align*}
x \left (x^{3}+y\right ) y^{\prime }&=\left (x^{3}-y\right ) y \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
14.937 |
|
| \begin{align*}
x \left (2 x^{3}+y\right ) y^{\prime }&=\left (2 x^{3}-y\right ) y \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
15.941 |
|
| \begin{align*}
x \left (2 x^{3}+y\right ) y^{\prime }&=6 y^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
13.434 |
|
| \begin{align*}
2 x y^{\prime } y+a +y^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.487 |
|
| \begin{align*}
2 x y^{\prime } y&=a x +y^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.856 |
|
| \begin{align*}
x^{2}+y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} | [[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 3.707 |
|
| \begin{align*}
2 x y^{\prime } y&=y^{2}+x^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.998 |
|
| \begin{align*}
x \left (x -2 y\right ) y^{\prime }+y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
57.535 |
|
| \begin{align*}
x \left (x +2 y\right ) y^{\prime }+y \left (2 x -y\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
27.512 |
|
| \begin{align*}
x \left (x -2 y\right ) y^{\prime }+y \left (2 x -y\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
5.958 |
|
| \begin{align*}
2 x \left (2 x^{2}+y\right ) y^{\prime }+\left (12 x^{2}+y\right ) y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
4.029 |
|
| \begin{align*}
x \left (2 x +3 y\right ) y^{\prime }&=y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
31.144 |
|
| \begin{align*}
x \left (2 x +3 y\right ) y^{\prime }+3 \left (x +y\right )^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
4.819 |
|
| \begin{align*}
a x y y^{\prime }&=y^{2}+x^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.466 |
|
| \begin{align*}
a x y y^{\prime }+x^{2}-y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.036 |
|
| \begin{align*}
x \left (a +b y\right ) y^{\prime }&=c y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.361 |
|
| \begin{align*}
x \left (x -a y\right ) y^{\prime }&=y \left (y-a x \right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
6.300 |
|
| \begin{align*}
x \left (-y x +1\right ) y^{\prime }+\left (y x +1\right ) y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
3.927 |
|
| \begin{align*}
x \left (2-y x \right ) y^{\prime }+2 y-x y^{2} \left (y x +1\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]] |
✓ |
✓ |
✓ |
✓ |
4.853 |
|
| \begin{align*}
x \left (3-y x \right ) y^{\prime }&=y \left (y x -1\right ) \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
4.698 |
|
| \begin{align*}
x \left (1-2 y x \right ) y^{\prime }+y \left (2 y x +1\right )&=0 \\
\end{align*} | [[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] | ✓ | ✓ | ✓ | ✓ | 4.520 |
|
| \begin{align*}
x \left (2 y x +1\right ) y^{\prime }+\left (2+3 y x \right ) y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
14.454 |
|
| \begin{align*}
x \left (2 y x +1\right ) y^{\prime }+\left (1+2 y x -y^{2} x^{2}\right ) y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]] |
✓ |
✓ |
✓ |
✓ |
4.891 |
|
| \begin{align*}
x^{2} \left (x -2 y\right ) y^{\prime }&=2 x^{3}-4 x y^{2}+y^{3} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
42.043 |
|
| \begin{align*}
3 x^{2} y y^{\prime }+1+2 x y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.803 |
|
| \begin{align*}
x^{2} \left (4 x -3 y\right ) y^{\prime }&=\left (6 x^{2}-3 y x +2 y^{2}\right ) y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
8.040 |
|
| \begin{align*}
\left (1-x^{3} y\right ) y^{\prime }&=y^{2} x^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
4.005 |
|
| \begin{align*}
2 x^{3} y y^{\prime }+a +3 y^{2} x^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.733 |
|
| \begin{align*}
x \left (3+2 x^{2} y\right ) y^{\prime }+\left (4+3 x^{2} y\right ) y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
12.228 |
|
| \begin{align*}
8 x^{3} y y^{\prime }+3 x^{4}-6 y^{2} x^{2}-y^{4}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
6.892 |
|
| \begin{align*}
3 x^{4} y y^{\prime }&=1-2 x^{3} y^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.483 |
|
| \begin{align*}
y x +\left (y^{2}+x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
5.067 |
|
| \begin{align*}
\left (y^{2}+x^{2}\right ) y^{\prime }&=y x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.276 |
|
| \begin{align*}
\left (x^{2}-y^{2}\right ) y^{\prime }&=2 y x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.364 |
|
| \begin{align*}
\left (3 x^{2}-y^{2}\right ) y^{\prime }&=2 y x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
5.451 |
|
| \begin{align*}
\left (x^{4}+y^{2}\right ) y^{\prime }&=4 x^{3} y \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
5.927 |
|
| \begin{align*}
\left (x^{2}+2 y x -y^{2}\right ) y^{\prime }+x^{2}-2 y x +y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
6.714 |
|
| \begin{align*}
\left (x +y\right )^{2} y^{\prime }&=x^{2}-2 y x +5 y^{2} \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _dAlembert] | ✓ | ✓ | ✓ | ✗ | 8.687 |
|
| \begin{align*}
\left (3 x +y\right )^{2} y^{\prime }&=4 \left (2 y+3 x \right ) y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
35.259 |
|
| \begin{align*}
\left (2 x^{2}+3 y^{2}\right ) y^{\prime }+x \left (3 x +y\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
6.166 |
|
| \begin{align*}
\left (x^{2}+a y^{2}\right ) y^{\prime }&=y x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.857 |
|
| \begin{align*}
\left (x^{2}+y x +a y^{2}\right ) y^{\prime }&=a \,x^{2}+y x +y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
109.470 |
|
| \begin{align*}
\left (a \,x^{2}+2 y x -a y^{2}\right ) y^{\prime }+x^{2}-2 a x y-y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
20.525 |
|
| \begin{align*}
\left (a \,x^{2}+2 b x y+c y^{2}\right ) y^{\prime }+k \,x^{2}+2 a x y+b y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
125.619 |
|
| \begin{align*}
x \left (3 x -y^{2}\right ) y^{\prime }+\left (5 x -2 y^{2}\right ) y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
7.963 |
|
| \begin{align*}
x \left (2 x^{2}+y^{2}\right ) y^{\prime }&=\left (2 x^{2}+3 y^{2}\right ) y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
10.568 |
|
| \begin{align*}
x \left (a +y\right )^{2} y^{\prime }&=b y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.510 |
|
| \begin{align*}
x \left (x^{2}-y x +y^{2}\right ) y^{\prime }+\left (x^{2}+y x +y^{2}\right ) y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
65.270 |
|
| \begin{align*}
x \left (x^{2}-y x -y^{2}\right ) y^{\prime }&=\left (x^{2}+y x -y^{2}\right ) y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
13.029 |
|
| \begin{align*}
x \left (x^{2}+a x y+y^{2}\right ) y^{\prime }&=\left (x^{2}+b x y+y^{2}\right ) y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
12.478 |
|
| \begin{align*}
x \left (x^{2}-2 y^{2}\right ) y^{\prime }&=\left (2 x^{2}-y^{2}\right ) y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
13.078 |
|
| \begin{align*}
x \left (x^{2}+2 y^{2}\right ) y^{\prime }&=\left (2 x^{2}+3 y^{2}\right ) y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
14.290 |
|
| \begin{align*}
2 x \left (5 x^{2}+y^{2}\right ) y^{\prime }&=x^{2} y-y^{3} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
16.223 |
|
| \begin{align*}
x \left (x^{2}+a x y+2 y^{2}\right ) y^{\prime }&=\left (a x +2 y\right ) y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
18.040 |
|
| \begin{align*}
3 y^{2} y^{\prime } x&=2 x -y^{3} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.827 |
|
| \begin{align*}
x \left (x -3 y^{2}\right ) y^{\prime }+\left (2 x -y^{2}\right ) y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational] |
✓ |
✓ |
✓ |
✗ |
3.316 |
|
| \begin{align*}
6 y^{2} y^{\prime } x +x +2 y^{3}&=0 \\
\end{align*} | [[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 3.059 |
|
| \begin{align*}
x \left (x +6 y^{2}\right ) y^{\prime }+y x -3 y^{3}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
4.356 |
|
| \begin{align*}
x \left (x^{2}-6 y^{2}\right ) y^{\prime }&=4 \left (x^{2}+3 y^{2}\right ) y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
18.486 |
|
| \begin{align*}
x \left (3 x -7 y^{2}\right ) y^{\prime }+\left (5 x -3 y^{2}\right ) y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
4.330 |
|
| \begin{align*}
\left (1-y^{2} x^{2}\right ) y^{\prime }&=x y^{3} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
3.681 |
|
| \begin{align*}
x \left (x y^{2}+1\right ) y^{\prime }+y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
2.692 |
|
| \begin{align*}
x \left (x y^{2}+1\right ) y^{\prime }&=\left (2-3 x y^{2}\right ) y \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
14.599 |
|
| \begin{align*}
x^{3} \left (1+y^{2}\right ) y^{\prime }+3 x^{2} y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.730 |
|
| \begin{align*}
x \left (-y x +1\right )^{2} y^{\prime }+\left (y^{2} x^{2}+1\right ) y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
3.493 |
|
| \begin{align*}
\left (1-x^{4} y^{2}\right ) y^{\prime }&=x^{3} y^{3} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
7.224 |
|
| \begin{align*}
\left (3 x^{2}+y^{2}\right ) y y^{\prime }+x \left (x^{2}+3 y^{2}\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
14.815 |
|
| \begin{align*}
\left (3 x^{2}+2 y^{2}\right ) y y^{\prime }+x^{3}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
16.611 |
|
| \begin{align*}
\left (3 x^{3}+6 x^{2} y-3 x y^{2}+20 y^{3}\right ) y^{\prime }+4 x^{3}+9 x^{2} y+6 x y^{2}-y^{3}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
25.446 |
|
| \begin{align*}
x \left (x -y^{3}\right ) y^{\prime }&=\left (3 x +y^{3}\right ) y \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
8.596 |
|
| \begin{align*}
x \left (2 x^{3}+y^{3}\right ) y^{\prime }&=\left (2 x^{3}-x^{2} y+y^{3}\right ) y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
9.360 |
|
| \begin{align*}
x \left (2 x^{3}-y^{3}\right ) y^{\prime }&=\left (x^{3}-2 y^{3}\right ) y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
17.382 |
|
| \begin{align*}
x \left (x^{3}+3 x^{2} y+y^{3}\right ) y^{\prime }&=\left (3 x^{2}+y^{2}\right ) y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
11.815 |
|
| \begin{align*}
x \left (x^{3}-2 y^{3}\right ) y^{\prime }&=\left (2 x^{3}-y^{3}\right ) y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
9.891 |
|
| \begin{align*}
x \left (x^{4}-2 y^{3}\right ) y^{\prime }+\left (2 x^{4}+y^{3}\right ) y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
6.632 |
|
| \begin{align*}
\left (x^{2}-y^{4}\right ) y^{\prime }&=y x \\
\end{align*} | [[_homogeneous, ‘class G‘], _rational] | ✓ | ✓ | ✓ | ✓ | 7.290 |
|
| \begin{align*}
\left (x^{3}-y^{4}\right ) y^{\prime }&=3 x^{2} y \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
8.595 |
|
| \begin{align*}
2 \left (x -y^{4}\right ) y^{\prime }&=y \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
7.211 |
|
| \begin{align*}
\left (a \,x^{3}+\left (a x +b y\right )^{3}\right ) y y^{\prime }+x \left (\left (a x +b y\right )^{3}+y^{3} b \right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
24.731 |
|
| \begin{align*}
2 x \left (x^{3}+y^{4}\right ) y^{\prime }&=\left (x^{3}+2 y^{4}\right ) y \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
8.253 |
|
| \begin{align*}
x \left (1-x^{2} y^{4}\right ) y^{\prime }+y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
7.773 |
|
| \begin{align*}
\left (x^{2}-y^{5}\right ) y^{\prime }&=2 y x \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
8.541 |
|
| \begin{align*}
x \left (x^{3}+y^{5}\right ) y^{\prime }&=\left (x^{3}-y^{5}\right ) y \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
7.714 |
|
| \begin{align*}
x \left (x -\tan \left (\frac {y}{x}\right ) y\right ) y^{\prime }+\left (x +\tan \left (\frac {y}{x}\right ) y\right ) y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
8.065 |
|
| \begin{align*}
{y^{\prime }}^{2}&=a \,x^{n} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.891 |
|
| \begin{align*}
{y^{\prime }}^{2}&=y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.835 |
|
| \begin{align*}
{y^{\prime }}^{2}&=y+x^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
3.034 |
|
| \begin{align*}
{y^{\prime }}^{2}+x^{2}&=4 y \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
1.548 |
|
| \begin{align*}
{y^{\prime }}^{2}+3 x^{2}&=8 y \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
6.897 |
|
| \begin{align*}
{y^{\prime }}^{2}+a \,x^{2}+b y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✗ |
✓ |
✗ |
2.944 |
|
| \begin{align*}
{y^{\prime }}^{2}+a y^{\prime }+b&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.313 |
|
| \begin{align*}
{y^{\prime }}^{2}+a x y^{\prime }&=b c \,x^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.569 |
|
| \begin{align*}
{y^{\prime }}^{2}+a x y^{\prime }+b \,x^{2}+c y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✗ |
✓ |
✗ |
4.230 |
|
| \begin{align*}
{y^{\prime }}^{2}+y^{2} y^{\prime } x +y^{3}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
1.418 |
|
| \begin{align*}
{y^{\prime }}^{2}+2 x y^{3} y^{\prime }+y^{4}&=0 \\
\end{align*} | [[_homogeneous, ‘class G‘]] | ✓ | ✓ | ✓ | ✓ | 1.316 |
|
| \begin{align*}
2 {y^{\prime }}^{2}-2 x^{2} y^{\prime }+3 y x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
0.764 |
|
| \begin{align*}
3 {y^{\prime }}^{2}+4 y^{\prime } x +x^{2}-y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
0.781 |
|
| \begin{align*}
4 {y^{\prime }}^{2}&=9 x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.490 |
|
| \begin{align*}
x {y^{\prime }}^{2}&=a \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.683 |
|
| \begin{align*}
x {y^{\prime }}^{2}&=y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
2.191 |
|
| \begin{align*}
x {y^{\prime }}^{2}+x -2 y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
2.008 |
|
| \begin{align*}
x {y^{\prime }}^{2}+y^{\prime } x -y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
2.286 |
|
| \begin{align*}
x {y^{\prime }}^{2}+y^{\prime } y+a&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
20.323 |
|
| \begin{align*}
x {y^{\prime }}^{2}-y^{\prime } y+a&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Clairaut] |
✓ |
✓ |
✓ |
✗ |
0.688 |
|
| \begin{align*}
x {y^{\prime }}^{2}-y^{\prime } y+a x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.979 |
|
| \begin{align*}
x {y^{\prime }}^{2}+y^{\prime } y-x^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
9.444 |
|
| \begin{align*}
x {y^{\prime }}^{2}+y^{\prime } y+x^{3}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
8.211 |
|
| \begin{align*}
x {y^{\prime }}^{2}-y^{\prime } y+a y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
1.779 |
|
| \begin{align*}
x {y^{\prime }}^{2}+y^{\prime } y-y^{4}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
1.158 |
|
| \begin{align*}
x {y^{\prime }}^{2}-\left (3 x -y\right ) y^{\prime }+y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
8.266 |
|
| \begin{align*}
x {y^{\prime }}^{2}-2 y^{\prime } y+a&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
1.014 |
|
| \begin{align*}
x {y^{\prime }}^{2}+2 y^{\prime } y-x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
22.683 |
|
| \begin{align*}
x {y^{\prime }}^{2}-2 y^{\prime } y+a x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✗ |
✓ |
0.931 |
|
| \begin{align*}
x {y^{\prime }}^{2}-2 y^{\prime } y+x +2 y&=0 \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _dAlembert] | ✓ | ✓ | ✓ | ✓ | 0.981 |
|
| \begin{align*}
x {y^{\prime }}^{2}-3 y^{\prime } y+9 x^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
0.983 |
|
| \begin{align*}
x {y^{\prime }}^{2}-a y y^{\prime }+b&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
29.484 |
|
| \begin{align*}
x {y^{\prime }}^{2}+a y y^{\prime }+b x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
3.563 |
|
| \begin{align*}
3 x {y^{\prime }}^{2}-6 y^{\prime } y+x +2 y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.046 |
|
| \begin{align*}
4 x {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.924 |
|
| \begin{align*}
4 x {y^{\prime }}^{2}-3 y^{\prime } y+3&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.967 |
|
| \begin{align*}
4 x {y^{\prime }}^{2}+4 y^{\prime } y&=1 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
5.410 |
|
| \begin{align*}
4 x {y^{\prime }}^{2}+4 y^{\prime } y-y^{4}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
1.125 |
|
| \begin{align*}
16 x {y^{\prime }}^{2}+8 y^{\prime } y+y^{6}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
0.766 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}+x^{2}-y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
3.442 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}+y^{2}-y^{4}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.100 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}-\left (a +2 y x \right ) y^{\prime }+y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Clairaut] |
✓ |
✓ |
✓ |
✓ |
0.467 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}-x \left (x -2 y\right ) y^{\prime }+y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.549 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}+x \left (x^{3}-2 y\right ) y^{\prime }-\left (2 x^{3}-y\right ) y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
0.664 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}-3 x y^{\prime } y+x^{3}+2 y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
0.345 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}-4 x \left (y+2\right ) y^{\prime }+4 \left (y+2\right ) y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.247 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}+\left (2 x +y\right ) y y^{\prime }+y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
61.306 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}+\left (2 x -y\right ) y y^{\prime }+y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
63.120 |
|
| \begin{align*}
4 x^{2} {y^{\prime }}^{2}-4 x y^{\prime } y&=8 x^{3}-y^{2} \\
\end{align*} | [_linear] | ✓ | ✓ | ✓ | ✓ | 0.356 |
|
| \begin{align*}
a \,x^{2} {y^{\prime }}^{2}-2 a x y y^{\prime }+x^{2} a \left (-a +1\right )+y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✗ |
✓ |
2.171 |
|
| \begin{align*}
\left (-a^{2}+1\right ) x^{2} {y^{\prime }}^{2}-2 x y^{\prime } y-a^{2} x^{2}+y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
38.136 |
|
| \begin{align*}
x^{3} {y^{\prime }}^{2}&=a \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.579 |
|
| \begin{align*}
x^{3} {y^{\prime }}^{2}+y^{\prime } x -y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
0.645 |
|
| \begin{align*}
x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+a&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
0.450 |
|
| \begin{align*}
x^{4} {y^{\prime }}^{2}-y^{\prime } x -y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
0.410 |
|
| \begin{align*}
x^{4} {y^{\prime }}^{2}+2 x^{3} y y^{\prime }-4&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
0.414 |
|
| \begin{align*}
x^{4} {y^{\prime }}^{2}+y^{2} y^{\prime } x -y^{3}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
0.739 |
|
| \begin{align*}
4 x^{5} {y^{\prime }}^{2}+12 x^{4} y y^{\prime }+9&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
0.489 |
|
| \begin{align*}
x^{6} {y^{\prime }}^{2}-2 y^{\prime } x -4 y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
0.415 |
|
| \begin{align*}
x^{8} {y^{\prime }}^{2}+3 y^{\prime } x +9 y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| \begin{align*}
y {y^{\prime }}^{2}&=a \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.435 |
|
| \begin{align*}
y {y^{\prime }}^{2}&=a^{2} x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.583 |
|
| \begin{align*}
\left (x +y\right ) {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.072 |
|
| \begin{align*}
x \left (x -2 y\right ) {y^{\prime }}^{2}-2 x y^{\prime } y-2 y x +y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
58.631 |
|
| \begin{align*}
x \left (x -2 y\right ) {y^{\prime }}^{2}+6 x y^{\prime } y-2 y x +y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
47.849 |
|
| \begin{align*}
y^{2} {y^{\prime }}^{2}+2 x y^{\prime } y+x^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.240 |
|
| \begin{align*}
y^{2} {y^{\prime }}^{2}-2 x y^{\prime } y-x^{2}+2 y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
1.793 |
|
| \begin{align*}
\left (a^{2} x^{2}-y^{2}\right ) {y^{\prime }}^{2}-2 x y^{\prime } y+x^{2} \left (a^{2}-1\right )&=0 \\
\end{align*} | [[_homogeneous, ‘class A‘], _dAlembert] | ✓ | ✓ | ✓ | ✗ | 1.964 |
|
| \begin{align*}
\left (\left (-a +1\right ) x^{2}+y^{2}\right ) {y^{\prime }}^{2}+2 a x y y^{\prime }+x^{2}+\left (-a +1\right ) y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.411 |
|
| \begin{align*}
\left (\left (-4 a^{2}+1\right ) x^{2}+y^{2}\right ) {y^{\prime }}^{2}-8 a^{2} x y y^{\prime }+x^{2}+\left (-4 a^{2}+1\right ) y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
10.072 |
|
| \begin{align*}
\left (\left (-a^{2}+1\right ) x^{2}+y^{2}\right ) {y^{\prime }}^{2}+2 a^{2} x y y^{\prime }+x^{2}+\left (-a^{2}+1\right ) y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
3.228 |
|
| \begin{align*}
3 y^{2} {y^{\prime }}^{2}-2 x y^{\prime } y-x^{2}+4 y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.133 |
|
| \begin{align*}
\left (-a^{2}+1\right ) y^{2} {y^{\prime }}^{2}-3 a^{2} x y y^{\prime }-a^{2} x^{2}+y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
3.582 |
|
| \begin{align*}
x y^{2} {y^{\prime }}^{2}-y^{3} y^{\prime }+a^{2} x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
1.013 |
|
| \begin{align*}
2 x y^{2} {y^{\prime }}^{2}-y^{3} y^{\prime }-a&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
0.624 |
|
| \begin{align*}
3 x y^{4} {y^{\prime }}^{2}-y^{5} y^{\prime }+1&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
0.628 |
|
| \begin{align*}
9 x y^{4} {y^{\prime }}^{2}-3 y^{5} y^{\prime }-a&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
0.604 |
|
| \begin{align*}
{y^{\prime }}^{3}&=a \,x^{n} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.052 |
|
| \begin{align*}
2 \left (1+y\right )^{{3}/{2}}+3 y^{\prime } x -3 y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.832 |
|
| \begin{align*}
y^{\prime }&=\frac {x y}{x^{2}-y^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
3.259 |
|
| \begin{align*}
\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
4.249 |
|
| \begin{align*}
y+x y^{2}-y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.494 |
|
| \begin{align*}
\left (y-x \right ) y^{\prime }+y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.814 |
|
| \begin{align*}
x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
3.744 |
|
| \begin{align*}
\left (7 x +5 y\right ) y^{\prime }+10 x +8 y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.846 |
|
| \begin{align*}
\left (7 x +5 y\right ) y^{\prime }+10 x +8 y&=0 \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] | ✓ | ✓ | ✓ | ✓ | 5.813 |
|
| \begin{align*}
x^{2}+2 y x -y^{2}+\left (y^{2}+2 y x -x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
6.991 |
|
| \begin{align*}
y^{2}+\left (x^{2}+y x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
45.086 |
|
| \begin{align*}
y-2 y^{\prime } x&=x {y^{\prime }}^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.619 |
|
| \begin{align*}
2 y x +\left (y^{2}+x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
4.080 |
|
| \begin{align*}
x +y-\left (x -y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.892 |
|
| \begin{align*}
y^{\prime } x -y-x \sin \left (\frac {y}{x}\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
3.622 |
|
| \begin{align*}
2 x^{2} y+y^{3}+\left (x y^{2}-2 x^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
6.750 |
|
| \begin{align*}
\frac {y \cos \left (\frac {y}{x}\right )}{x}-\left (\frac {x \sin \left (\frac {y}{x}\right )}{y}+\cos \left (\frac {y}{x}\right )\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.885 |
|
| \begin{align*}
y+x \ln \left (\frac {y}{x}\right ) y^{\prime }-2 y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
11.283 |
|
| \begin{align*}
2 \,{\mathrm e}^{\frac {x}{y}} y+\left (y-2 \,{\mathrm e}^{\frac {x}{y}} x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.725 |
|
| \begin{align*}
{\mathrm e}^{\frac {y}{x}} x -\sin \left (\frac {y}{x}\right ) y+x \sin \left (\frac {y}{x}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
5.356 |
|
| \begin{align*}
y^{2}+x^{2}&=2 x y^{\prime } y \\
y \left (-1\right ) &= 0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.224 |
|
| \begin{align*}
{\mathrm e}^{\frac {y}{x}} x +y&=y^{\prime } x \\
y \left (1\right ) &= 0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
7.744 |
|
| \begin{align*}
y^{\prime }-\frac {y}{x}+\csc \left (\frac {y}{x}\right )&=0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
6.809 |
|
| \begin{align*}
y x -y^{2}-x^{2} y^{\prime }&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.433 |
|
| \begin{align*}
y \left (2 x^{2} y^{3}+3\right )+x \left (x^{2} y^{3}-1\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
4.055 |
|
| \begin{align*}
y^{\prime } x +y&=x^{3} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.879 |
|
| \begin{align*}
y^{\prime } x +x y^{2}-y&=0 \\
\end{align*} | [[_homogeneous, ‘class D‘], _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 3.135 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x}&=\frac {y^{2}}{x} \\
y \left (-1\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
7.103 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{x^{2}}-\frac {y}{x}-y^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
3.424 |
|
| \begin{align*}
y^{\prime }&=1+\frac {y}{x}-\frac {y^{2}}{x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
4.465 |
|
| \begin{align*}
\left (x^{2}-y^{2}\right ) y^{\prime }&=2 y x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.303 |
|
| \begin{align*}
x^{2} y+y^{2}+x^{3} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.779 |
|
| \begin{align*}
y^{\prime } x -y^{2}+1&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.124 |
|
| \begin{align*}
y^{\prime } x&=x +y+{\mathrm e}^{\frac {y}{x}} x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
4.464 |
|
| \begin{align*}
y^{\prime } x -y \left (\ln \left (y x \right )-1\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
3.283 |
|
| \begin{align*}
x^{3} y^{\prime }-y^{2}-x^{2} y&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.399 |
|
| \begin{align*}
y^{\prime } x +a y+b \,x^{n}&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.803 |
|
| \begin{align*}
y^{\prime } x -y-x \sin \left (\frac {y}{x}\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.043 |
|
| \begin{align*}
y^{2}-3 y x -2 x^{2}+\left (y x -x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
10.138 |
|
| \begin{align*}
x^{2} y^{\prime }+x^{2}+y x +y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
3.231 |
|
| \begin{align*}
y^{2}+12 x^{2} y+\left (2 y x +4 x^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
5.642 |
|
| \begin{align*}
\left (x^{2}-y\right ) y^{\prime }-4 y x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
20.595 |
|
| \begin{align*}
x y^{\prime } y+x^{2}+y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
8.763 |
|
| \begin{align*}
2 x y^{\prime } y+3 x^{2}-y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.786 |
|
| \begin{align*}
\left (2 x y^{3}-x^{4}\right ) y^{\prime }+2 x^{3} y-y^{4}&=0 \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _dAlembert] | ✓ | ✓ | ✓ | ✓ | 8.843 |
|
| \begin{align*}
\left (y x -1\right )^{2} x y^{\prime }+\left (y^{2} x^{2}+1\right ) y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
3.181 |
|
| \begin{align*}
3 y^{2} y^{\prime } x +y^{3}-2 x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.575 |
|
| \begin{align*}
-a y^{3}-\frac {b}{x^{{3}/{2}}}+y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Abel] |
✓ |
✓ |
✓ |
✗ |
6.386 |
|
| \begin{align*}
a y^{3} x +b y^{2}+y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _Abel] |
✓ |
✓ |
✓ |
✓ |
4.859 |
|
| \begin{align*}
y^{\prime }&=a x y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.461 |
|
| \begin{align*}
a x y^{\prime }+2 y&=x y^{\prime } y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.372 |
|
| \begin{align*}
y^{\prime } x&=y \\
y \left (2\right ) &= 3 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.977 |
|
| \begin{align*}
x y^{\prime } y+1+y^{2}&=0 \\
y \left (5\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.123 |
|
| \begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
y \left (2\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.457 |
|
| \begin{align*}
\left (y x +x \right ) y^{\prime }+y&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.144 |
|
| \begin{align*}
3 y^{2} y^{\prime } x +3 y^{3}&=1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.970 |
|
| \begin{align*}
x^{2} y^{\prime }+y^{2}-y x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.976 |
|
| \begin{align*}
y x +\left (y^{2}-x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.376 |
|
| \begin{align*}
y^{2}-y x +\left (x^{2}+y x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
5.782 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x}-\tan \left (\frac {y}{x}\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.467 |
|
| \begin{align*}
y^{\prime }&=x y^{2}-\frac {2 y}{x}-\frac {1}{x^{3}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
3.880 |
|
| \begin{align*}
x^{2} y^{\prime }-y x&=\frac {1}{x} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.980 |
|
| \begin{align*}
3 x^{3} y^{2} y^{\prime }-x^{2} y^{3}&=1 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.108 |
|
| \begin{align*}
y+2 x -y^{\prime } x&=0 \\
\end{align*} | [_linear] | ✓ | ✓ | ✓ | ✓ | 2.185 |
|
| \begin{align*}
\left (2 x +y\right ) y^{\prime }-x +2 y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.950 |
|
| \begin{align*}
3 x^{2} y+x^{3} y^{\prime }&=0 \\
y \left (1\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.668 |
|
| \begin{align*}
-y+y^{\prime } x&=x^{2} \\
y \left (2\right ) &= 6 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.531 |
|
| \begin{align*}
y^{\prime } x&=y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.721 |
|
| \begin{align*}
y^{\prime } x&=\frac {1}{y^{3}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.242 |
|
| \begin{align*}
x v^{\prime }&=\frac {1-4 v^{2}}{3 v} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.564 |
|
| \begin{align*}
y^{\prime }&=x y^{3} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.257 |
|
| \begin{align*}
y^{\prime } x +2 y&=\frac {1}{x^{3}} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.190 |
|
| \begin{align*}
y x^{\prime }+2 x&=5 y^{3} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.650 |
|
| \begin{align*}
y^{\prime }+\frac {3 y}{x}&=x^{2} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.552 |
|
| \begin{align*}
x^{{10}/{3}}-2 y+y^{\prime } x&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.062 |
|
| \begin{align*}
y^{2}+2 y x -x^{2} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.470 |
|
| \begin{align*}
\left (x -2 y\right ) y^{\prime }+2 x +y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.128 |
|
| \begin{align*}
y^{2}+2 y x -x^{2} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.360 |
|
| \begin{align*}
2 x y^{2}-y+y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.739 |
|
| \begin{align*}
2 y x +\left (y^{2}-3 x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
6.356 |
|
| \begin{align*}
y^{2}+2 y x -x^{2} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.368 |
|
| \begin{align*}
2 y^{2}-6 y x +\left (3 y x -4 x^{2}\right ) y^{\prime }&=0 \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] | ✓ | ✓ | ✓ | ✓ | 7.168 |
|
| \begin{align*}
3 y+2 x y^{2}+\left (x +2 x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
5.943 |
|
| \begin{align*}
2 t x x^{\prime }+t^{2}-x^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
7.367 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x}&=x^{3} y^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.421 |
|
| \begin{align*}
y x +y^{2}-x^{2} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.687 |
|
| \begin{align*}
3 x^{2}-y^{2}-\left (y x -\frac {x^{3}}{y}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
18.833 |
|
| \begin{align*}
x^{2} y^{\prime }+y^{2}-y x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.780 |
|
| \begin{align*}
x^{2}+y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.492 |
|
| \begin{align*}
y^{\prime }&=\frac {t \sec \left (\frac {y}{t}\right )+y}{t} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.842 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}-y^{2}}{3 x y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
30.240 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x}&=y^{2} x^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.744 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y}{x}-y^{2} x^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.513 |
|
| \begin{align*}
x^{\prime }+t x^{3}+\frac {x}{t}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.793 |
|
| \begin{align*}
r^{\prime }&=r^{2}+\frac {2 r}{t} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.691 |
|
| \begin{align*}
y^{\prime }&=\frac {3 x y}{2 x^{2}-y^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
9.771 |
|
| \begin{align*}
t^{3} y^{2}+\frac {t^{4} y^{\prime }}{y^{6}}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
3.234 |
|
| \begin{align*}
y^{\prime }+\frac {2 y}{x}&=2 y^{2} x^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.283 |
|
| \begin{align*}
x^{2}+y^{2}+3 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
7.857 |
|
| \begin{align*}
x^{2}-3 y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
64.297 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x}&=-\frac {4 x}{y^{2}} \\
\end{align*} | [[_homogeneous, ‘class G‘], _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 3.437 |
|
| \begin{align*}
y-x +\left (x +y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.941 |
|
| \begin{align*}
x^{3}-y+y^{\prime } x&=0 \\
y \left (1\right ) &= 3 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.732 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{y}+\frac {y}{x} \\
y \left (1\right ) &= -4 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.782 |
|
| \begin{align*}
2 y^{2}+4 x^{2}-x y^{\prime } y&=0 \\
y \left (1\right ) &= -2 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
7.095 |
|
| \begin{align*}
y^{\prime }-\frac {2 y}{x}&=\frac {1}{y x} \\
y \left (1\right ) &= 3 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.148 |
|
| \begin{align*}
3 y^{\prime } x +y+x^{2} y^{4}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.247 |
|
| \begin{align*}
y^{\prime }-\frac {2 y}{x}-x^{2}&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.384 |
|
| \begin{align*}
y^{\prime }+\frac {2 y}{x}-x^{3}&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.895 |
|
| \begin{align*}
-y+y^{\prime } x&=x^{2} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.411 |
|
| \begin{align*}
x \cos \left (y\right ) y^{\prime }-\sin \left (y\right )&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
8.136 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x}&=y^{3} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.661 |
|
| \begin{align*}
y^{\prime } x +3 y&=y^{2} x^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.927 |
|
| \begin{align*}
x \left (y-3\right ) y^{\prime }&=4 y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.270 |
|
| \begin{align*}
\left (-x +2 y\right ) y^{\prime }&=2 x +y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.799 |
|
| \begin{align*}
y x +y^{2}+\left (x^{2}-y x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
21.784 |
|
| \begin{align*}
x^{3}+y^{3}&=3 y^{2} y^{\prime } x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
8.801 |
|
| \begin{align*}
y-3 x +\left (3 x +4 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
8.490 |
|
| \begin{align*}
\left (x^{3}+3 x y^{2}\right ) y^{\prime }&=y^{3}+3 x^{2} y \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _dAlembert] | ✓ | ✓ | ✓ | ✓ | 13.165 |
|
| \begin{align*}
\left (y x +1\right ) y+x \left (1+y x +y^{2} x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
3.535 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}+2 y x}{x^{2}+2 y x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
7.879 |
|
| \begin{align*}
x^{2} y^{\prime }&=y^{2}-x y^{\prime } y \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
12.940 |
|
| \begin{align*}
x^{2} y^{\prime }+y^{2}&=x y^{\prime } y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
12.060 |
|
| \begin{align*}
2 x y^{\prime } y&=x^{2}-y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.789 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x}&=x y^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.563 |
|
| \begin{align*}
y^{\prime }+\frac {4 y}{x}&=x^{4} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.022 |
|
| \begin{align*}
y^{\prime }-\frac {y}{x}&=x^{2} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.395 |
|
| \begin{align*}
y^{\prime } x&=2 y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.133 |
|
| \begin{align*}
y^{\prime } y+x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.546 |
|
| \begin{align*}
2 x^{3} y^{\prime }&=y \left (3 x^{2}+y^{2}\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
32.855 |
|
| \begin{align*}
4 y+y^{\prime } x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.108 |
|
| \begin{align*}
y^{2}-x^{2} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.369 |
|
| \begin{align*}
x y^{2}+y+\left (x^{2} y-x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
7.497 |
|
| \begin{align*}
x \sin \left (\frac {y}{x}\right )-y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
5.228 |
|
| \begin{align*}
x +2 y+\left (2 x +3 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
7.242 |
|
| \begin{align*}
y^{2}-x^{2}+x y^{\prime } y&=0 \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 7.424 |
|
| \begin{align*}
y \left (2 y x +1\right )+x \left (-y x +1\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
7.259 |
|
| \begin{align*}
x^{3}+y^{3}+3 y^{2} y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
8.441 |
|
| \begin{align*}
y^{\prime } x +2 y&=0 \\
y \left (2\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.465 |
|
| \begin{align*}
x y^{\prime } y+x^{2}+y^{2}&=0 \\
y \left (1\right ) &= -1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
9.454 |
|
| \begin{align*}
y \left (x -2 y\right )-x^{2} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.247 |
|
| \begin{align*}
x y^{\prime } y+x^{2}+y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.841 |
|
| \begin{align*}
x^{2}+y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.663 |
|
| \begin{align*}
y^{\prime } x +y-x^{3} y^{6}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.390 |
|
| \begin{align*}
2 x y^{5}-y+2 y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.606 |
|
| \begin{align*}
4 x -2 y^{\prime } y+x {y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.960 |
|
| \begin{align*}
3 x^{4} {y^{\prime }}^{2}-y^{\prime } x -y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
0.756 |
|
| \begin{align*}
x {y^{\prime }}^{2}-y^{\prime } y-y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
1.456 |
|
| \begin{align*}
4 x -2 y^{\prime } y+x {y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.931 |
|
| \begin{align*}
x {y^{\prime }}^{2}-2 y^{\prime } y+x +2 y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.078 |
|
| \begin{align*}
y&=-y^{\prime } x +x^{4} {y^{\prime }}^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
0.759 |
|
| \begin{align*}
\left (1+{y^{\prime }}^{2}\right ) \left (x -y\right )^{2}&=\left (y^{\prime } y+x \right )^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
69.691 |
|
| \begin{align*}
y^{2}-1+y^{\prime } x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.825 |
|
| \begin{align*}
y^{\prime }&=2 x y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.750 |
|
| \begin{align*}
2 y x +\left (x^{2}-y\right ) y^{\prime }&=0 \\
\end{align*} | [[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] | ✓ | ✓ | ✓ | ✓ | 2.829 |
|
| \begin{align*}
y^{\prime } x -2 y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.418 |
|
| \begin{align*}
y^{\prime }&=-\frac {x}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.507 |
|
| \begin{align*}
3 y^{\prime } x +5 y&=10 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.705 |
|
| \begin{align*}
{y^{\prime }}^{2}&=4 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.443 |
|
| \begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
y \left (2\right ) &= {\frac {1}{3}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.046 |
|
| \begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
y \left (-2\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.707 |
|
| \begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
y \left (\frac {1}{2}\right ) &= -4 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.761 |
|
| \begin{align*}
y^{\prime } x&=y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.362 |
|
| \begin{align*}
\left (y^{2}+x^{2}\right ) y^{\prime }&=y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
6.161 |
|
| \begin{align*}
\left (y-x \right ) y^{\prime }&=x +y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.971 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.973 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (3\right ) &= -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.881 |
|
| \begin{align*}
y^{\prime } y&=3 x \\
y \left (-2\right ) &= 3 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.076 |
|
| \begin{align*}
y^{\prime } y&=3 x \\
y \left (2\right ) &= -4 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.869 |
|
| \begin{align*}
y^{\prime }&=x \sqrt {y} \\
y \left (2\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
9.802 |
|
| \begin{align*}
y^{\prime } x&=2 x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| \begin{align*}
y^{\prime }&=2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.376 |
|
| \begin{align*}
y^{\prime } x&=y \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 1.460 |
|
| \begin{align*}
3 y^{\prime } x -2 y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.566 |
|
| \begin{align*}
y^{\prime } x +y&=2 x \\
y \left (x_{0} \right ) &= 1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.002 |
|
| \begin{align*}
y^{\prime } x +y&=\frac {1}{y^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.280 |
|
| \begin{align*}
\left (-y x +1\right ) y^{\prime }&=y^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
3.501 |
|
| \begin{align*}
y^{\prime } y&=-x \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.549 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{y} \\
y \left (-2\right ) &= -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.790 |
|
| \begin{align*}
y^{\prime }&=1-\frac {y}{x} \\
y \left (-\frac {1}{2}\right ) &= 2 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.966 |
|
| \begin{align*}
y^{\prime }&=1-\frac {y}{x} \\
y \left (\frac {3}{2}\right ) &= 0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.836 |
|
| \begin{align*}
y^{\prime } x&=4 y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.158 |
|
| \begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.687 |
|
| \begin{align*}
x \sinh \left (y\right ) y^{\prime }&=\cosh \left (y\right ) \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.230 |
|
| \begin{align*}
y^{\prime } x&=-y+y^{2} \\
y \left (\frac {1}{2}\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.368 |
|
| \begin{align*}
y^{\prime } x&=-y+y^{2} \\
y \left (2\right ) &= {\frac {1}{4}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.418 |
|
| \begin{align*}
y^{\prime }&=-\frac {x}{y} \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.296 |
|
| \begin{align*}
y x +x^{2} y^{\prime }&=1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.799 |
|
| \begin{align*}
y^{\prime } x +2 y&=3 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.994 |
|
| \begin{align*}
y-4 \left (x +y^{6}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
4.385 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.300 |
|
| \begin{align*}
y^{\prime } x&=\sqrt {1-y^{2}} \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 4.812 |
|
| \begin{align*}
x y^{\prime } y&=\sqrt {1+y^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.273 |
|
| \begin{align*}
y^{\prime } x +y&=y^{2} \\
y \left (1\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.980 |
|
| \begin{align*}
y^{\prime }&=\frac {\sqrt {y}}{x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.092 |
|
| \begin{align*}
\left (x +y\right ) y^{\prime }+x -y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.482 |
|
| \begin{align*}
x^{2} y^{\prime }+y^{2}&=x y^{\prime } y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
12.352 |
|
| \begin{align*}
\left (y^{2}+x^{2}\right ) y^{\prime }&=2 y x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
14.832 |
|
| \begin{align*}
-y+y^{\prime } x&=\tan \left (\frac {y}{x}\right ) x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
5.450 |
|
| \begin{align*}
y^{\prime } x&=y-{\mathrm e}^{\frac {y}{x}} x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
6.298 |
|
| \begin{align*}
-y+y^{\prime } x&=\left (x +y\right ) \ln \left (\frac {x +y}{x}\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
7.084 |
|
| \begin{align*}
y^{\prime } x&=y \cos \left (\frac {y}{x}\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.371 |
|
| \begin{align*}
x +y-\left (x -y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.557 |
|
| \begin{align*}
x^{2}+2 y x -y^{2}+\left (y^{2}+2 y x -x^{2}\right ) y^{\prime }&=0 \\
y \left (1\right ) &= -1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✗ |
✗ |
11.288 |
|
| \begin{align*}
-y+y^{\prime } x&=y^{\prime } y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
6.164 |
|
| \begin{align*}
y^{2}+\left (x^{2}-y x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
11.697 |
|
| \begin{align*}
x^{2}+y x +y^{2}&=x^{2} y^{\prime } \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
4.427 |
|
| \begin{align*}
\frac {1}{x^{2}-y x +y^{2}}&=\frac {y^{\prime }}{2 y^{2}-y x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
38.271 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x y}{3 x^{2}-y^{2}} \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _dAlembert] | ✓ | ✓ | ✓ | ✗ | 7.325 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{y}+\frac {y}{x} \\
y \left (-1\right ) &= 0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.289 |
|
| \begin{align*}
y^{\prime } x&=y \ln \left (\frac {y}{x}\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
6.070 |
|
| \begin{align*}
\left (y^{\prime } x +y\right )^{2}&=y^{2} y^{\prime } \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
54.496 |
|
| \begin{align*}
y^{\prime }+\frac {x +2 y}{x}&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.796 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x +y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
6.290 |
|
| \begin{align*}
2 y^{\prime } x +\left (1+x^{2} y^{4}\right ) y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.920 |
|
| \begin{align*}
2 x +4 y+\left (2 x -2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
7.122 |
|
| \begin{align*}
x^{2} y^{\prime }+y^{2}-y x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.483 |
|
| \begin{align*}
x +y-\left (x -y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.658 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{2 x}+\frac {x^{2}}{2 y} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.265 |
|
| \begin{align*}
y^{\prime }&=-\frac {2}{t}+\frac {y}{t}+\frac {y^{2}}{t} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.972 |
|
| \begin{align*}
\left (y^{2} x^{2}+1\right ) y+\left (y^{2} x^{2}-1\right ) x y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
3.737 |
|
| \begin{align*}
x^{2}+y^{2}-2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.272 |
|
| \begin{align*}
x^{2}-y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.208 |
|
| \begin{align*}
x +y^{\prime } y+y-y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.492 |
|
| \begin{align*}
x^{2} y^{\prime }+2 y x&=1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.269 |
|
| \begin{align*}
y^{\prime } y&=x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.650 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (x_{0} \right ) &= y_{0} \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 1.595 |
|
| \begin{align*}
y^{\prime }&=\frac {x +y}{x -y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.833 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}}{x^{2}+y x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
7.201 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}+y x +y^{2}}{x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
2.786 |
|
| \begin{align*}
y^{\prime }&=\frac {y+x \,{\mathrm e}^{-\frac {2 y}{x}}}{x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.777 |
|
| \begin{align*}
y^{\prime }&=2 x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.293 |
|
| \begin{align*}
y^{\prime } x&=2 y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.045 |
|
| \begin{align*}
y^{\prime }&=\frac {x y}{y^{2}+x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
3.605 |
|
| \begin{align*}
2 x y^{\prime } y&=y^{2}+x^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.534 |
|
| \begin{align*}
y^{\prime } x +y&=x^{4} {y^{\prime }}^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
0.502 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}}{y x -x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
7.336 |
|
| \begin{align*}
y^{\prime } x&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.280 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x y^{2}}{1-x^{2} y} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
3.951 |
|
| \begin{align*}
x^{5} y^{\prime }+y^{5}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.726 |
|
| \begin{align*}
y \ln \left (y\right )-y^{\prime } x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.291 |
|
| \begin{align*}
x y^{\prime } y&=y-1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.697 |
|
| \begin{align*}
x y^{2}-x^{2} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.800 |
|
| \begin{align*}
y^{\prime }&=y^{2} x^{2} \\
y \left (-1\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.164 |
|
| \begin{align*}
y^{\prime } x +y&=y^{3} x^{4} \\
\end{align*} | [[_homogeneous, ‘class G‘], _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 3.366 |
|
| \begin{align*}
y^{\prime } x +y&=x y^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.875 |
|
| \begin{align*}
\left (x +\frac {2}{y}\right ) y^{\prime }+y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
4.116 |
|
| \begin{align*}
x^{2}-2 y^{2}+x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
52.482 |
|
| \begin{align*}
x^{2} y^{\prime }-3 y x -2 y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.210 |
|
| \begin{align*}
x^{2} y^{\prime }&=3 \left (y^{2}+x^{2}\right ) \arctan \left (\frac {y}{x}\right )+y x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
9.211 |
|
| \begin{align*}
x \sin \left (\frac {y}{x}\right ) y^{\prime }&=\sin \left (\frac {y}{x}\right ) y+x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.137 |
|
| \begin{align*}
y^{\prime } x&=y+2 \,{\mathrm e}^{-\frac {y}{x}} x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.333 |
|
| \begin{align*}
x -y-\left (x +y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.237 |
|
| \begin{align*}
y^{\prime } x&=2 x -6 y \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.839 |
|
| \begin{align*}
x^{2} y^{\prime }&=y^{2}+2 y x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.602 |
|
| \begin{align*}
x^{3}+y^{3}-y^{2} y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.926 |
|
| \begin{align*}
y^{\prime }&=\frac {1-x y^{2}}{2 x^{2} y} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.467 |
|
| \begin{align*}
y^{\prime }&=\frac {2+3 x y^{2}}{4 x^{2} y} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.273 |
|
| \begin{align*}
y^{\prime }&=\frac {y-x y^{2}}{x +x^{2} y} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
4.333 |
|
| \begin{align*}
y^{\prime }&=\sin \left (\frac {y}{x}\right )-\cos \left (\frac {y}{x}\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.412 |
|
| \begin{align*}
{\mathrm e}^{\frac {x}{y}}-\frac {y y^{\prime }}{x}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.918 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}-y x}{y^{2} \cos \left (\frac {x}{y}\right )} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
8.556 |
|
| \begin{align*}
y^{\prime }&=\frac {y \tan \left (\frac {y}{x}\right )}{x} \\
\end{align*} | [[_homogeneous, ‘class A‘], _dAlembert] | ✓ | ✓ | ✓ | ✓ | 4.363 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y}{x}+\frac {x^{3}}{y}+x \tan \left (\frac {y}{x^{2}}\right ) \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
8.626 |
|
| \begin{align*}
y^{\prime } x +y&=x \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.786 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}+x^{2}}{x^{2}-y^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
5.984 |
|
| \begin{align*}
y^{\prime }&=\frac {x +2 y}{2 x -y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.072 |
|
| \begin{align*}
x^{2} y^{\prime }+2 y x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.337 |
|
| \begin{align*}
-y+y^{\prime } x&=2 x \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.483 |
|
| \begin{align*}
y^{2} y^{\prime }&=x \\
y \left (-1\right ) &= 3 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.175 |
|
| \begin{align*}
y^{\prime }&=\frac {x +y}{x -y} \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
12.103 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}+2 y^{2}}{x^{2}-2 y^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
6.052 |
|
| \begin{align*}
2 x \cos \left (y\right )-x^{2} \sin \left (y\right ) y^{\prime }&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
8.351 |
|
| \begin{align*}
\frac {1}{y}-\frac {x y^{\prime }}{y^{2}}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.899 |
|
| \begin{align*}
y^{\prime } x&=y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.724 |
|
| \begin{align*}
y^{\prime }-\frac {y}{x}&=x^{2} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.964 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x}&=x \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.013 |
|
| \begin{align*}
4 x -2 y^{\prime } y+x {y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.773 |
|
| \begin{align*}
3 x^{4} {y^{\prime }}^{2}-y^{\prime } x -y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
0.599 |
|
| \begin{align*}
x^{8} {y^{\prime }}^{2}+3 y^{\prime } x +9 y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
0.635 |
|
| \begin{align*}
x^{4} {y^{\prime }}^{2}+2 x^{3} y y^{\prime }-4&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
0.628 |
|
| \begin{align*}
4 x -2 y^{\prime } y+x {y^{\prime }}^{2}&=0 \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _dAlembert] | ✓ | ✓ | ✓ | ✓ | 0.747 |
|
| \begin{align*}
3 x^{4} {y^{\prime }}^{2}-y^{\prime } x -y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
0.592 |
|
| \begin{align*}
4 x {y^{\prime }}^{2}-3 y^{\prime } y+3&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.927 |
|
| \begin{align*}
y&=y^{\prime } x +x^{3} {y^{\prime }}^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
1.125 |
|
| \begin{align*}
x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+4&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
0.959 |
|
| \begin{align*}
x^{6} {y^{\prime }}^{2}-2 y^{\prime } x -4 y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
0.630 |
|
| \begin{align*}
4 x^{5} {y^{\prime }}^{2}+12 x^{4} y y^{\prime }+9&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
0.898 |
|
| \begin{align*}
16 x {y^{\prime }}^{2}+8 y^{\prime } y+y^{6}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
0.712 |
|
| \begin{align*}
9 x y^{4} {y^{\prime }}^{2}-3 y^{5} y^{\prime }-1&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
0.972 |
|
| \begin{align*}
x^{6} {y^{\prime }}^{2}&=8 y^{\prime } x +16 y \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
0.644 |
|
| \begin{align*}
y^{\prime }+\frac {2 y}{x}&=5 x^{2} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.822 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x -y}{x +4 y} \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
6.387 |
|
| \begin{align*}
y^{\prime }+\frac {2 y}{x}&=6 x^{4} y^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.208 |
|
| \begin{align*}
y^{\prime }&=x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.346 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y}{x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.832 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{x} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| \begin{align*}
y^{\prime }&=\frac {-y x -1}{4 x^{3} y-2 x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
2.945 |
|
| \begin{align*}
x^{2} y^{\prime }+y^{2}&=x y^{\prime } y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
5.283 |
|
| \begin{align*}
y&=y^{\prime } x +x^{2} {y^{\prime }}^{2} \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 0.441 |
|
| \begin{align*}
y^{\prime }&=\frac {5 x^{2}-y x +y^{2}}{x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
2.792 |
|
| \begin{align*}
y^{2}+\frac {2}{x}+2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.360 |
|
| \begin{align*}
y^{\prime } y-y&=x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
5.765 |
|
| \begin{align*}
y&=x {y^{\prime }}^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.120 |
|
| \begin{align*}
f^{\prime }&=\frac {1}{f} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.452 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{-\frac {y}{x}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.832 |
|
| \begin{align*}
y^{\prime }&=a \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| \begin{align*}
y^{\prime }&=x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.296 |
|
| \begin{align*}
y^{\prime }&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| \begin{align*}
y^{\prime }&=a x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.273 |
|
| \begin{align*}
c y^{\prime }&=a \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.462 |
|
| \begin{align*}
c y^{\prime }&=a x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.296 |
|
| \begin{align*}
y^{\prime } x&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.302 |
|
| \begin{align*}
{y^{\prime }}^{2}&=x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.372 |
|
| \begin{align*}
{y^{\prime }}^{2}&=\frac {y}{x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.096 |
|
| \begin{align*}
{y^{\prime }}^{2}&=\frac {y^{3}}{x} \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
1.787 |
|
| \begin{align*}
{y^{\prime }}^{3}&=\frac {y^{2}}{x} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
7.121 |
|
| \begin{align*}
{y^{\prime }}^{2}&=\frac {1}{y x} \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
2.382 |
|
| \begin{align*}
{y^{\prime }}^{2}&=\frac {1}{x y^{3}} \\
\end{align*} | [[_homogeneous, ‘class G‘]] | ✓ | ✓ | ✓ | ✓ | 2.674 |
|
| \begin{align*}
{y^{\prime }}^{2}&=\frac {1}{x^{2} y^{3}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
0.750 |
|
| \begin{align*}
{y^{\prime }}^{4}&=\frac {1}{x y^{3}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
5.421 |
|
| \begin{align*}
{y^{\prime }}^{2}&=\frac {1}{y^{4} x^{3}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.768 |
|
| \begin{align*}
-a y^{3}-\frac {b}{x^{{3}/{2}}}+y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Abel] |
✓ |
✓ |
✓ |
✗ |
8.134 |
|
| \begin{align*}
a y^{3} x +b y^{2}+y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _Abel] |
✓ |
✓ |
✓ |
✓ |
3.662 |
|
| \begin{align*}
y^{\prime }-a y^{n}-b \,x^{\frac {n}{1-n}}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _Chini] |
✓ |
✓ |
✓ |
✗ |
4.525 |
|
| \begin{align*}
y^{\prime } x +a y+b \,x^{n}&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.747 |
|
| \begin{align*}
y^{\prime } x -y^{2}+1&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.603 |
|
| \begin{align*}
y^{\prime } x +x y^{2}-y&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.003 |
|
| \begin{align*}
y^{\prime } x -{\mathrm e}^{\frac {y}{x}} x -y-x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
4.252 |
|
| \begin{align*}
y^{\prime } x -y \ln \left (y\right )&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.602 |
|
| \begin{align*}
y^{\prime } x -y \left (\ln \left (y x \right )-1\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
3.292 |
|
| \begin{align*}
y^{\prime } x -y-x \sin \left (\frac {y}{x}\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.280 |
|
| \begin{align*}
y^{\prime } x +x -y+x \cos \left (\frac {y}{x}\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.047 |
|
| \begin{align*}
y^{\prime } x +\tan \left (\frac {y}{x}\right ) x -y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.745 |
|
| \begin{align*}
y^{\prime } x -y f \left (y x \right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
1.988 |
|
| \begin{align*}
y^{\prime } x -y f \left (x^{a} y^{b}\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
3.316 |
|
| \begin{align*}
2 y^{\prime } x -y-2 x^{3}&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.217 |
|
| \begin{align*}
x^{2} y^{\prime }+x^{2}+y x +y^{2}&=0 \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _Riccati] | ✓ | ✓ | ✓ | ✓ | 3.185 |
|
| \begin{align*}
x^{2} y^{\prime }-y^{2}-y x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.000 |
|
| \begin{align*}
x^{2} y^{\prime }-y^{2}-y x -x^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
3.091 |
|
| \begin{align*}
x^{2} \left (y^{\prime }+y^{2}\right )+4 y x +2&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
3.411 |
|
| \begin{align*}
x^{2} \left (y^{\prime }+y^{2}\right )+a x y+b&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
3.604 |
|
| \begin{align*}
x^{2} \left (y^{\prime }+a y^{2}\right )-b&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]] |
✓ |
✓ |
✓ |
✓ |
3.454 |
|
| \begin{align*}
3 x^{2} y^{\prime }-7 y^{2}-3 y x -x^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
4.063 |
|
| \begin{align*}
x^{3} y^{\prime }-y^{2}-x^{4}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
2.589 |
|
| \begin{align*}
x^{3} y^{\prime }-y^{2}-x^{2} y&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.766 |
|
| \begin{align*}
x^{3} y^{\prime }-x^{4} y^{2}+x^{2} y+20&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
4.300 |
|
| \begin{align*}
x^{n} y^{\prime }+y^{2}-\left (n -1\right ) x^{n -1} y+x^{2 n -2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _Riccati] |
✓ |
✓ |
✓ |
✗ |
4.556 |
|
| \begin{align*}
x^{n} y^{\prime }-a y^{2}-b \,x^{2 n -2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _Riccati] |
✓ |
✓ |
✓ |
✗ |
5.928 |
|
| \begin{align*}
x^{2 n +1} y^{\prime }-a y^{3}-b \,x^{3 n}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _Abel] |
✓ |
✓ |
✓ |
✗ |
7.401 |
|
| \begin{align*}
x^{m \left (n -1\right )+n} y^{\prime }-a y^{n}-b \,x^{n \left (m +1\right )}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
5.869 |
|
| \begin{align*}
y^{\prime } y+a y+x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
34.645 |
|
| \begin{align*}
y^{\prime } y-{\mathrm e}^{\frac {x}{y}} x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
5.531 |
|
| \begin{align*}
\left (y-x^{2}\right ) y^{\prime }+4 y x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
17.764 |
|
| \begin{align*}
\left (-x +2 y\right ) y^{\prime }-y-2 x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.458 |
|
| \begin{align*}
x y^{\prime } y+x^{2}+y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.312 |
|
| \begin{align*}
y^{2}-3 y x -2 x^{2}+\left (y x -x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
7.259 |
|
| \begin{align*}
2 x y^{\prime } y-y^{2}+a x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.382 |
|
| \begin{align*}
2 x y^{\prime } y-y^{2}+a \,x^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
12.813 |
|
| \begin{align*}
2 x y^{\prime } y+2 y^{2}+1&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.580 |
|
| \begin{align*}
\left (2 y x +4 x^{3}\right ) y^{\prime }+y^{2}+112 x^{2} y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
7.014 |
|
| \begin{align*}
x \left (2 x +3 y\right ) y^{\prime }+3 \left (x +y\right )^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
7.876 |
|
| \begin{align*}
x \left (y x -2\right ) y^{\prime }+x^{2} y^{3}+x y^{2}-2 y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]] |
✓ |
✓ |
✓ |
✓ |
7.721 |
|
| \begin{align*}
x \left (y x -3\right ) y^{\prime }+x y^{2}-y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
7.687 |
|
| \begin{align*}
\left (x +2 x^{2} y\right ) y^{\prime }-x^{2} y^{3}+2 x y^{2}+y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]] |
✓ |
✓ |
✓ |
✓ |
7.770 |
|
| \begin{align*}
\left (2 x^{2} y-x \right ) y^{\prime }-2 x y^{2}-y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
7.743 |
|
| \begin{align*}
\left (2 x^{2} y-x^{3}\right ) y^{\prime }+y^{3}-4 x y^{2}+2 x^{3}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
54.079 |
|
| \begin{align*}
2 x \left (x^{3} y+1\right ) y^{\prime }+\left (3 x^{3} y-1\right ) y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
7.631 |
|
| \begin{align*}
\left (y^{2}+x^{2}\right ) y^{\prime }-y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
10.063 |
|
| \begin{align*}
\left (y^{2}-x^{2}\right ) y^{\prime }+2 y x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
5.935 |
|
| \begin{align*}
\left (x^{4}+y^{2}\right ) y^{\prime }-4 x^{3} y&=0 \\
\end{align*} | [[_homogeneous, ‘class G‘], _rational] | ✓ | ✓ | ✓ | ✓ | 8.636 |
|
| \begin{align*}
x^{2}+2 y x -y^{2}+\left (y^{2}+2 y x -x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
9.218 |
|
| \begin{align*}
\left (x^{2}+4 y^{2}\right ) y^{\prime }-y x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
6.697 |
|
| \begin{align*}
\left (3 x^{2}+2 y x +4 y^{2}\right ) y^{\prime }+2 x^{2}+6 y x +y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
10.760 |
|
| \begin{align*}
\left (a y^{2}+2 b x y+c \,x^{2}\right ) y^{\prime }+b y^{2}+2 c x y+d \,x^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
93.020 |
|
| \begin{align*}
x \left (y^{2}-3 x \right ) y^{\prime }+2 y^{3}-5 y x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
7.892 |
|
| \begin{align*}
x \left (y^{2}+y x -x^{2}\right ) y^{\prime }-y^{3}+x y^{2}+x^{2} y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
13.412 |
|
| \begin{align*}
2 x \left (5 x^{2}+y^{2}\right ) y^{\prime }+y^{3}-x^{2} y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
13.786 |
|
| \begin{align*}
3 y^{2} y^{\prime } x +y^{3}-2 x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.039 |
|
| \begin{align*}
\left (3 x y^{2}-x^{2}\right ) y^{\prime }+y^{3}-2 y x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational] |
✓ |
✓ |
✓ |
✗ |
4.900 |
|
| \begin{align*}
6 y^{2} y^{\prime } x +x +2 y^{3}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.233 |
|
| \begin{align*}
\left (x^{2}+6 x y^{2}\right ) y^{\prime }-y \left (3 y^{2}-x \right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
6.338 |
|
| \begin{align*}
\left (y^{2} x^{2}+x \right ) y^{\prime }+y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
3.878 |
|
| \begin{align*}
\left (y x -1\right )^{2} x y^{\prime }+\left (y^{2} x^{2}+1\right ) y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
4.940 |
|
| \begin{align*}
\left (10 x^{3} y^{2}+x^{2} y+2 x \right ) y^{\prime }+5 x^{2} y^{3}+x y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
7.599 |
|
| \begin{align*}
\left (3 x^{3}+6 x^{2} y-3 x y^{2}+20 y^{3}\right ) y^{\prime }+4 x^{3}+9 x^{2} y+6 x y^{2}-y^{3}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
22.050 |
|
| \begin{align*}
\left (2 x y^{3}-x^{4}\right ) y^{\prime }+2 x^{3} y-y^{4}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
9.279 |
|
| \begin{align*}
y \left (y^{3}-2 x^{3}\right ) y^{\prime }+\left (2 y^{3}-x^{3}\right ) x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
112.513 |
|
| \begin{align*}
y \left (\left (b x +a y\right )^{3}+b \,x^{3}\right ) y^{\prime }+x \left (\left (b x +a y\right )^{3}+a y^{3}\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
25.359 |
|
| \begin{align*}
\left (\sqrt {y x}-1\right ) x y^{\prime }-\left (\sqrt {y x}+1\right ) y&=0 \\
\end{align*} | [[_homogeneous, ‘class G‘]] | ✓ | ✓ | ✓ | ✓ | 20.385 |
|
| \begin{align*}
x \left (3 \,{\mathrm e}^{y x}+2 \,{\mathrm e}^{-y x}\right ) \left (y^{\prime } x +y\right )+1&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
9.269 |
|
| \begin{align*}
x y^{\prime } \cot \left (\frac {y}{x}\right )+2 x \sin \left (\frac {y}{x}\right )-y \cot \left (\frac {y}{x}\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
6.835 |
|
| \begin{align*}
x \cos \left (y\right ) y^{\prime }+\sin \left (y\right )&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
8.626 |
|
| \begin{align*}
\left (x^{2} y \sin \left (y x \right )-4 x \right ) y^{\prime }+x y^{2} \sin \left (y x \right )-y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
7.121 |
|
| \begin{align*}
\left (-y+y^{\prime } x \right ) \cos \left (\frac {y}{x}\right )^{2}+x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
6.655 |
|
| \begin{align*}
\left (\sin \left (\frac {y}{x}\right ) y-x \cos \left (\frac {y}{x}\right )\right ) x y^{\prime }-\left (x \cos \left (\frac {y}{x}\right )+\sin \left (\frac {y}{x}\right ) y\right ) y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
10.974 |
|
| \begin{align*}
{y^{\prime }}^{2}+a y+b \,x^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✗ |
✓ |
✗ |
4.346 |
|
| \begin{align*}
{y^{\prime }}^{2}+a x y^{\prime }+b y+c \,x^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✗ |
✓ |
✗ |
5.863 |
|
| \begin{align*}
{y^{\prime }}^{2}-2 x^{2} y^{\prime }+2 y x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
4.034 |
|
| \begin{align*}
2 {y^{\prime }}^{2}-2 x^{2} y^{\prime }+3 y x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
1.801 |
|
| \begin{align*}
3 {y^{\prime }}^{2}+4 y^{\prime } x +x^{2}-y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
0.921 |
|
| \begin{align*}
a {y^{\prime }}^{2}+b \,x^{2} y^{\prime }+c x y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
6.806 |
|
| \begin{align*}
x {y^{\prime }}^{2}-y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
2.691 |
|
| \begin{align*}
x {y^{\prime }}^{2}+x -2 y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
3.163 |
|
| \begin{align*}
x {y^{\prime }}^{2}+y^{\prime } x -y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
3.508 |
|
| \begin{align*}
x {y^{\prime }}^{2}+y^{\prime } y+a&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
19.590 |
|
| \begin{align*}
x {y^{\prime }}^{2}+y^{\prime } y-x^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
7.119 |
|
| \begin{align*}
x {y^{\prime }}^{2}+y^{\prime } y+x^{3}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
3.751 |
|
| \begin{align*}
x {y^{\prime }}^{2}+y^{\prime } y-y^{4}&=0 \\
\end{align*} | [[_homogeneous, ‘class G‘]] | ✓ | ✓ | ✓ | ✗ | 2.010 |
|
| \begin{align*}
x {y^{\prime }}^{2}+\left (-3 x +y\right ) y^{\prime }+y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
10.007 |
|
| \begin{align*}
x {y^{\prime }}^{2}-y^{\prime } y+a&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Clairaut] |
✓ |
✓ |
✓ |
✗ |
0.841 |
|
| \begin{align*}
x {y^{\prime }}^{2}-y^{\prime } y+a y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
2.888 |
|
| \begin{align*}
x {y^{\prime }}^{2}+2 y^{\prime } y-x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
31.042 |
|
| \begin{align*}
x {y^{\prime }}^{2}-2 y^{\prime } y+a&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
1.172 |
|
| \begin{align*}
x {y^{\prime }}^{2}-2 y^{\prime } y-x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.030 |
|
| \begin{align*}
4 x -2 y^{\prime } y+x {y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.073 |
|
| \begin{align*}
x {y^{\prime }}^{2}-2 y^{\prime } y+x +2 y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.147 |
|
| \begin{align*}
x {y^{\prime }}^{2}+a y y^{\prime }+b x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.587 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}+y^{2}-y^{4}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.655 |
|
| \begin{align*}
y^{\prime }-1&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.653 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}-\left (a +2 y x \right ) y^{\prime }+y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Clairaut] |
✓ |
✓ |
✓ |
✓ |
2.181 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}+3 x y^{\prime } y+3 y^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.304 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}-4 x \left (y+2\right ) y^{\prime }+4 \left (y+2\right ) y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.412 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}-y \left (y-2 x \right ) y^{\prime }+y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
77.428 |
|
| \begin{align*}
\left (a^{2}-1\right ) x^{2} {y^{\prime }}^{2}+2 x y^{\prime } y-y^{2}+a^{2} x^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
33.736 |
|
| \begin{align*}
a \,x^{2} {y^{\prime }}^{2}-2 a x y y^{\prime }+y^{2}-a \left (a -1\right ) x^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✗ |
✓ |
6.111 |
|
| \begin{align*}
x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+a&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
1.977 |
|
| \begin{align*}
x^{4} {y^{\prime }}^{2}-y^{\prime } x -y&=0 \\
\end{align*} | [[_homogeneous, ‘class G‘], _rational] | ✓ | ✓ | ✓ | ✓ | 0.822 |
|
| \begin{align*}
y {y^{\prime }}^{2}-1&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.182 |
|
| \begin{align*}
\left (x +y\right ) {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
3.173 |
|
| \begin{align*}
\left (2 y x -x^{2}\right ) {y^{\prime }}^{2}+2 x y^{\prime } y+2 y x -y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
65.312 |
|
| \begin{align*}
\left (2 y x -x^{2}\right ) {y^{\prime }}^{2}-6 x y^{\prime } y-y^{2}+2 y x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
65.664 |
|
| \begin{align*}
\left (y^{2}-a^{2} x^{2}\right ) {y^{\prime }}^{2}+2 x y^{\prime } y+\left (-a^{2}+1\right ) x^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
2.639 |
|
| \begin{align*}
\left (\left (-a +1\right ) x^{2}+y^{2}\right ) {y^{\prime }}^{2}+2 a x y y^{\prime }+x^{2}+\left (-a +1\right ) y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.889 |
|
| \begin{align*}
3 y^{2} {y^{\prime }}^{2}-2 x y^{\prime } y-x^{2}+4 y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
2.216 |
|
| \begin{align*}
\left (-a^{2}+1\right ) y^{2} {y^{\prime }}^{2}-2 a^{2} x y y^{\prime }+y^{2}-a^{2} x^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
3.674 |
|
| \begin{align*}
\left (y^{2}+x^{2}\right ) f \left (\frac {x}{\sqrt {y^{2}+x^{2}}}\right ) \left (1+{y^{\prime }}^{2}\right )-\left (-y+y^{\prime } x \right )^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
7.771 |
|
| \begin{align*}
\left (y^{2}+x^{2}\right ) f \left (\frac {y}{\sqrt {y^{2}+x^{2}}}\right ) \left (1+{y^{\prime }}^{2}\right )-\left (-y+y^{\prime } x \right )^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
38.090 |
|
| \begin{align*}
x^{7} y^{2} {y^{\prime }}^{3}-\left (3 x^{6} y^{3}-1\right ) {y^{\prime }}^{2}+3 x^{5} y^{4} y^{\prime }-x^{4} y^{5}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
4.191 |
|
| \begin{align*}
{y^{\prime }}^{r}-a y^{s}-b \,x^{\frac {r s}{r -s}}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
4.959 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{y+\sqrt {x}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], [_Abel, ‘2nd type‘, ‘class C‘]] |
✓ |
✓ |
✓ |
✗ |
13.056 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{{5}/{3}}}{y+x^{{4}/{3}}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]] |
✓ |
✓ |
✓ |
✗ |
31.440 |
|
| \begin{align*}
y^{\prime }&=f \left (\frac {y}{x}\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.812 |
|
| \begin{align*}
y^{\prime }&=a \,x^{n} y^{2}+b \,x^{-n -2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _Riccati] |
✓ |
✓ |
✓ |
✗ |
6.651 |
|
| \begin{align*}
x^{2} y^{\prime }&=a \,x^{2} y^{2}+b \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]] |
✓ |
✓ |
✓ |
✓ |
4.262 |
|
| \begin{align*}
y^{\prime } x&=a \,x^{n} y^{2}+b y+c \,x^{-n} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✗ |
6.484 |
|
| \begin{align*}
x^{2} y^{\prime }&=a \,x^{2} y^{2}+b x y+c \\
\end{align*} | [[_homogeneous, ‘class G‘], _rational, _Riccati] | ✓ | ✓ | ✓ | ✓ | 4.981 |
|
| \begin{align*}
y^{\prime }&=a y^{3}+\frac {b}{x^{{3}/{2}}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Abel] |
✓ |
✓ |
✓ |
✗ |
8.364 |
|
| \begin{align*}
y^{\prime }&=a y^{3} x +b y^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _Abel] |
✓ |
✓ |
✓ |
✓ |
6.846 |
|
| \begin{align*}
y^{\prime }&=a \,x^{2 n +1} y^{3}+b \,x^{-n -2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _Abel] |
✓ |
✓ |
✓ |
✗ |
10.998 |
|
| \begin{align*}
\frac {y^{2}-2 x^{2}}{-x^{3}+x y^{2}}+\frac {\left (2 y^{2}-x^{2}\right ) y^{\prime }}{y^{3}-x^{2} y}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
35.716 |
|
| \begin{align*}
y^{\prime } x +x +y&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
4.372 |
|
| \begin{align*}
{\mathrm e}^{\frac {y}{x}} x +y-y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
6.382 |
|
| \begin{align*}
2 x^{2} y+3 y^{3}-\left (x^{3}+2 x y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
16.989 |
|
| \begin{align*}
x^{2} y^{\prime }+y^{2}-y x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.737 |
|
| \begin{align*}
2 x^{2} y+y^{3}-x^{3} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
79.425 |
|
| \begin{align*}
y^{3}+x^{3} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
9.399 |
|
| \begin{align*}
x +y \cos \left (\frac {y}{x}\right )-x \cos \left (\frac {y}{x}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
5.938 |
|
| \begin{align*}
2 y+3 x y^{2}+\left (x +2 x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
36.072 |
|
| \begin{align*}
y+x y^{2}+\left (x -x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
8.772 |
|
| \begin{align*}
x^{4} y \left (3 y+2 y^{\prime } x \right )+x^{2} \left (4 y+3 y^{\prime } x \right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
30.588 |
|
| \begin{align*}
2 x^{3} y-y^{2}-\left (2 x^{4}+y x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
40.963 |
|
| \begin{align*}
x^{2} y^{\prime }+y^{2}-y x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.783 |
|
| \begin{align*}
x +y-\left (x -y\right ) y^{\prime }&=0 \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] | ✓ | ✓ | ✓ | ✓ | 6.197 |
|
| \begin{align*}
x^{2}+y^{2}-2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
23.608 |
|
| \begin{align*}
x -y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.342 |
|
| \begin{align*}
3 x^{2}+6 y x +3 y^{2}+\left (2 x^{2}+3 y x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
10.760 |
|
| \begin{align*}
y^{2}-x^{2}+2 m x y+\left (m y^{2}-m \,x^{2}-2 y x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
39.985 |
|
| \begin{align*}
x +y^{\prime } y+y-y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.757 |
|
| \begin{align*}
\left (y-x \right ) y^{\prime }+y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
8.586 |
|
| \begin{align*}
x \sin \left (\frac {y}{x}\right )-y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
6.376 |
|
| \begin{align*}
x y^{2} \left (y^{\prime } x +3 y\right )-2 y+y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
6.145 |
|
| \begin{align*}
5 y x -3 y^{3}+\left (3 x^{2}-7 x y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
2.443 |
|
| \begin{align*}
y+x y^{2}-y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.349 |
|
| \begin{align*}
3 x^{2} y+\left (x^{3}+x^{3} y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.405 |
|
| \begin{align*}
y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
11.016 |
|
| \begin{align*}
1+{\mathrm e}^{\frac {y}{x}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
5.590 |
|
| \begin{align*}
x {y^{\prime }}^{2}-2 y^{\prime } y-x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.549 |
|
| \begin{align*}
\left (2 y^{\prime } x -y\right )^{2}&=8 x^{3} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
0.365 |
|
| \begin{align*}
4 x {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.585 |
|
| \begin{align*}
x {y^{\prime }}^{2}-2 y^{\prime } y-x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.513 |
|
| \begin{align*}
y&=-y^{\prime } x +x^{4} {y^{\prime }}^{2} \\
\end{align*} | [[_homogeneous, ‘class G‘], _rational] | ✓ | ✓ | ✓ | ✓ | 0.434 |
|
| \begin{align*}
x {y^{\prime }}^{2}-2 y^{\prime } y-x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.510 |
|
| \begin{align*}
x y^{2} {y^{\prime }}^{2}-y^{3} y^{\prime }+x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
0.957 |
|
| \begin{align*}
\left (y^{2}+x^{2}\right ) \left (1+y^{\prime }\right )^{2}-2 \left (x +y\right ) \left (1+y^{\prime }\right ) \left (y^{\prime } y+x \right )+\left (y^{\prime } y+x \right )^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
54.400 |
|
| \begin{align*}
x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+1&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
0.515 |
|
| \begin{align*}
3 x {y^{\prime }}^{2}-6 y^{\prime } y+x +2 y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.650 |
|
| \begin{align*}
y&=y^{\prime } x +\frac {1}{y^{\prime }} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Clairaut] |
✓ |
✓ |
✓ |
✗ |
0.377 |
|
| \begin{align*}
x {y^{\prime }}^{2}-2 y^{\prime } y-x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.438 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}-2 \left (y x -2\right ) y^{\prime }+y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _Clairaut] |
✓ |
✓ |
✓ |
✓ |
0.417 |
|
| \begin{align*}
4 {y^{\prime }}^{2}&=9 x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| \begin{align*}
x^{\prime }&=\frac {2 x}{t} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.842 |
|
| \begin{align*}
x^{\prime }&=-\frac {t}{x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
7.745 |
|
| \begin{align*}
x^{\prime }&=-x^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.859 |
|
| \begin{align*}
2 t x^{\prime }&=x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.804 |
|
| \begin{align*}
x^{\prime }&=\frac {4 t^{2}+3 x^{2}}{2 t x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
13.330 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}+2 t y}{t^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
7.387 |
|
| \begin{align*}
x^{\prime }&=-\frac {2 x}{t}+t \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.875 |
|
| \begin{align*}
t x^{\prime }&=-x+t^{2} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.655 |
|
| \begin{align*}
x^{\prime }&=\frac {2 x}{3 t}+\frac {2 t}{x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
70.299 |
|
| \begin{align*}
x^{\prime }&=-\frac {x}{t}+\frac {1}{t x^{2}} \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 2.976 |
|
| \begin{align*}
t^{2} y^{\prime }+2 t y-y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.164 |
|
| \begin{align*}
x^{2}-t^{2} x^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.219 |
|
| \begin{align*}
t \cot \left (x\right ) x^{\prime }&=-2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.551 |
|
| \begin{align*}
x^{2}+y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.559 |
|
| \begin{align*}
y^{\prime } x +y&=x^{3} y^{3} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.024 |
|
| \begin{align*}
{y^{\prime }}^{2}-4 y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.671 |
|
| \begin{align*}
3 x +2 y+\left (2 x +y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.941 |
|
| \begin{align*}
\frac {\left (2 s-1\right ) s^{\prime }}{t}+\frac {s-s^{2}}{t^{2}}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.269 |
|
| \begin{align*}
4 x +3 y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.900 |
|
| \begin{align*}
y^{2}+2 y x -x^{2} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.719 |
|
| \begin{align*}
\tan \left (\theta \right )+2 r \theta ^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.107 |
|
| \begin{align*}
x +y-y^{\prime } x&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.732 |
|
| \begin{align*}
2 y x +3 y^{2}-\left (x^{2}+2 y x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
5.475 |
|
| \begin{align*}
v^{3}+\left (u^{3}-u v^{2}\right ) v^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
7.390 |
|
| \begin{align*}
\tan \left (\frac {y}{x}\right ) x +y-y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.757 |
|
| \begin{align*}
\left (2 s^{2}+2 s t +t^{2}\right ) s^{\prime }+s^{2}+2 s t -t^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
7.029 |
|
| \begin{align*}
x^{2}+3 y^{2}-2 x y^{\prime } y&=0 \\
y \left (2\right ) &= 6 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.420 |
|
| \begin{align*}
\left (4 x -y\right ) y^{\prime }+2 x -5 y&=0 \\
y \left (1\right ) &= 4 \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] | ✓ | ✓ | ✓ | ✓ | 11.483 |
|
| \begin{align*}
3 x^{2}+9 y x +5 y^{2}-\left (6 x^{2}+4 y x \right ) y^{\prime }&=0 \\
y \left (2\right ) &= -6 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
8.901 |
|
| \begin{align*}
x +2 y+\left (2 x -y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.839 |
|
| \begin{align*}
3 x -y-\left (x +y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.513 |
|
| \begin{align*}
x^{2}+2 y^{2}+\left (4 y x -y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
6.952 |
|
| \begin{align*}
2 x^{2}+2 y x +y^{2}+\left (x^{2}+2 y x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
5.496 |
|
| \begin{align*}
y^{\prime }+\frac {3 y}{x}&=6 x^{2} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.181 |
|
| \begin{align*}
x^{4} y^{\prime }+2 x^{3} y&=1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.948 |
|
| \begin{align*}
y^{\prime }-\frac {y}{x}&=-\frac {y^{2}}{x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.013 |
|
| \begin{align*}
y^{\prime } x +y&=-2 x^{6} y^{4} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.313 |
|
| \begin{align*}
y^{\prime } x -2 y&=2 x^{4} \\
y \left (2\right ) &= 8 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
4.642 |
|
| \begin{align*}
y^{\prime }+\frac {y}{2 x}&=\frac {x}{y^{3}} \\
y \left (1\right ) &= 2 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.325 |
|
| \begin{align*}
\left (3 y^{2} x^{2}-x \right ) y^{\prime }+2 x y^{3}-y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational] |
✓ |
✓ |
✓ |
✗ |
3.378 |
|
| \begin{align*}
x^{2}-2 y+y^{\prime } x&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.652 |
|
| \begin{align*}
3 x -5 y+\left (x +y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
17.371 |
|
| \begin{align*}
2 x^{2}+y x +y^{2}+2 x^{2} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
10.933 |
|
| \begin{align*}
y^{\prime }&=\frac {4 x^{3} y^{2}-3 x^{2} y}{x^{3}-2 x^{4} y} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
3.808 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x -7 y}{3 y-8 x} \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] | ✓ | ✓ | ✓ | ✓ | 17.215 |
|
| \begin{align*}
y x +x^{2} y^{\prime }&=x y^{3} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.632 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x^{2}+y^{2}}{2 y x -x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
41.007 |
|
| \begin{align*}
x^{2}+y^{2}-2 x y^{\prime } y&=0 \\
y \left (1\right ) &= 2 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
7.231 |
|
| \begin{align*}
4 x y^{\prime } y&=1+y^{2} \\
y \left (2\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.625 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x +7 y}{2 x -2 y} \\
y \left (1\right ) &= 2 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
12.012 |
|
| \begin{align*}
y x +x^{2} y^{\prime }&=\frac {y^{3}}{x} \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
71.405 |
|
| \begin{align*}
4 x y^{2}+6 y+\left (5 x^{2} y+8 x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
4.206 |
|
| \begin{align*}
x^{\prime }&=-x^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.356 |
|
| \begin{align*}
y^{\prime } x&=k y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.506 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x}&=x^{2} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.416 |
|
| \begin{align*}
y x +y^{2}+x^{2}-x^{2} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
3.685 |
|
| \begin{align*}
y^{\prime } x +y&=x^{3} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.483 |
|
| \begin{align*}
y-y^{\prime } x&=x^{2} y y^{\prime } \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
7.037 |
|
| \begin{align*}
x^{\prime }&={\mathrm e}^{\frac {x}{t}}+\frac {x}{t} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
5.117 |
|
| \begin{align*}
y&=y^{\prime } x +\frac {1}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
14.874 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{y^{3}+x} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
3.493 |
|
| \begin{align*}
y \left (x -y\right )-x^{2} y^{\prime }&=0 \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 2.777 |
|
| \begin{align*}
x^{\prime }&=\frac {x}{t}+\frac {x^{2}}{t^{3}} \\
x \left (2\right ) &= 4 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.937 |
|
| \begin{align*}
y&=x^{2}+2 y^{\prime } x +\frac {{y^{\prime }}^{2}}{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✗ |
✓ |
0.394 |
|
| \begin{align*}
y^{\prime }-\frac {3 y}{x}+x^{3} y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.659 |
|
| \begin{align*}
3 y^{2}-x +2 y \left (y^{2}-3 x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
5.183 |
|
| \begin{align*}
y \left (x -y\right )-x^{2} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.567 |
|
| \begin{align*}
\left (y^{2}-x^{2}\right ) y^{\prime }+2 y x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
3.770 |
|
| \begin{align*}
3 y^{2} y^{\prime } x +y^{3}-2 x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.400 |
|
| \begin{align*}
y^{\prime } x +y&=x y^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.615 |
|
| \begin{align*}
y^{\prime } y&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.497 |
|
| \begin{align*}
y-y^{\prime } x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.481 |
|
| \begin{align*}
y-x +\left (x +y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.675 |
|
| \begin{align*}
y^{\prime } x +x +y&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.275 |
|
| \begin{align*}
x +y+\left (y-x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.583 |
|
| \begin{align*}
\left (7 x +5 y\right ) y^{\prime }+10 x +8 y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.177 |
|
| \begin{align*}
t -s+t s^{\prime }&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.850 |
|
| \begin{align*}
y^{2} y^{\prime } x&=x^{3}+y^{3} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.601 |
|
| \begin{align*}
x \cos \left (\frac {y}{x}\right ) \left (y^{\prime } x +y\right )&=y \sin \left (\frac {y}{x}\right ) \left (-y+y^{\prime } x \right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
6.319 |
|
| \begin{align*}
y^{\prime }+\frac {n y}{x}&=a \,x^{-n} \\
\end{align*} | [_linear] | ✓ | ✓ | ✓ | ✗ | 1.145 |
|
| \begin{align*}
\left (y^{3}-x \right ) y^{\prime }&=y \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational] |
✓ |
✓ |
✓ |
✓ |
3.352 |
|
| \begin{align*}
\frac {x}{\left (x +y\right )^{2}}+\frac {\left (2 x +y\right ) y^{\prime }}{\left (x +y\right )^{2}}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
3.794 |
|
| \begin{align*}
\frac {1}{x^{2}}+\frac {3 y^{2}}{x^{4}}&=\frac {2 y y^{\prime }}{x^{3}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.681 |
|
| \begin{align*}
\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.541 |
|
| \begin{align*}
y&=y^{\prime } x +\frac {1}{y^{\prime }} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Clairaut] |
✓ |
✓ |
✓ |
✗ |
0.509 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y}{x}-\sqrt {3} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.178 |
|
| \begin{align*}
\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.539 |
|
| \begin{align*}
x \cos \left (\frac {y}{x}\right ) y^{\prime }&=y \cos \left (\frac {y}{x}\right )-x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.100 |
|
| \begin{align*}
-y+y^{\prime } x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.690 |
|
| \begin{align*}
y^{\prime }+\frac {1}{2 y}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.647 |
|
| \begin{align*}
y^{\prime }-\frac {y}{x}&=1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.006 |
|
| \begin{align*}
x^{2} y^{\prime }+2 y x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.278 |
|
| \begin{align*}
2 y^{\prime } x -y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.037 |
|
| \begin{align*}
{y^{\prime }}^{2}-4 y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.671 |
|
| \begin{align*}
{y^{\prime }}^{2}-9 y x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
1.238 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.040 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.743 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x -y}{x +3 y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.822 |
|
| \begin{align*}
y^{\prime }&=\frac {x y}{y^{2}+x^{2}} \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _dAlembert] | ✓ | ✓ | ✓ | ✓ | 4.278 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{y x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.217 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{y-x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.807 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{y^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.434 |
|
| \begin{align*}
y^{\prime }&=\frac {\sqrt {y}}{x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.082 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x} \\
y \left (-1\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.185 |
|
| \begin{align*}
2 y^{\prime } y&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.719 |
|
| \begin{align*}
2 x y^{\prime } y+y^{2}&=-1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.059 |
|
| \begin{align*}
y^{\prime }&=\frac {-y x +1}{x^{2}} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.782 |
|
| \begin{align*}
y^{\prime }&=-\frac {y \left (2 x +y\right )}{x \left (x +2 y\right )} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
7.425 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}}{-y x +1} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
4.429 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x} \\
y \left (-1\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.940 |
|
| \begin{align*}
x -y^{\prime } y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.090 |
|
| \begin{align*}
y-y^{\prime } x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.769 |
|
| \begin{align*}
y^{\prime } x +x^{2}-y&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.213 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x} \\
y \left (-1\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.070 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x} \\
y \left (-1\right ) &= -1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.103 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (-1\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.270 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (-1\right ) &= 0 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✗ | 0.948 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (1\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.045 |
|
| \begin{align*}
y^{\prime }&=y^{3} \\
y \left (-1\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
28.122 |
|
| \begin{align*}
y^{\prime }&=y^{3} \\
y \left (-1\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
1.178 |
|
| \begin{align*}
y^{\prime }&=y^{3} \\
y \left (-1\right ) &= -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
5.484 |
|
| \begin{align*}
y^{\prime }&=-\frac {3 x^{2}}{2 y} \\
y \left (-1\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.727 |
|
| \begin{align*}
y^{\prime }&=-\frac {3 x^{2}}{2 y} \\
y \left (-1\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.789 |
|
| \begin{align*}
y^{\prime }&=-\frac {3 x^{2}}{2 y} \\
y \left (-1\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.816 |
|
| \begin{align*}
y^{\prime }&=-\frac {3 x^{2}}{2 y} \\
y \left (-1\right ) &= -1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.953 |
|
| \begin{align*}
y^{\prime }&=\frac {\sqrt {y}}{x} \\
y \left (-1\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
3.757 |
|
| \begin{align*}
y^{\prime }&=\frac {\sqrt {y}}{x} \\
y \left (-1\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.527 |
|
| \begin{align*}
y^{\prime }&=\frac {\sqrt {y}}{x} \\
y \left (-1\right ) &= -1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
3.539 |
|
| \begin{align*}
y^{\prime }&=\frac {\sqrt {y}}{x} \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
3.552 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{y-x} \\
y \left (1\right ) &= 2 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
9.195 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{y-x} \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
8.830 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{y-x} \\
y \left (1\right ) &= 0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
10.156 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{y-x} \\
y \left (1\right ) &= -1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
8.567 |
|
| \begin{align*}
y^{\prime }&=t^{2} y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.385 |
|
| \begin{align*}
y^{\prime }&=\frac {t}{y} \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 5.184 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y+1}{t} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.221 |
|
| \begin{align*}
w^{\prime }&=\frac {w}{t} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.168 |
|
| \begin{align*}
y^{\prime }&=4 y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.522 |
|
| \begin{align*}
\theta ^{\prime }&=2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.581 |
|
| \begin{align*}
y^{\prime }&=-y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.422 |
|
| \begin{align*}
y^{\prime }&=-\frac {y}{t}+2 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
4.262 |
|
| \begin{align*}
y^{\prime }&=\frac {3 y}{t}+t^{5} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.357 |
|
| \begin{align*}
y^{\prime }&=-\frac {y}{t}+2 \\
y \left (1\right ) &= 3 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
4.625 |
|
| \begin{align*}
y^{\prime }-\frac {2 y}{t}&=2 t^{2} \\
y \left (-2\right ) &= 4 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.023 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y+1}{t} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.737 |
|
| \begin{align*}
y^{\prime } y&=2 x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.454 |
|
| \begin{align*}
y^{\prime }&=4 x^{3} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.276 |
|
| \begin{align*}
x^{2} y^{\prime }+x y^{2}&=x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.881 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.369 |
|
| \begin{align*}
x y^{\prime } y&=y^{2}+9 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.635 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{y} \\
y \left (1\right ) &= 3 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.577 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.918 |
|
| \begin{align*}
y^{\prime }&=3 x y^{3} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.744 |
|
| \begin{align*}
y^{\prime } x&=-y+y^{2} \\
y \left (2\right ) &= 1 \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 3.201 |
|
| \begin{align*}
y^{\prime } x&=-y+y^{2} \\
y \left (1\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✗ |
✓ |
3.202 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}-1}{y x} \\
y \left (1\right ) &= -2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.319 |
|
| \begin{align*}
y^{\prime } x +3 y-10 x^{2}&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.923 |
|
| \begin{align*}
y^{\prime } x&=\sqrt {x}+3 y \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.233 |
|
| \begin{align*}
y^{\prime } x +3 y&=20 x^{2} \\
y \left (1\right ) &= 10 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.374 |
|
| \begin{align*}
x^{2} y^{\prime }-y x&=y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.497 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{y}+\frac {y}{x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.193 |
|
| \begin{align*}
\cos \left (\frac {y}{x}\right ) \left (y^{\prime }-\frac {y}{x}\right )&=1+\sin \left (\frac {y}{x}\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
5.030 |
|
| \begin{align*}
y^{\prime }-\frac {3 y}{x}&=\frac {y^{2}}{x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.894 |
|
| \begin{align*}
y^{\prime }-\frac {y}{x}&=\frac {1}{y} \\
y \left (1\right ) &= 3 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.756 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x}+\frac {x^{2}}{y^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.750 |
|
| \begin{align*}
\left (x +y\right ) y^{\prime }&=y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.857 |
|
| \begin{align*}
\left (2 y x +2 x^{2}\right ) y^{\prime }&=x^{2}+2 y x +2 y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
49.898 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x}&=x^{2} y^{3} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.631 |
|
| \begin{align*}
y^{\prime }&=x \left (1+\frac {2 y}{x^{2}}+\frac {y^{2}}{x^{4}}\right ) \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
2.352 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{y}-\frac {y}{2 x} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.503 |
|
| \begin{align*}
2 y x +y^{2}+\left (x^{2}+2 y x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
7.015 |
|
| \begin{align*}
2 x y^{3}+4 x^{3}+3 x^{2} y^{2} y^{\prime }&=0 \\
\end{align*} | [[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 2.777 |
|
| \begin{align*}
4 x^{3} y+\left (x^{4}-y^{4}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
76.194 |
|
| \begin{align*}
1+\ln \left (y x \right )+\frac {x y^{\prime }}{y}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact] |
✓ |
✓ |
✓ |
✓ |
2.451 |
|
| \begin{align*}
1+{\mathrm e}^{y}+x \,{\mathrm e}^{y} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.367 |
|
| \begin{align*}
1+y^{4}+x y^{3} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.714 |
|
| \begin{align*}
y+\left (y^{4}-3 x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
6.233 |
|
| \begin{align*}
\frac {2 y}{x}+\left (4 x^{2} y-3\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
5.112 |
|
| \begin{align*}
3 y+3 y^{2}+\left (2 x +4 y x \right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.245 |
|
| \begin{align*}
4 y x +\left (3 x^{2}+5 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
2.833 |
|
| \begin{align*}
6+12 y^{2} x^{2}+\left (7 x^{3} y+\frac {x}{y}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
3.451 |
|
| \begin{align*}
y^{\prime } x&=2 y-6 x^{3} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.056 |
|
| \begin{align*}
y^{\prime } x&=2 y^{2}-6 y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.467 |
|
| \begin{align*}
4 y x -6+x^{2} y^{\prime }&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.076 |
|
| \begin{align*}
x y^{2}-6+x^{2} y y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.586 |
|
| \begin{align*}
x^{3}+y^{3}+y^{2} y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
7.957 |
|
| \begin{align*}
3 y-x^{3}+y^{\prime } x&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.896 |
|
| \begin{align*}
3 x y^{3}-y+y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.375 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{y x -3 x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.964 |
|
| \begin{align*}
x y^{\prime } y&=2 y^{2}+2 x^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.694 |
|
| \begin{align*}
y^{\prime }&=\frac {x +2 y}{2 x -y} \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] | ✓ | ✓ | ✓ | ✓ | 4.199 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x}+\tan \left (\frac {y}{x}\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.143 |
|
| \begin{align*}
x y^{\prime } y&=x^{2}+y x +y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
7.285 |
|
| \begin{align*}
x y^{3} y^{\prime }&=y^{4}-x^{2} \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.956 |
|
| \begin{align*}
{y^{\prime }}^{2}+y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.620 |
|
| \begin{align*}
2 x -y-y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
6.095 |
|
| \begin{align*}
y^{\prime }&=-\frac {x}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.114 |
|
| \begin{align*}
3 y \left (t^{2}+y\right )+t \left (t^{2}+6 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
4.948 |
|
| \begin{align*}
y^{\prime }&=-\frac {2 y}{x}-3 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.698 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}+2 y x}{x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.571 |
|
| \begin{align*}
2 x -3 y+\left (-3 x +2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.158 |
|
| \begin{align*}
t y^{\prime }&=y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.714 |
|
| \begin{align*}
t y^{\prime }+y&=t^{3} \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.570 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{y^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.744 |
|
| \begin{align*}
\frac {1}{2 \sqrt {t}}+y^{2} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.059 |
|
| \begin{align*}
y^{\prime }&=\sqrt {\frac {y}{t}} \\
y \left (1\right ) &= 2 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
12.843 |
|
| \begin{align*}
t y^{\prime }+y&=t^{2} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.266 |
|
| \begin{align*}
t y^{\prime }+y&=t \\
\end{align*} | [_linear] | ✓ | ✓ | ✓ | ✓ | 3.035 |
|
| \begin{align*}
y-\left (x +3 y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
2.622 |
|
| \begin{align*}
p^{\prime }&=t^{3}+\frac {p}{t} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.228 |
|
| \begin{align*}
\frac {t}{\sqrt {t^{2}+y^{2}}}+\frac {y y^{\prime }}{\sqrt {t^{2}+y^{2}}}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.652 |
|
| \begin{align*}
\ln \left (t y\right )+\frac {t y^{\prime }}{y}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact] |
✓ |
✓ |
✓ |
✓ |
3.976 |
|
| \begin{align*}
{\mathrm e}^{t y}+\frac {t \,{\mathrm e}^{t y} y^{\prime }}{y}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.166 |
|
| \begin{align*}
3 t^{2}-y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.358 |
|
| \begin{align*}
-1+3 y^{2} y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.519 |
|
| \begin{align*}
\frac {3 t^{2}}{y}-\frac {t^{3} y^{\prime }}{y^{2}}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.073 |
|
| \begin{align*}
-\frac {1}{y}+\left (\frac {t}{y^{2}}+3 y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational] |
✓ |
✓ |
✓ |
✓ |
4.204 |
|
| \begin{align*}
2 t y+\left (t^{2}+y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
5.648 |
|
| \begin{align*}
2 t y^{3}+\left (1+3 t^{2} y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational] |
✓ |
✓ |
✓ |
✗ |
2.387 |
|
| \begin{align*}
\sin \left (y\right )^{2}+t \sin \left (2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
8.587 |
|
| \begin{align*}
3 t^{2}+3 y^{2}+6 t y y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.849 |
|
| \begin{align*}
-\frac {y^{2} {\mathrm e}^{\frac {y}{t}}}{t^{2}}+1+{\mathrm e}^{\frac {y}{t}} \left (1+\frac {y}{t}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
7.421 |
|
| \begin{align*}
2 t \sin \left (\frac {y}{t}\right )-y \cos \left (\frac {y}{t}\right )+t \cos \left (\frac {y}{t}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
5.555 |
|
| \begin{align*}
1+\frac {y}{t^{2}}-\frac {y^{\prime }}{t}&=0 \\
y \left (2\right ) &= 1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.724 |
|
| \begin{align*}
t^{2} y+t^{3} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.400 |
|
| \begin{align*}
2 t y+y^{2}-t^{2} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.480 |
|
| \begin{align*}
\frac {9 t}{5}+2 y+\left (2 t +2 y\right ) y^{\prime }&=0 \\
\end{align*} | [[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] | ✓ | ✓ | ✓ | ✓ | 5.261 |
|
| \begin{align*}
2 t +\frac {19 y}{10}+\left (\frac {19 t}{10}+2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
35.899 |
|
| \begin{align*}
y^{\prime }-\frac {y}{t}&=t y^{2} \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.165 |
|
| \begin{align*}
y^{\prime }-\frac {y}{t}&=\frac {y^{2}}{t^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.425 |
|
| \begin{align*}
y^{\prime }-\frac {y}{t}&=\frac {y^{2}}{t} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.254 |
|
| \begin{align*}
\cos \left (\frac {t}{t +y}\right )+{\mathrm e}^{\frac {2 y}{t}} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
6.062 |
|
| \begin{align*}
y \ln \left (\frac {t}{y}\right )+\frac {t^{2} y^{\prime }}{t +y}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
7.155 |
|
| \begin{align*}
\frac {2}{t}+\frac {1}{y}+\frac {t y^{\prime }}{y^{2}}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.936 |
|
| \begin{align*}
2 t +\left (y-3 t \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
20.555 |
|
| \begin{align*}
2 y-3 t +t y^{\prime }&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.548 |
|
| \begin{align*}
t y-y^{2}+t \left (t -3 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
6.921 |
|
| \begin{align*}
t^{2}+t y+y^{2}-t y y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
10.886 |
|
| \begin{align*}
t^{3}+y^{3}-t y^{2} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.036 |
|
| \begin{align*}
y^{\prime }&=\frac {t +4 y}{4 t +y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
10.013 |
|
| \begin{align*}
t -y+t y^{\prime }&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.475 |
|
| \begin{align*}
y+\left (t +y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.467 |
|
| \begin{align*}
2 t^{2}-7 t y+5 y^{2}+t y y^{\prime }&=0 \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] | ✓ | ✓ | ✓ | ✗ | 26.759 |
|
| \begin{align*}
y^{2}&=\left (t y-4 t^{2}\right ) y^{\prime } \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
12.836 |
|
| \begin{align*}
t y y^{\prime }-t^{2} {\mathrm e}^{-\frac {y}{t}}-y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
5.092 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{\frac {2 y \,{\mathrm e}^{-\frac {t}{y}}}{t}+\frac {t}{y}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
6.782 |
|
| \begin{align*}
y^{\prime }&=\frac {4 y^{2}-t^{2}}{2 t y} \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.684 |
|
| \begin{align*}
t +y-t y^{\prime }&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.845 |
|
| \begin{align*}
y^{3}-t^{3}-t y^{2} y^{\prime }&=0 \\
y \left (1\right ) &= 3 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
8.552 |
|
| \begin{align*}
t y^{3}-\left (t^{4}+y^{4}\right ) y^{\prime }&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
21.590 |
|
| \begin{align*}
y^{4}+\left (t^{4}-t y^{3}\right ) y^{\prime }&=0 \\
y \left (1\right ) &= 2 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✗ |
✓ |
16.812 |
|
| \begin{align*}
t^{{1}/{3}} y^{{2}/{3}}+t +\left (t^{{2}/{3}} y^{{1}/{3}}+y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
56.664 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}-t^{2}}{t y} \\
y \left (4\right ) &= 0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.239 |
|
| \begin{align*}
y \sin \left (\frac {t}{y}\right )-\left (t +t \sin \left (\frac {t}{y}\right )\right ) y^{\prime }&=0 \\
y \left (1\right ) &= 2 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
10.529 |
|
| \begin{align*}
y^{\prime }&=\frac {2 t^{5}}{5 y^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.283 |
|
| \begin{align*}
y^{\prime }-\frac {y}{t}&=\frac {y^{2}}{t} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.492 |
|
| \begin{align*}
y^{\prime }&=\frac {{\mathrm e}^{8 y}}{t} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.441 |
|
| \begin{align*}
3 t +\left (t -4 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
7.580 |
|
| \begin{align*}
y-t +\left (t +y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
6.075 |
|
| \begin{align*}
y^{2}+\left (t^{2}+t y\right ) y^{\prime }&=0 \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] | ✓ | ✓ | ✓ | ✓ | 56.944 |
|
| \begin{align*}
r^{\prime }&=\frac {r^{2}+t^{2}}{r t} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.421 |
|
| \begin{align*}
x^{\prime }&=\frac {5 t x}{t^{2}+x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
17.622 |
|
| \begin{align*}
x^{\prime }+\frac {x}{y}&=y^{2} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.701 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.083 |
|
| \begin{align*}
y^{\prime }&=\frac {x +y}{x -y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
6.539 |
|
| \begin{align*}
y^{\prime }&=-\frac {y}{x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.033 |
|
| \begin{align*}
y^{\prime }&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.575 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{x} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.361 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.975 |
|
| \begin{align*}
y^{\prime } x&=2 x -y \\
y \left (1\right ) &= 2 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
4.572 |
|
| \begin{align*}
x y^{\prime } y+1+y^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.978 |
|
| \begin{align*}
1+y^{2}&=y^{\prime } x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.924 |
|
| \begin{align*}
y \ln \left (y\right )+y^{\prime } x&=1 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✗ |
✓ |
7.550 |
|
| \begin{align*}
\cos \left (y^{\prime }\right )&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.632 |
|
| \begin{align*}
y^{\prime } x&=y+x \cos \left (\frac {y}{x}\right )^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
5.636 |
|
| \begin{align*}
x -y+y^{\prime } x&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.153 |
|
| \begin{align*}
x^{2} y^{\prime }&=x^{2}-y x +y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
4.802 |
|
| \begin{align*}
2 x^{2} y^{\prime }&=y^{2}+x^{2} \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _Riccati] | ✓ | ✓ | ✓ | ✓ | 4.651 |
|
| \begin{align*}
4 x -3 y+\left (-3 x +2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
10.116 |
|
| \begin{align*}
y-x +\left (x +y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
6.965 |
|
| \begin{align*}
2 x \left (x -y^{2}\right ) y^{\prime }+y^{3}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
5.296 |
|
| \begin{align*}
4 y^{6}+x^{3}&=6 x y^{5} y^{\prime } \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.750 |
|
| \begin{align*}
y \left (1+\sqrt {1+x^{2} y^{4}}\right )+2 y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
6.642 |
|
| \begin{align*}
x +y^{3}+3 \left (y^{3}-x \right ) y^{2} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
6.821 |
|
| \begin{align*}
x^{2}-y^{\prime } x&=y \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.454 |
|
| \begin{align*}
\left (2 x -y^{2}\right ) y^{\prime }&=2 y \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
3.234 |
|
| \begin{align*}
y^{\prime } x +y&=2 x \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
4.099 |
|
| \begin{align*}
3 y^{2} y^{\prime } x -2 y^{3}&=x^{3} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
8.913 |
|
| \begin{align*}
x \left (2 x^{2}+y^{2}\right )+y \left (x^{2}+2 y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
26.503 |
|
| \begin{align*}
\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}}&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
14.158 |
|
| \begin{align*}
3 x^{2} y+y^{3}+\left (x^{3}+3 x y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
9.967 |
|
| \begin{align*}
x^{2}+y-y^{\prime } x&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.876 |
|
| \begin{align*}
x +y^{2}-2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.772 |
|
| \begin{align*}
3 y^{2}-x +\left (2 y^{3}-6 y x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
12.795 |
|
| \begin{align*}
4 {y^{\prime }}^{2}-9 x&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.641 |
|
| \begin{align*}
{y^{\prime }}^{2}-4 y^{\prime } x +2 y+2 x^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✗ |
✓ |
0.977 |
|
| \begin{align*}
x&=\frac {y}{y^{\prime }}+\frac {1}{{y^{\prime }}^{2}} \\
\end{align*} | [[_homogeneous, ‘class G‘], _rational, _Clairaut] | ✓ | ✓ | ✓ | ✗ | 0.365 |
|
| \begin{align*}
x^{2} y^{\prime }&=1+y x +y^{2} x^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
1.953 |
|
| \begin{align*}
{y^{\prime }}^{2}-4 y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.477 |
|
| \begin{align*}
\left (y^{\prime } x +y\right )^{2}+3 x^{5} \left (y^{\prime } x -2 y\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
0.483 |
|
| \begin{align*}
y \left (y-2 y^{\prime } x \right )^{2}&=2 y^{\prime } \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
0.513 |
|
| \begin{align*}
\left (y^{\prime } x +y\right )^{2}&=y^{2} y^{\prime } \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
46.163 |
|
| \begin{align*}
3 x {y^{\prime }}^{2}-6 y^{\prime } y+x +2 y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.669 |
|
| \begin{align*}
x^{3}-3 x y^{2}+\left (y^{3}-3 x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
57.711 |
|
| \begin{align*}
x y^{\prime } y-y^{2}&=x^{4} \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.076 |
|
| \begin{align*}
\frac {1}{x^{2}-y x +y^{2}}&=\frac {y^{\prime }}{2 y^{2}-y x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
19.040 |
|
| \begin{align*}
y^{2} y^{\prime } x -y^{3}&=\frac {x^{4}}{3} \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.396 |
|
| \begin{align*}
1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime }&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
5.276 |
|
| \begin{align*}
x^{2}+y^{2}-x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.783 |
|
| \begin{align*}
y+x y^{2}-y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.400 |
|
| \begin{align*}
2 x^{5}+4 x^{3} y-2 x y^{2}+\left (y^{2}+2 x^{2} y-x^{4}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
3.148 |
|
| \begin{align*}
x -y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.945 |
|
| \begin{align*}
y^{3}+2 \left (x^{2}-x y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
2.350 |
|
| \begin{align*}
4 x^{2} {y^{\prime }}^{2}-y^{2}&=x y^{3} \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
0.420 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{4}}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.487 |
|
| \begin{align*}
y^{\prime } x&=\sqrt {1-y^{2}} \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 3.562 |
|
| \begin{align*}
r^{\prime }&=\frac {r^{2}}{\theta } \\
r \left (1\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.612 |
|
| \begin{align*}
y^{\prime }&=\frac {t -y}{2 t +5 y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
7.395 |
|
| \begin{align*}
2 x +4 y+\left (2 x -2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
7.906 |
|
| \begin{align*}
y^{\prime }&=-\frac {4 x +2 y}{2 x +3 y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.475 |
|
| \begin{align*}
y^{\prime }&=-\frac {4 x -2 y}{2 x -3 y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
9.161 |
|
| \begin{align*}
\frac {x}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.012 |
|
| \begin{align*}
2 x -y+\left (-x +2 y\right ) y^{\prime }&=0 \\
y \left (1\right ) &= 3 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.493 |
|
| \begin{align*}
3 y x +y^{2}+\left (x^{2}+y x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
5.226 |
|
| \begin{align*}
\frac {\left (3 x^{3}-x y^{2}\right ) y^{\prime }}{y^{3}+3 x^{2} y}&=1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
7.670 |
|
| \begin{align*}
x y^{\prime } y&=\left (x +y\right )^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
10.710 |
|
| \begin{align*}
y^{\prime }&=\frac {4 y-7 x}{5 x -y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
8.085 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{4}+2 x y^{3}-3 y^{2} x^{2}-2 x^{3} y}{2 y^{2} x^{2}-2 x^{3} y-2 x^{4}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
9.738 |
|
| \begin{align*}
\left (y+{\mathrm e}^{\frac {x}{y}} x \right ) y^{\prime }&={\mathrm e}^{\frac {x}{y}} y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
5.261 |
|
| \begin{align*}
x y^{\prime } y&=y^{2}+x^{2} \\
y \left (2\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.253 |
|
| \begin{align*}
y^{\prime }&=\frac {x +y}{x -y} \\
y \left (5\right ) &= 8 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
78.362 |
|
| \begin{align*}
t y^{\prime }+y&=t^{2} y^{2} \\
\end{align*} | [[_homogeneous, ‘class G‘], _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 2.043 |
|
| \begin{align*}
y^{\prime }+\frac {3 y}{t}&=t^{2} y^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.418 |
|
| \begin{align*}
t^{2} y^{\prime }+2 t y-y^{3}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.944 |
|
| \begin{align*}
\left (3 x-y \right ) x^{\prime }+9 y -2 x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
6.722 |
|
| \begin{align*}
x^{\prime }&=\frac {2 x y +x^{2}}{3 y^{2}+2 x y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
5.309 |
|
| \begin{align*}
4 x y^{\prime } y&=8 x^{2}+5 y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.772 |
|
| \begin{align*}
y^{\prime }&=2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.370 |
|
| \begin{align*}
y^{\prime }&=-x^{3} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.270 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x y}{y^{2}+x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
11.903 |
|
| \begin{align*}
x^{2} y^{\prime }+y^{2}&=x y^{\prime } y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
7.682 |
|
| \begin{align*}
\left (x +y\right ) y^{\prime }&=y-x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.427 |
|
| \begin{align*}
x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
3.379 |
|
| \begin{align*}
x -y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.811 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}}{3}+\frac {2}{3 x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]] |
✓ |
✓ |
✓ |
✓ |
2.378 |
|
| \begin{align*}
y^{\prime }+y^{2}+\frac {y}{x}-\frac {4}{x^{2}}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
2.900 |
|
| \begin{align*}
y^{\prime }&=\frac {x -y^{2}}{2 y \left (x +y^{2}\right )} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
2.273 |
|
| \begin{align*}
\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
4.365 |
|
| \begin{align*}
y^{3}+2 \left (x^{2}-x y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
2.481 |
|
| \begin{align*}
\left (y^{2} x^{2}-1\right ) y^{\prime }+2 x y^{3}&=0 \\
\end{align*} | [[_homogeneous, ‘class G‘], _rational] | ✓ | ✓ | ✓ | ✓ | 2.844 |
|
| \begin{align*}
x {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.583 |
|
| \begin{align*}
y&=2 y^{\prime } x +\frac {x^{2}}{2}+{y^{\prime }}^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✗ |
✓ |
0.602 |
|
| \begin{align*}
4 x -2 y^{\prime } y+x {y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.726 |
|
| \begin{align*}
x {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.698 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}-2 x y^{\prime } y+2 y x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.832 |
|
| \begin{align*}
y&=2 y^{\prime } x +\frac {x^{2}}{2}+{y^{\prime }}^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✗ |
✓ |
0.570 |
|
| \begin{align*}
y^{\prime }&=2 x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.622 |
|
| \begin{align*}
y^{\prime } x&=2 y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.066 |
|
| \begin{align*}
y^{\prime }&=\frac {x y}{y^{2}+x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
12.109 |
|
| \begin{align*}
2 x y^{\prime } y&=y^{2}+x^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
24.105 |
|
| \begin{align*}
y^{\prime } x +y&=x^{4} {y^{\prime }}^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
1.243 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}}{y x -x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
29.151 |
|
| \begin{align*}
y^{\prime } x&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.500 |
|
| \begin{align*}
x y^{\prime } y&=y-1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
9.033 |
|
| \begin{align*}
x^{5} y^{\prime }+y^{5}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
13.608 |
|
| \begin{align*}
y \ln \left (y\right )-y^{\prime } x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
8.182 |
|
| \begin{align*}
x^{2}-2 y^{2}+x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
63.872 |
|
| \begin{align*}
x^{2} y^{\prime }-3 y x -2 y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
20.773 |
|
| \begin{align*}
x^{2} y^{\prime }&=3 \left (y^{2}+x^{2}\right ) \arctan \left (\frac {y}{x}\right )+y x \\
\end{align*} | [[_homogeneous, ‘class A‘], _dAlembert] | ✓ | ✓ | ✓ | ✓ | 28.765 |
|
| \begin{align*}
x \sin \left (\frac {y}{x}\right ) y^{\prime }&=\sin \left (\frac {y}{x}\right ) y+x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
9.281 |
|
| \begin{align*}
y^{\prime } x&=y+2 \,{\mathrm e}^{-\frac {y}{x}} x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
12.257 |
|
| \begin{align*}
x -y-\left (x +y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
13.742 |
|
| \begin{align*}
y^{\prime } x&=2 x +3 y \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
8.058 |
|
| \begin{align*}
x^{2} y^{\prime }&=y^{2}+2 y x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
8.634 |
|
| \begin{align*}
x^{3}+y^{3}-y^{2} y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
12.873 |
|
| \begin{align*}
y^{\prime }&=\frac {1-x y^{2}}{2 x^{2} y} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.762 |
|
| \begin{align*}
y^{\prime }&=\frac {2+3 x y^{2}}{4 x^{2} y} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
10.136 |
|
| \begin{align*}
y^{\prime }&=\frac {y-x y^{2}}{x +x^{2} y} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
13.611 |
|
| \begin{align*}
\left (x +\frac {2}{y}\right ) y^{\prime }+y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
22.020 |
|
| \begin{align*}
-\frac {\sin \left (\frac {x}{y}\right )}{y}+\frac {x \sin \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
7.001 |
|
| \begin{align*}
\frac {x}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (y^{2}+x^{2}\right )^{{3}/{2}}}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
21.329 |
|
| \begin{align*}
\frac {4 y^{2}-2 x^{2}}{4 x y^{2}-x^{3}}+\frac {\left (8 y^{2}-x^{2}\right ) y^{\prime }}{4 y^{3}-x^{2} y}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
47.945 |
|
| \begin{align*}
\left (3 x^{2}-y^{2}\right ) y^{\prime }-2 y x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
21.891 |
|
| \begin{align*}
y^{\prime } x +y+3 x^{3} y^{4} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
10.654 |
|
| \begin{align*}
y+\left (x -2 x^{2} y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
11.681 |
|
| \begin{align*}
x +3 y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
12.409 |
|
| \begin{align*}
y-y^{\prime } x&=x y^{3} y^{\prime } \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 8.619 |
|
| \begin{align*}
\left (x +y\right ) y^{\prime }&=y-x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
8.879 |
|
| \begin{align*}
y^{\prime } x -y+y^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.751 |
|
| \begin{align*}
-y+y^{\prime } x&=x^{2} y^{4} \left (y^{\prime } x +y\right ) \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
23.807 |
|
| \begin{align*}
y^{\prime } x +y+x^{2} y^{5} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
10.838 |
|
| \begin{align*}
2 x y^{2}-y+y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
9.345 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y}{x}+\frac {x^{3}}{y}+x \tan \left (\frac {y}{x^{2}}\right ) \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
24.260 |
|
| \begin{align*}
y^{\prime } x -3 y&=x^{4} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.839 |
|
| \begin{align*}
2 y-x^{3}&=y^{\prime } x \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.780 |
|
| \begin{align*}
y^{\prime } x +y&=y^{3} x^{4} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
12.648 |
|
| \begin{align*}
y^{\prime } x +y&=x y^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.930 |
|
| \begin{align*}
\left (-y x +1\right ) y^{\prime }&=y^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
21.185 |
|
| \begin{align*}
y^{2}&=\left (x^{3}-y x \right ) y^{\prime } \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
20.256 |
|
| \begin{align*}
x^{2} y^{3}+y&=\left (x^{3} y^{2}-x \right ) y^{\prime } \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
17.617 |
|
| \begin{align*}
x y^{\prime } y&=x^{2} y^{\prime }+y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
40.289 |
|
| \begin{align*}
y+x^{2}&=y^{\prime } x \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.101 |
|
| \begin{align*}
y^{2}-3 y x -2 x^{2}&=\left (x^{2}-y x \right ) y^{\prime } \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
24.172 |
|
| \begin{align*}
x^{2} y^{4}+x^{6}-x^{3} y^{3} y^{\prime }&=0 \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 14.228 |
|
| \begin{align*}
y^{\prime }&=1+\frac {y}{x}-\frac {y^{2}}{x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
23.794 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x y \,{\mathrm e}^{\frac {x^{2}}{y^{2}}}}{y^{2}+y^{2} {\mathrm e}^{\frac {x^{2}}{y^{2}}}+2 x^{2} {\mathrm e}^{\frac {x^{2}}{y^{2}}}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
92.088 |
|
| \begin{align*}
3 x^{2} \ln \left (y\right )+\frac {x^{3} y^{\prime }}{y}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
9.212 |
|
| \begin{align*}
\frac {y-x}{\left (x +y\right )^{3}}-\frac {2 x y^{\prime }}{\left (x +y\right )^{3}}&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
25.569 |
|
| \begin{align*}
x y^{2}+y+y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.351 |
|
| \begin{align*}
3 y x +y^{2}+\left (3 y x +x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
23.863 |
|
| \begin{align*}
x^{2} y^{\prime }&=x^{2}+y x +y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
9.085 |
|
| \begin{align*}
x^{2} y^{\prime }-y^{2}&=2 y x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
9.356 |
|
| \begin{align*}
x^{\prime }&=\cos \left (\frac {x}{t}\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
5.874 |
|
| \begin{align*}
\left (t^{2}-x^{2}\right ) x^{\prime }&=t x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
13.527 |
|
| \begin{align*}
y^{\prime }&=\frac {\sqrt {1-y^{2}}\, \arcsin \left (y\right )}{x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
28.064 |
|
| \begin{align*}
v^{\prime }+\frac {2 v}{u}&=3 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
8.835 |
|
| \begin{align*}
y^{2}&=x \left (y-x \right ) y^{\prime } \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
35.377 |
|
| \begin{align*}
2 x^{2} y+y^{3}-x^{3} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
110.378 |
|
| \begin{align*}
y^{\prime } y+x&=m y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
63.859 |
|
| \begin{align*}
\frac {2 x}{y^{3}}+\left (\frac {1}{y^{2}}-\frac {3 x^{2}}{y^{4}}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
26.090 |
|
| \begin{align*}
y^{\prime }&=1+\frac {2 y}{x -y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
15.741 |
|
| \begin{align*}
x \left (x -2 y\right ) y^{\prime }+x^{2}+2 y^{2}&=0 \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] | ✓ | ✓ | ✓ | ✗ | 31.905 |
|
| \begin{align*}
5 x y^{\prime } y-y^{2}-x^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
34.142 |
|
| \begin{align*}
\left (x^{2}+3 y x -y^{2}\right ) y^{\prime }-3 y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
36.690 |
|
| \begin{align*}
\left (x^{2}+2 y x \right ) y^{\prime }-3 x^{2}+2 y x -y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
49.566 |
|
| \begin{align*}
3 x^{2} y^{\prime }+2 x^{2}-3 y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
10.801 |
|
| \begin{align*}
x^{2}+y^{2}-2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
32.809 |
|
| \begin{align*}
y^{2}+\left (x^{2}+y x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
131.329 |
|
| \begin{align*}
\left (3 x +4 y\right ) y^{\prime }+y-2 x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
91.762 |
|
| \begin{align*}
x^{2}-4 y x -2 y^{2}+\left (y^{2}-4 y x -2 x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
31.047 |
|
| \begin{align*}
\left (y x +1\right ) y-x \left (-y x +1\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
27.984 |
|
| \begin{align*}
a \left (y^{\prime } x +2 y\right )&=x y^{\prime } y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
26.100 |
|
| \begin{align*}
x^{2} y-2 x y^{2}-\left (x^{3}-3 x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
29.619 |
|
| \begin{align*}
3 x^{2} y^{4}+2 y x +\left (2 x^{3} y^{3}-x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
14.476 |
|
| \begin{align*}
y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
67.564 |
|
| \begin{align*}
2 x^{2} y-3 y^{4}+\left (3 x^{3}+2 x y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
28.137 |
|
| \begin{align*}
y^{2}+2 x^{2} y+\left (2 x^{3}-y x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
25.785 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x}&=y^{6} x^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
13.209 |
|
| \begin{align*}
y^{\prime } x +\frac {y^{2}}{x}&=y \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 10.318 |
|
| \begin{align*}
y^{\prime } y+x&=m \left (-y+y^{\prime } x \right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
50.895 |
|
| \begin{align*}
y^{\prime } y&=a x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
22.668 |
|
| \begin{align*}
\left (x +y\right ) y^{\prime }+x -y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
11.377 |
|
| \begin{align*}
\left (y^{2}-x^{2}\right ) y^{\prime }+2 y x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
27.120 |
|
| \begin{align*}
2 y^{2} x^{2}+y-\left (x^{3} y-3 x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
19.698 |
|
| \begin{align*}
x^{2} y^{\prime }+y^{2}&=x y^{\prime } y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
40.777 |
|
| \begin{align*}
y^{\prime }+\frac {n y}{x}&=a \,x^{-n} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✗ |
14.718 |
|
| \begin{align*}
{y^{\prime }}^{2}-a \,x^{3}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.934 |
|
| \begin{align*}
{y^{\prime }}^{3}&=a \,x^{4} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.810 |
|
| \begin{align*}
4 y&={y^{\prime }}^{2}+x^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
5.419 |
|
| \begin{align*}
x {y^{\prime }}^{2}-2 y^{\prime } y+a x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✗ |
✓ |
2.427 |
|
| \begin{align*}
y^{2}+x y^{\prime } y-x^{2} {y^{\prime }}^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.430 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}-2 x y^{\prime } y+2 y^{2}-x^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
7.705 |
|
| \begin{align*}
y&=-y^{\prime } x +x^{4} {y^{\prime }}^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
1.561 |
|
| \begin{align*}
3 y^{2} {y^{\prime }}^{2}-2 x y^{\prime } y-x^{2}+4 y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.672 |
|
| \begin{align*}
\left (y^{2}+x^{2}\right ) \left (1+y^{\prime }\right )^{2}-2 \left (x +y\right ) \left (1+y^{\prime }\right ) \left (y^{\prime } y+x \right )+\left (y^{\prime } y+x \right )^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
52.485 |
|
| \begin{align*}
\left (y^{\prime } y+n x \right )^{2}&=\left (y^{2}+n \,x^{2}\right ) \left (1+{y^{\prime }}^{2}\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✗ |
✓ |
1.756 |
|
| \begin{align*}
y&=y^{\prime } x +\frac {m}{y^{\prime }} \\
\end{align*} | [[_homogeneous, ‘class G‘], _rational, _Clairaut] | ✓ | ✓ | ✓ | ✗ | 0.420 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}-3 x y^{\prime } y+x^{3}+2 y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
0.377 |
|
| \begin{align*}
a {y^{\prime }}^{3}&=27 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.707 |
|
| \begin{align*}
x {y^{\prime }}^{2}-2 y^{\prime } y+a x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✗ |
✓ |
0.517 |
|
| \begin{align*}
x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+a^{3}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
0.464 |
|
| \begin{align*}
4 {y^{\prime }}^{2}&=9 x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.318 |
|
| \begin{align*}
y^{\prime } x +x +y&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.062 |
|
| \begin{align*}
\left (y x +1\right ) y-y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.415 |
|
| \begin{align*}
y-x +\left (x +y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.443 |
|
| \begin{align*}
x^{3}+3 x y^{2}+\left (y^{3}+3 x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
10.083 |
|
| \begin{align*}
y^{\prime } y+x&=m \left (-y+y^{\prime } x \right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
6.916 |
|
| \begin{align*}
\left (y^{2}+x^{2}\right ) y^{\prime }&=x^{2}+y x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
7.862 |
|
| \begin{align*}
\left (x \cos \left (\frac {y}{x}\right )+\sin \left (\frac {y}{x}\right ) y\right ) y-\left (\sin \left (\frac {y}{x}\right ) y-x \cos \left (\frac {y}{x}\right )\right ) x y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
7.743 |
|
| \begin{align*}
x^{2}-y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.592 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x}+\tan \left (\frac {y}{x}\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
3.753 |
|
| \begin{align*}
y^{2}&=\left (y x -x^{2}\right ) y^{\prime } \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
8.029 |
|
| \begin{align*}
x \sin \left (\frac {y}{x}\right ) y^{\prime }&=\sin \left (\frac {y}{x}\right ) y-x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.085 |
|
| \begin{align*}
\left (y^{2}+x^{2}\right ) y^{\prime }&=y x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.436 |
|
| \begin{align*}
x^{2} y^{\prime }+y \left (x +y\right )&=0 \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 6.819 |
|
| \begin{align*}
2 y^{\prime }&=\frac {y}{x}+\frac {y^{2}}{x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
7.087 |
|
| \begin{align*}
\left (3 x^{2}+y^{2}\right ) y y^{\prime }+x \left (x^{2}+3 y^{2}\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
10.890 |
|
| \begin{align*}
x^{2}+3 y^{2}-2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.397 |
|
| \begin{align*}
x^{2} y-2 x y^{2}-\left (x^{3}-3 x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
5.120 |
|
| \begin{align*}
x^{2}+y^{2}-2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
7.537 |
|
| \begin{align*}
y^{2}+2 x^{2} y+\left (2 x^{3}-y x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
6.102 |
|
| \begin{align*}
2 y+3 y^{\prime } x +2 x y \left (3 y+4 y^{\prime } x \right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
10.228 |
|
| \begin{align*}
y^{\prime } y+x&=m \left (-y+y^{\prime } x \right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
8.708 |
|
| \begin{align*}
2 y+3 y^{\prime } x +2 x y \left (3 y+4 y^{\prime } x \right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
8.084 |
|
| \begin{align*}
x^{2} y^{\prime }+y^{2}&=x y^{\prime } y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
10.436 |
|
| \begin{align*}
{y^{\prime }}^{3}-a \,x^{4}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.054 |
|
| \begin{align*}
x {y^{\prime }}^{2}+a x&=2 y^{\prime } y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✗ |
✓ |
0.632 |
|
| \begin{align*}
y&=y^{\prime } x +\frac {a}{y^{\prime }} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Clairaut] |
✓ |
✓ |
✓ |
✗ |
0.563 |
|
| \begin{align*}
x {y^{\prime }}^{2}-y^{\prime } y+a&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Clairaut] |
✓ |
✓ |
✓ |
✗ |
0.505 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}-2 x y^{\prime } y+2 y^{2}&=x^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.735 |
|
| \begin{align*}
4 x {y^{\prime }}^{2}+4 y^{\prime } y&=y^{4} \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
1.007 |
|
| \begin{align*}
y-y^{\prime } x&=y^{\prime } y+x \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] | ✓ | ✓ | ✓ | ✓ | 3.656 |
|
| \begin{align*}
2 y&=y^{\prime } x +\frac {a}{y^{\prime }} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.859 |
|
| \begin{align*}
\left (x \cos \left (\frac {y}{x}\right )+\sin \left (\frac {y}{x}\right ) y\right ) y&=\left (\sin \left (\frac {y}{x}\right ) y-x \cos \left (\frac {y}{x}\right )\right ) x y^{\prime } \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
6.999 |
|
| \begin{align*}
x {y^{\prime }}^{2}-2 y^{\prime } y+a x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✗ |
✓ |
0.704 |
|
| \begin{align*}
4 {y^{\prime }}^{2}&=9 x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.395 |
|
| \begin{align*}
3 y&=2 y^{\prime } x -\frac {2 {y^{\prime }}^{2}}{x} \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
0.852 |
|
| \begin{align*}
3 x {y^{\prime }}^{2}-6 y^{\prime } y+x +2 y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.848 |
|
| \begin{align*}
y^{2} \left (y-y^{\prime } x \right )&=x^{4} {y^{\prime }}^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
1.268 |
|
| \begin{align*}
y+x^{2}&={y^{\prime }}^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
2.488 |
|
| \begin{align*}
y-y^{\prime } x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.169 |
|
| \begin{align*}
\left (x +2 y^{3}\right ) y^{\prime }&=y \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
4.795 |
|
| \begin{align*}
1+y^{2}-x y^{\prime } y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.233 |
|
| \begin{align*}
y^{2}+\left (x^{2}+y x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
64.064 |
|
| \begin{align*}
\left (x +2 y^{3}\right ) y^{\prime }&=y \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
3.916 |
|
| \begin{align*}
y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
25.577 |
|
| \begin{align*}
y&=-y^{\prime } x +x^{4} {y^{\prime }}^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
0.703 |
|
| \begin{align*}
\left (y^{\prime } y+n x \right )^{2}&=\left (y^{2}+n \,x^{2}\right ) \left (1+{y^{\prime }}^{2}\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✗ |
✓ |
4.289 |
|
| \begin{align*}
\left (y^{2}+x^{2}\right ) \left (1+y^{\prime }\right )^{2}-2 \left (x +y\right ) \left (1+y^{\prime }\right ) \left (y^{\prime } y+x \right )+\left (y^{\prime } y+x \right )^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
69.634 |
|
| \begin{align*}
x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+a^{3}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
0.997 |
|
| \begin{align*}
x {y^{\prime }}^{2}-2 y^{\prime } y+x +2 y&=0 \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _dAlembert] | ✓ | ✓ | ✓ | ✓ | 1.096 |
|
| \begin{align*}
{y^{\prime }}^{2} y^{2} \cos \left (a \right )^{2}-2 y^{\prime } x y \sin \left (a \right )^{2}+y^{2}-x^{2} \sin \left (a \right )^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
63.257 |
|
| \begin{align*}
y^{\prime }&=\frac {\sqrt {1-y^{2}}}{x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
134.348 |
|
| \begin{align*}
y^{\prime } x&=y \left (1-2 y\right ) \\
y \left (1\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
10.683 |
|
| \begin{align*}
y^{\prime } x -2 y&=x^{2} \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
6.862 |
|
| \begin{align*}
y^{\prime }-\frac {3 y}{x}&=x^{3} \\
y \left (1\right ) &= 4 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
6.311 |
|
| \begin{align*}
x +y^{2}-2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
8.126 |
|
| \begin{align*}
\sin \left (y x \right )+x y \cos \left (y x \right )+x^{2} \cos \left (y x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact] |
✓ |
✓ |
✓ |
✓ |
24.533 |
|
| \begin{align*}
x^{2}+y-y^{\prime } x&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
5.992 |
|
| \begin{align*}
y&=y^{\prime } x +\frac {1}{y^{\prime }} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Clairaut] |
✓ |
✓ |
✓ |
✗ |
0.809 |
|
| \begin{align*}
y^{\prime }&=\frac {y x +y^{2}}{x^{2}} \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.954 |
|
| \begin{align*}
x^{2}-y x +y^{2}-x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
49.556 |
|
| \begin{align*}
y x -\left (y^{2}+x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
7.856 |
|
| \begin{align*}
x^{2}+2 y x -4 y^{2}-\left (x^{2}-8 y x -4 y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
34.056 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y \left (y-1\right )}{x \left (2-y\right )} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
75.521 |
|
| \begin{align*}
\left (y x +1\right ) y&=y^{\prime } x \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
7.368 |
|
| \begin{align*}
t x^{\prime }+x&=2 t^{2} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.133 |
|
| \begin{align*}
x^{\prime }&=x^{2} \\
x \left (t_{0} \right ) &= a \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
4.073 |
|
| \begin{align*}
x^{\prime }&=4 t^{3} x^{4} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
8.076 |
|
| \begin{align*}
x^{\prime }&=-t x^{2} \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 19.829 |
|
| \begin{align*}
x^{\prime }&=\frac {t}{x} \\
x \left (\sqrt {2}\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
8.734 |
|
| \begin{align*}
x^{\prime }&=-\frac {t}{4 x^{3}} \\
x \left (1\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.061 |
|
| \begin{align*}
x^{\prime }&=-t^{2} x^{2} \\
x \left (1\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
9.409 |
|
| \begin{align*}
x^{\prime }&=-\left (1+p \right ) t^{p} x^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
7.174 |
|
| \begin{align*}
x +3 y+\left (3 x +y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
19.030 |
|
| \begin{align*}
x +y+\left (x -y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
15.331 |
|
| \begin{align*}
x^{2}+2 y x -y^{2}+\left (x -y\right )^{2} y^{\prime }&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
12.540 |
|
| \begin{align*}
x -2 y^{3} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
10.944 |
|
| \begin{align*}
x +y^{2}+x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
9.540 |
|
| \begin{align*}
x y^{\prime } y+1+y^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
7.831 |
|
| \begin{align*}
x^{\prime }&=\frac {x+2 t}{t} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
4.139 |
|
| \begin{align*}
x^{\prime }&=\frac {t x}{t^{2}+x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
8.955 |
|
| \begin{align*}
x^{\prime }&=\frac {3 x^{2}-2 t^{2}}{t x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
10.858 |
|
| \begin{align*}
x^{\prime }&=\frac {t^{2}+x^{2}}{2 t x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
27.693 |
|
| \begin{align*}
x&=t x^{\prime }+\frac {1}{x^{\prime }} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Clairaut] |
✓ |
✓ |
✓ |
✗ |
0.900 |
|
| \begin{align*}
-y+y^{\prime } x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.757 |
|
| \begin{align*}
y^{\prime } y+x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
11.799 |
|
| \begin{align*}
y^{\prime } x +y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.728 |
|
| \begin{align*}
y^{\prime } x -2 y&=0 \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 5.937 |
|
| \begin{align*}
\sqrt {x}\, y^{\prime }+1&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.702 |
|
| \begin{align*}
y^{\prime }&=-\frac {x}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
7.417 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y}{x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.666 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{y^{3}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
7.668 |
|
| \begin{align*}
y^{\prime }&=x^{2} y^{3} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
11.528 |
|
| \begin{align*}
y^{\prime }&=\frac {x +y}{x} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
6.994 |
|
| \begin{align*}
x -y+\left (x -4 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
39.810 |
|
| \begin{align*}
x^{2}-y x +y^{2}-x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
39.319 |
|
| \begin{align*}
y+x y^{2}+\left (x -x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
33.735 |
|
| \begin{align*}
x^{2}-2 y^{2}+x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✗ |
57.768 |
|
| \begin{align*}
y x +\left (y^{2}+x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
16.385 |
|
| \begin{align*}
y+y^{\prime } x +\frac {y^{3} \left (y-y^{\prime } x \right )}{x}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
37.851 |
|
| \begin{align*}
\left (x +y^{2}\right ) y^{\prime }+y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational] |
✓ |
✓ |
✓ |
✓ |
12.133 |
|
| \begin{align*}
\left (x +y\right ) y^{\prime }+3 x +y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
16.425 |
|
| \begin{align*}
y^{\prime }&=2 x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.532 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x y \,{\mathrm e}^{\frac {2 x}{y}}}{y^{2}+y^{2} {\mathrm e}^{\frac {2 x}{y}}+2 x^{2} {\mathrm e}^{\frac {2 x}{y}}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
73.323 |
|
| \begin{align*}
y^{2}-x^{2}-2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
30.306 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{3}-2 x^{3}}{x y^{2}} \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 16.738 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y^{4}+x^{4}}{x y^{3}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
21.921 |
|
| \begin{align*}
y^{\prime }&=\sqrt {1-\frac {y^{2}}{x^{2}}}+\frac {y}{x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
422.952 |
|
| \begin{align*}
2 x y^{\prime } y&=y^{2}-x^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
14.102 |
|
| \begin{align*}
x +y-\left (x -y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
39.132 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y^{4}+x^{4}}{x y^{3}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
12.193 |
|
| \begin{align*}
x^{2}-3 y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
79.643 |
|
| \begin{align*}
x y^{\prime } y+x^{2}+y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
17.227 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x y}{x^{2}-y^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
11.204 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}+x^{2}}{y x} \\
y \left (1\right ) &= -2 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✗ |
10.610 |
|
| \begin{align*}
y-x y^{2}+y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
9.313 |
|
| \begin{align*}
2 y-8 x^{2}+y^{\prime } x&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
8.724 |
|
| \begin{align*}
y-y^{\prime } x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.924 |
|
| \begin{align*}
y^{\prime } x -y+y^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
8.585 |
|
| \begin{align*}
y^{\prime }&=\frac {3 y x^{2}}{x^{3}+2 y^{4}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
20.110 |
|
| \begin{align*}
3 x^{2} y+\left (y^{4}-x^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
17.566 |
|
| \begin{align*}
y+\left (x +x^{3} y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
14.124 |
|
| \begin{align*}
\left (x^{3}-y\right ) y-x \left (x^{3}+y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
79.002 |
|
| \begin{align*}
\frac {y^{2}-y x}{x y^{2}}+\frac {x y^{\prime }}{y^{2}}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
13.250 |
|
| \begin{align*}
\frac {y^{\prime }}{x}-\frac {y}{x^{2}}&=0 \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 4.036 |
|
| \begin{align*}
y^{\prime }&=\frac {x -2 y}{2 x -y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
19.972 |
|
| \begin{align*}
y^{\prime } \left (x +\frac {x^{2}}{y}\right )&=y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
40.481 |
|
| \begin{align*}
2 x -y+\left (-x +2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
13.447 |
|
| \begin{align*}
y^{\prime }+\frac {4 y}{x}&=x^{4} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
10.046 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x}&=3 x \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
7.332 |
|
| \begin{align*}
y^{\prime }-\frac {y}{x}&=x \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
5.083 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{4}+2 y}{x} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
9.992 |
|
| \begin{align*}
y^{2}+\left (3 y x -1\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
35.495 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2} x^{2}+2 y}{x} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
22.705 |
|
| \begin{align*}
6 y^{2}-x \left (2 x^{3}+y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
73.200 |
|
| \begin{align*}
y^{\prime }+\frac {4 y}{x}&=x^{4} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
5.556 |
|
| \begin{align*}
{y^{\prime }}^{2}-4 y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.705 |
|
| \begin{align*}
y-\frac {y^{\prime } x}{2}-\frac {x}{2 y^{\prime }}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.676 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x +y}{y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
34.476 |
|
| \begin{align*}
2 x^{4} y y^{\prime }+y^{4}&=4 x^{6} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
71.490 |
|
| \begin{align*}
x {y^{\prime }}^{2}-3 y^{\prime } y+9 x^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
17.309 |
|
| \begin{align*}
y^{\prime } x&=x +2 y \\
\end{align*} | [_linear] | ✓ | ✓ | ✓ | ✓ | 5.037 |
|
| \begin{align*}
y^{\prime } y+x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
22.436 |
|
| \begin{align*}
y^{\prime }&=-\frac {x}{4 y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
9.153 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
26.850 |
|
| \begin{align*}
3 x^{2}-2 y^{3} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
11.879 |
|
| \begin{align*}
y^{\prime } y+x&=0 \\
y \left (1\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
10.701 |
|
| \begin{align*}
x^{3}-y^{3}+y^{2} y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
45.417 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x}-\csc \left (\frac {y}{x}\right )^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
118.658 |
|
| \begin{align*}
3 x^{2}+2 y x +4 y^{2}+\left (20 x^{2}+6 y x +y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
131.373 |
|
| \begin{align*}
a x -b y+\left (b x -a y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
81.242 |
|
| \begin{align*}
a \,x^{2}+2 b x y+c y^{2}+\left (b \,x^{2}+2 c x y+y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
194.913 |
|
| \begin{align*}
-y+y^{\prime } x&=x^{2} y y^{\prime } \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
38.705 |
|
| \begin{align*}
\left (y^{2}+x^{2}\right ) \left (y^{\prime } x +y\right )&=x y \left (-y+y^{\prime } x \right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
111.341 |
|
| \begin{align*}
3 y+2 y^{\prime } x +4 x y^{2}+3 x^{2} y y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
91.640 |
|
| \begin{align*}
y^{\prime } x +y&=3 x^{2} \\
y \left (2\right ) &= 1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
23.538 |
|
| \begin{align*}
x^{2} y^{\prime }-y x&=x^{2}-y^{2} \\
y \left (1\right ) &= 0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
36.465 |
|
| \begin{align*}
y&=\left (2 x^{2} y^{3}-x \right ) y^{\prime } \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✗ |
✗ |
✗ |
70.973 |
|
| \begin{align*}
x y \left (y^{\prime } x +y\right )&=4 x^{3} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
71.394 |
|
| \begin{align*}
\left (1+{\mathrm e}^{-\frac {y}{x}}\right ) y^{\prime }+1-\frac {y}{x}&=0 \\
\end{align*} | [[_homogeneous, ‘class A‘], _dAlembert] | ✓ | ✓ | ✓ | ✓ | 94.017 |
|
| \begin{align*}
-y+y^{\prime } x&=y^{3} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
26.202 |
|
| \begin{align*}
3 x^{2}+2 y x -2 y^{2}+\left (2 x^{2}+6 y x +y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
84.216 |
|
| \begin{align*}
{y^{\prime }}^{2}-3&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.457 |
|
| \begin{align*}
{y^{\prime }}^{2}-4 y^{\prime }+2&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.494 |
|
| \begin{align*}
x +y {y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
47.353 |
|
| \begin{align*}
y&=4 x {y^{\prime }}^{2}+2 y^{\prime } x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
21.903 |
|
| \begin{align*}
\left (y-y^{\prime } x \right )^{2}&=y^{\prime } \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Clairaut] |
✓ |
✓ |
✓ |
✓ |
1.426 |
|
| \begin{align*}
y-{y^{\prime }}^{2}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.936 |
|
| \begin{align*}
x {y^{\prime }}^{2}&=y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
19.283 |
|
| \begin{align*}
x^{2} y^{\prime }+y^{2}&=x y^{\prime } y \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
112.069 |
|
| \begin{align*}
x y^{2}&=y-y^{\prime } x \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
28.459 |
|
| \begin{align*}
{b^{\prime }}^{7}&=3 p \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
1.218 |
|
| \begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.785 |
|
| \begin{align*}
y^{\prime }&=5 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.288 |
|
| \begin{align*}
y^{\prime }&=\frac {x +y}{x} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.893 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}}{x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.662 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x y \,{\mathrm e}^{\frac {y}{x}}}{x^{2}+y^{2} \sin \left (\frac {x}{y}\right )} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
33.362 |
|
| \begin{align*}
3 x^{2} y+\left (x^{3}+y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.566 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}}{y^{2}} \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 2.782 |
|
| \begin{align*}
y^{\prime }&=-\frac {2 y}{x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.798 |
|
| \begin{align*}
y^{\prime }&=\frac {x y^{2}}{x^{2} y+y^{3}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
3.499 |
|
| \begin{align*}
x -y^{2} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.880 |
|
| \begin{align*}
y^{\prime }&=x^{3} y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.403 |
|
| \begin{align*}
y^{\prime } y+x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.002 |
|
| \begin{align*}
\frac {1}{x}-\frac {y^{\prime }}{y}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.598 |
|
| \begin{align*}
\frac {1}{x}+y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.219 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.537 |
|
| \begin{align*}
y^{\prime }&=\frac {x +y}{x} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.963 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y^{4}+x^{4}}{x y^{3}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.367 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x y}{x^{2}-y^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
3.991 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x y \,{\mathrm e}^{\frac {x^{2}}{y^{2}}}}{y^{2}+y^{2} {\mathrm e}^{\frac {x^{2}}{y^{2}}}+2 x^{2} {\mathrm e}^{\frac {x^{2}}{y^{2}}}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
22.035 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x y \,{\mathrm e}^{\frac {x^{2}}{y^{2}}}}{y^{2}+y^{2} {\mathrm e}^{\frac {x^{2}}{y^{2}}}+2 x^{2} {\mathrm e}^{\frac {x^{2}}{y^{2}}}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
12.379 |
|
| \begin{align*}
y^{\prime }&=\frac {x +2 y}{x} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.323 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}+2 y^{2}}{y x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.600 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}+2 x}{y x} \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.469 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}+x^{2}}{y x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.699 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}}{y x +\left (x y^{2}\right )^{{1}/{3}}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
104.149 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{4}+3 y^{2} x^{2}+y^{4}}{x^{3} y} \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _dAlembert] | ✓ | ✓ | ✓ | ✗ | 4.875 |
|
| \begin{align*}
y^{\prime } x +y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.562 |
|
| \begin{align*}
\left (x +y\right ) y^{\prime }+x -y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.290 |
|
| \begin{align*}
y-y^{\prime } x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.357 |
|
| \begin{align*}
y^{\prime } x -y+y^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.396 |
|
| \begin{align*}
y^{\prime }&=\frac {3 y x^{2}}{x^{3}+2 y^{4}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
3.326 |
|
| \begin{align*}
y^{\prime }&=\frac {-y+x y^{2}}{x} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.729 |
|
| \begin{align*}
y+1-y^{\prime } x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.666 |
|
| \begin{align*}
y+x^{3} y^{3}+y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.681 |
|
| \begin{align*}
y+x^{4} y^{2}+y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.522 |
|
| \begin{align*}
1-2 x y^{\prime } y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.677 |
|
| \begin{align*}
y+3 y^{\prime } x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.736 |
|
| \begin{align*}
2 x y^{2}+\frac {x}{y^{2}}+4 x^{2} y y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.542 |
|
| \begin{align*}
y^{\prime }+\frac {4 y}{x}&=x^{4} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.783 |
|
| \begin{align*}
y^{\prime }+\frac {2 y}{x}&=x \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.040 |
|
| \begin{align*}
y^{\prime }+\frac {2 y}{x}&=-x^{9} y^{5} \\
y \left (-1\right ) &= 2 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.238 |
|
| \begin{align*}
y^{\prime }-\frac {2 y}{x}&=0 \\
y \left (1\right ) &= 3 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.034 |
|
| \begin{align*}
y^{\prime }+\frac {4 y}{x}&=x^{4} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.774 |
|
| \begin{align*}
y+\left (2 x -3 y\right ) y^{\prime }&=0 \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] | ✓ | ✓ | ✓ | ✓ | 17.885 |
|
| \begin{align*}
s^{\prime }&=9 \sqrt {u} \\
s \left (4\right ) &= 16 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.570 |
|
| \begin{align*}
y^{\prime }&=-\frac {4}{x^{2}} \\
y \left (1\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.534 |
|
| \begin{align*}
y^{\prime }&=\frac {x +y}{y-x} \\
y \left (-2\right ) &= 3 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.080 |
|
| \begin{align*}
y^{\prime }&=y^{3} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.089 |
|
| \begin{align*}
1+{y^{\prime }}^{2}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.222 |
|
| \begin{align*}
y^{\prime }&=\frac {x -2 y}{y-2 x} \\
y \left (1\right ) &= 2 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✗ |
✗ |
7.465 |
|
| \begin{align*}
y^{\prime }&=2 x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.282 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.541 |
|
| \begin{align*}
y^{\prime }&=\frac {\left (\sqrt {y x +1}-1\right )^{2}}{x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _Clairaut] |
✓ |
✓ |
✓ |
✓ |
6.492 |
|
| \begin{align*}
y^{\prime }&=-\frac {x}{y} \\
y \left (1\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.315 |
|
| \begin{align*}
y^{\prime }&=-\frac {y}{x} \\
y \left (1\right ) &= 3 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.105 |
|
| \begin{align*}
y^{\prime } x&=1+y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.413 |
|
| \begin{align*}
y^{\prime }&=\frac {4 y^{2}-x^{4}}{4 y x} \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.044 |
|
| \begin{align*}
y^{\prime }&=1+\frac {y}{x} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.860 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x}+\frac {y^{2}}{x^{2}} \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.204 |
|
| \begin{align*}
y^{\prime } x&=2 x +3 y \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.586 |
|
| \begin{align*}
x^{2}-y^{2}-2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.524 |
|
| \begin{align*}
y&=\left (2 x +3 y\right ) y^{\prime } \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] | ✓ | ✓ | ✓ | ✓ | 12.288 |
|
| \begin{align*}
x^{3}+y^{3}-y^{2} y^{\prime } x&=0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.647 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{2 y}+\frac {y}{2 x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.223 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x}+\sec \left (\frac {y}{x}\right )^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
3.851 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x +5 y}{2 x -y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
9.132 |
|
| \begin{align*}
y^{\prime }&=\frac {6 x^{2}-5 y x -2 y^{2}}{6 x^{2}-8 y x +y^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
9.227 |
|
| \begin{align*}
2 x \sin \left (\frac {y}{x}\right )+2 \tan \left (\frac {y}{x}\right ) x -y \cos \left (\frac {y}{x}\right )-y \sec \left (\frac {y}{x}\right )^{2}+\left (x \cos \left (\frac {y}{x}\right )+x \sec \left (\frac {y}{x}\right )^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
33.115 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y}{x}+\frac {x^{3}}{y}+x \tan \left (\frac {y}{x^{2}}\right ) \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
7.041 |
|
| \begin{align*}
y^{\prime }&=\frac {3 x^{5}+3 y^{2} x^{2}}{2 x^{3} y-2 y^{3}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
4.083 |
|
| \begin{align*}
2+3 x y^{2}-4 x^{2} y y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.440 |
|
| \begin{align*}
y^{\prime }&=\frac {y \left (y x +1\right )}{x \left (-y x +1\right )} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
4.763 |
|
| \begin{align*}
3 x +4 y^{\prime } y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.484 |
|
| \begin{align*}
y^{\prime }&=\frac {x -y}{x +y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.292 |
|
| \begin{align*}
2 x y^{\prime } y&=x^{2}-y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.328 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{x +y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
7.357 |
|
| \begin{align*}
y^{\prime }&=\frac {y-2 x}{-x +2 y} \\
y \left (1\right ) &= 2 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.648 |
|
| \begin{align*}
y^{2}+2 x^{2}+x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.179 |
|
| \begin{align*}
y+\left (4 x -y^{2}\right ) y^{\prime }&=0 \\
\end{align*} | [[_homogeneous, ‘class G‘], _rational] | ✓ | ✓ | ✓ | ✗ | 3.664 |
|
| \begin{align*}
\left (x +y\right ) y^{\prime }+x -y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.805 |
|
| \begin{align*}
x y^{2}+2 y+\left (3 x^{2} y-4 x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
4.753 |
|
| \begin{align*}
3 x +2 y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.135 |
|
| \begin{align*}
2 x^{3}-y+y^{\prime } x&=0 \\
y \left (1\right ) &= 2 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.308 |
|
| \begin{align*}
y^{\prime }+\frac {4 y}{x}&=x \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.218 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{y^{3}-3 x} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
3.795 |
|
| \begin{align*}
y^{\prime }&=\frac {x +y}{x} \\
y \left (3\right ) &= 0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.333 |
|
| \begin{align*}
2 y^{2}+4 x^{2} y+\left (4 y x +3 x^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
12.365 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x}&=1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.871 |
|
| \begin{align*}
y^{\prime } x +3 y&=x^{2} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.293 |
|
| \begin{align*}
r^{\prime }&=t -\frac {r}{3 t} \\
r \left (1\right ) &= 1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.540 |
|
| \begin{align*}
y^{2}+\left (-x^{3}+y x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
4.143 |
|
| \begin{align*}
y+\left (2 x^{2} y-x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
5.902 |
|
| \begin{align*}
y+\left (y^{3}-x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
3.017 |
|
| \begin{align*}
y^{\prime }+\frac {2 y}{x}&=x^{2} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.658 |
|
| \begin{align*}
3-y+2 y^{\prime } x&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.412 |
|
| \begin{align*}
x^{2}+y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} | [[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 4.006 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x}+\arctan \left (\frac {y}{x}\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
3.764 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y x -y^{4}}{3 x^{2}} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.840 |
|
| \begin{align*}
y^{\prime } \left (y^{2}+2 x \right )&=y \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
2.317 |
|
| \begin{align*}
y^{\prime }&=\frac {x +2 y}{y-2 x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.066 |
|
| \begin{align*}
x^{2}-y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.146 |
|
| \begin{align*}
x +2 y+y^{\prime } x&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.873 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{\frac {y}{x}}+\frac {y}{x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
3.858 |
|
| \begin{align*}
y^{\prime } x&=x^{3}+2 y \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.180 |
|
| \begin{align*}
3 x y^{2}+2+2 x^{2} y y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.231 |
|
| \begin{align*}
\left (2 y^{2}-x \right ) y^{\prime }+y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
2.141 |
|
| \begin{align*}
-y+y^{\prime } x&=x \cos \left (\frac {y}{x}\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.086 |
|
| \begin{align*}
2 y+3 x +y^{\prime } x&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.899 |
|
| \begin{align*}
y^{\prime }&=\frac {y \left (x +y\right )}{x \left (x -y\right )} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
5.626 |
|
| \begin{align*}
y^{\prime } x +y&=x^{2} \\
y \left (1\right ) &= 2 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.831 |
|
| \begin{align*}
-y+y^{\prime } x&=x^{2} y y^{\prime } \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
4.799 |
|
| \begin{align*}
\left (x +x \cos \left (y\right )\right ) y^{\prime }-\sin \left (y\right )-y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.297 |
|
| \begin{align*}
y^{2}&=\left (x^{2}+2 y x \right ) y^{\prime } \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
66.686 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{y}+\frac {y}{x} \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 3.700 |
|
| \begin{align*}
-y+y^{\prime } x&=2 x^{2} y^{2} y^{\prime } \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
1.963 |
|
| \begin{align*}
y^{\prime }&=2-\frac {y}{x} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.968 |
|
| \begin{align*}
y^{\prime }&=\frac {x +3 y}{x -3 y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
5.577 |
|
| \begin{align*}
3 y^{2}+4 y x +\left (x^{2}+2 y x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
3.785 |
|
| \begin{align*}
x^{2} y^{3}+2 x y^{2}+y+\left (x^{3} y^{2}-2 x^{2} y+x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✗ |
✓ |
2.626 |
|
| \begin{align*}
y^{\prime }&=\sqrt {\frac {5 x -6 y}{5 x +6 y}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
33.900 |
|
| \begin{align*}
x^{2} y+2 y^{4}+\left (x^{3}+3 x y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
2.872 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.344 |
|
| \begin{align*}
x^{2}+y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.535 |
|
| \begin{align*}
y^{\prime } y&=x^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.829 |
|
| \begin{align*}
x^{\prime }&=\frac {x}{t} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.298 |
|
| \begin{align*}
y^{\prime } x +y&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.855 |
|
| \begin{align*}
y^{\prime } x +y-1&=0 \\
y \left (1\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.390 |
|
| \begin{align*}
y-y^{\prime } x&=3 y^{2} y^{\prime } \\
y \left (3\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
1.824 |
|
| \begin{align*}
x^{2} y^{\prime }+2 y x&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.980 |
|
| \begin{align*}
x \cos \left (y\right ) y^{\prime }+\sin \left (y\right )&=5 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.770 |
|
| \begin{align*}
x \sec \left (y\right )^{2} y^{\prime }+1+\tan \left (y\right )&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
17.115 |
|
| \begin{align*}
{\mathrm e}^{y} \left (y^{\prime } x +1\right )&=5 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.154 |
|
| \begin{align*}
y^{\prime }&=\frac {x -y}{x +y} \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] | ✓ | ✓ | ✓ | ✓ | 3.245 |
|
| \begin{align*}
y^{\prime }&=1+\frac {y}{x} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.576 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}+x^{2}}{y x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.682 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x}-\frac {x}{y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.664 |
|
| \begin{align*}
y^{\prime }-\frac {3 y}{x}&=5 x \\
y \left ({\mathrm e}\right ) &= 0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.995 |
|
| \begin{align*}
y^{\prime }-\frac {6 y}{x}&=7 x \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.055 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}+x^{2}}{2 y x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.281 |
|
| \begin{align*}
y^{\prime }&=-\frac {y^{2}+x^{2}}{2 y x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.645 |
|
| \begin{align*}
y^{\prime }&=\frac {x -y}{x +y} \\
y \left (1\right ) &= -1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.946 |
|
| \begin{align*}
-y+y^{\prime } x&=1 \\
y \left (2\right ) &= 3 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.053 |
|
| \begin{align*}
y^{\prime } x +y^{2}&=1 \\
y \left (-2\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.692 |
|
| \begin{align*}
x^{2}+y^{2}-2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.216 |
|
| \begin{align*}
y^{\prime } x +y&=3 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.201 |
|
| \begin{align*}
y^{\prime } x +y&=3 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.222 |
|
| \begin{align*}
y^{\prime } x +y&=3 x \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.300 |
|
| \begin{align*}
x^{2}+y^{2}-2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.343 |
|
| \begin{align*}
-y+y^{\prime } x&=2 x^{2} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.017 |
|
| \begin{align*}
y^{\prime } x +y&=x^{5} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.732 |
|
| \begin{align*}
y^{\prime } y-7 y&=6 x \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] | ✓ | ✓ | ✓ | ✗ | 6.419 |
|
| \begin{align*}
y^{\prime } y+x&=y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.903 |
|
| \begin{align*}
y^{\prime }-\frac {y}{x}&=-\frac {1}{2 y} \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.707 |
|
| \begin{align*}
y^{\prime }+\frac {y}{x}&=-2 x y^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.550 |
|
| \begin{align*}
y^{\prime } x +y&=2 x \\
y \left (2\right ) &= 2 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.725 |
|
| \begin{align*}
x +y+\left (x -y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.691 |
|
| \begin{align*}
x^{2}+y^{2}-2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.667 |
|
| \begin{align*}
x^{2}+y^{2}+2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.112 |
|
| \begin{align*}
3 x^{2} y+y^{2}-\left (-x^{3}-2 y x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
4.488 |
|
| \begin{align*}
x^{2}+y^{2}+2 x y^{\prime } y&=0 \\
y \left (1\right ) &= -1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.485 |
|
| \begin{align*}
y-y^{\prime } x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.583 |
|
| \begin{align*}
x^{2}-2 y+y^{\prime } x&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.486 |
|
| \begin{align*}
y+\left (2 x -y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
5.679 |
|
| \begin{align*}
y-2 x -y^{\prime } x&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.989 |
|
| \begin{align*}
y-\left (x -2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.704 |
|
| \begin{align*}
x^{4}+y^{4}-x y^{3} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.387 |
|
| \begin{align*}
5 x -y+3 y^{\prime } x&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.701 |
|
| \begin{align*}
y^{\prime } x +y&=3 \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 1.370 |
|
| \begin{align*}
x^{2}+y^{2}-2 x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.651 |
|
| \begin{align*}
3 y+\left (7 x -y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
6.354 |
|
| \begin{align*}
{\mathrm e}^{\frac {y}{x}}-\frac {y}{x}+y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
5.092 |
|
| \begin{align*}
y x -\left (x^{2}-y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
3.964 |
|
| \begin{align*}
x -y+\left (2 x +y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
6.322 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{y}+\frac {y}{x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.607 |
|
| \begin{align*}
y^{\prime }&=-\frac {x +2 y}{y} \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
4.347 |
|
| \begin{align*}
x^{2}+y^{2}-2 x y^{\prime } y&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.462 |
|
| \begin{align*}
y^{\prime }&=\frac {\sqrt {2}\, \sqrt {\frac {x +y}{x}}}{2} \\
y \left (1\right ) &= 2 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
18.582 |
|
| \begin{align*}
y^{\prime } y&=3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.594 |
|
| \begin{align*}
y^{\prime } x +y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.955 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{t^{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.280 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x}-\frac {x}{y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.799 |
|
| \begin{align*}
y^{\prime }-\frac {y}{x}&=y^{2} \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.068 |
|
| \begin{align*}
\left (x +y\right ) y^{\prime }&=x -y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.313 |
|
| \begin{align*}
2 y^{\prime } x +y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.374 |
|
| \begin{align*}
x y^{\prime } y+x^{6}-2 y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.133 |
|
| \begin{align*}
y+x y^{2}-\left (x +2 x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} | [[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] | ✓ | ✓ | ✓ | ✗ | 6.275 |
|
| \begin{align*}
x \left (6 x^{2}+14 y^{2}\right )+y \left (13 x^{2}+30 y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
15.720 |
|
| \begin{align*}
y x -\left (y^{4}+x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
3.720 |
|
| \begin{align*}
y^{\prime }&=\frac {3 x -y}{x +2 y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.942 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x}+\sin \left (\frac {y}{x}\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.982 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x y}{x^{2}-y^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.825 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{3}+y^{3}}{y^{2} x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.386 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2} {\mathrm e}^{\frac {y}{x}}+y^{2}}{y x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
4.362 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{3}+x^{2} y-y^{3}}{x^{3}-x y^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
9.015 |
|
| \begin{align*}
y^{\prime }&=1+\frac {3 y}{x} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
4.222 |
|
| \begin{align*}
y^{\prime }&=\frac {2 x^{2}+2 y^{2}-3 y x}{y x} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
23.133 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y^{3}+2 x^{2} y}{x^{3}+2 x y^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
10.627 |
|
| \begin{align*}
20 y-20 x y^{2}+\left (5 x -8 x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
18.464 |
|
| \begin{align*}
x y^{2}+\left (3-2 x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
5.706 |
|
| \begin{align*}
y+2 x^{3}+\left (2 x -\frac {x^{4}}{y}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
5.607 |
|
| \begin{align*}
y^{\prime }+\frac {2 y}{x}&=\frac {x^{2}}{y^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
12.353 |
|
| \begin{align*}
x^{2} y+2 y^{3}-\left (2 x^{3}+3 x y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
14.931 |
|
| \begin{align*}
x y^{\prime } y+2 x +\frac {y^{2}}{2}&=0 \\
\end{align*} | [[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 5.915 |
|
| \begin{align*}
2 x y^{2}+\left (1-x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
17.132 |
|
| \begin{align*}
x^{2} y^{\prime }-y^{2}&=2 y x \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.749 |
|
| \begin{align*}
3 y^{2}-2 x^{2}&=2 x y^{\prime } y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
75.100 |
|
| \begin{align*}
2 y-3 y^{\prime } x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.424 |
|
| \begin{align*}
m y-n x y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.554 |
|
| \begin{align*}
y^{\prime }&=x y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.047 |
|
| \begin{align*}
v^{\prime }&=-\frac {v}{p} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.536 |
|
| \begin{align*}
1&=b \left (\cos \left (y\right )+x \sin \left (y\right ) y^{\prime }\right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
7.310 |
|
| \begin{align*}
\cos \left (y\right )&=y^{\prime } x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.408 |
|
| \begin{align*}
x y^{\prime } y-y^{2}&=1 \\
y \left (2\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
7.194 |
|
| \begin{align*}
v v^{\prime }&=g \\
v \left (x_{0} \right ) &= v_{0} \\
\end{align*} |
[_quadrature] |
✓ |
✗ |
✓ |
✓ |
1.848 |
|
| \begin{align*}
\left (2 x +y\right ) y^{\prime }+x -2 y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
9.345 |
|
| \begin{align*}
y x -\left (x^{2}+2 y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
10.551 |
|
| \begin{align*}
2 y^{2}+4 x^{2}-x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
19.068 |
|
| \begin{align*}
x^{2}+2 y^{2}-x y^{\prime } y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
12.056 |
|
| \begin{align*}
\left (x -y\right ) \left (4 x +y\right )+x \left (5 x -y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
87.400 |
|
| \begin{align*}
5 v-u +\left (3 v-7 u \right ) v^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
29.949 |
|
| \begin{align*}
x^{2}+2 y x -4 y^{2}-\left (x^{2}-8 y x -4 y^{2}\right ) y^{\prime }&=0 \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _dAlembert] | ✓ | ✓ | ✓ | ✓ | 14.348 |
|
| \begin{align*}
x^{2}+2 y x -4 y^{2}-\left (x^{2}-8 y x -4 y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
13.913 |
|
| \begin{align*}
x \left (y^{2}+x^{2}\right )^{2} \left (y-y^{\prime } x \right )+y^{6} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
10.457 |
|
| \begin{align*}
x y^{\prime } y+x^{2}+y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
13.125 |
|
| \begin{align*}
y x -\left (x +2 y\right )^{2} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
15.372 |
|
| \begin{align*}
v^{2}+x \left (x +v\right ) v^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
66.120 |
|
| \begin{align*}
x \csc \left (\frac {y}{x}\right )-y+y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
8.738 |
|
| \begin{align*}
x +\sin \left (\frac {y}{x}\right )^{2} \left (y-y^{\prime } x \right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
10.522 |
|
| \begin{align*}
x -y \arctan \left (\frac {y}{x}\right )+x \arctan \left (\frac {y}{x}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
96.438 |
|
| \begin{align*}
y^{2} y^{\prime }&=x \left (-y+y^{\prime } x \right ) {\mathrm e}^{\frac {x}{y}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
29.495 |
|
| \begin{align*}
t \left (s^{2}+t^{2}\right ) s^{\prime }-s \left (s^{2}-t^{2}\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
32.818 |
|
| \begin{align*}
x -y+\left (3 x +y\right ) y^{\prime }&=0 \\
y \left (2\right ) &= -1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
17.170 |
|
| \begin{align*}
x \cos \left (\frac {y}{x}\right )^{2}-y+y^{\prime } x&=0 \\
y \left (1\right ) &= \frac {\pi }{4} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
6.861 |
|
| \begin{align*}
y^{2}+7 y x +16 x^{2}+x^{2} y^{\prime }&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✗ |
5.745 |
|
| \begin{align*}
y^{2}+\left (x^{2}+3 y x +4 y^{2}\right ) y^{\prime }&=0 \\
y \left (2\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
8.912 |
|
| \begin{align*}
y \left (2 x^{2}-y x +y^{2}\right )-x^{2} \left (2 x -y\right ) y^{\prime }&=0 \\
y \left (1\right ) &= {\frac {1}{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
14.306 |
|
| \begin{align*}
y \left (9 x -2 y\right )-x \left (6 x -y\right ) y^{\prime }&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
19.645 |
|
| \begin{align*}
y \left (y^{2}+x^{2}\right )+x \left (3 x^{2}-5 y^{2}\right ) y^{\prime }&=0 \\
y \left (2\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
18.740 |
|
| \begin{align*}
16 x +15 y+\left (3 x +y\right ) y^{\prime }&=0 \\
y \left (1\right ) &= -3 \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] | ✓ | ✓ | ✓ | ✗ | 47.966 |
|
| \begin{align*}
v \left (3 x +2 v\right )-x^{2} v^{\prime }&=0 \\
v \left (1\right ) &= 2 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
8.479 |
|
| \begin{align*}
x +y+\left (x -y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
9.092 |
|
| \begin{align*}
2 y x +\left (y^{2}+x^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
7.232 |
|
| \begin{align*}
\left (y^{2}-x^{2}\right ) y^{\prime }+2 y x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
6.874 |
|
| \begin{align*}
2 x -3 y+\left (-3 x +2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
7.124 |
|
| \begin{align*}
y \left (2 y x +1\right )-y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
5.251 |
|
| \begin{align*}
y \left (y^{3}-x \right )+x \left (y^{3}+x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
5.949 |
|
| \begin{align*}
x^{3} y^{3}+1+x^{4} y^{2} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
2.439 |
|
| \begin{align*}
s \left (2+s^{2} t \right )+2 t s^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.274 |
|
| \begin{align*}
y \left (x^{4}-y^{2}\right )+x \left (x^{4}+y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
5.694 |
|
| \begin{align*}
y \left (1+y^{2}\right )+x \left (y^{2}-1\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.738 |
|
| \begin{align*}
\left (x^{3}-y^{5}\right ) y-x \left (x^{3}+y^{5}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
5.931 |
|
| \begin{align*}
y \left (y^{2} x^{2}-m \right )+x \left (y^{2} x^{2}+n \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
7.139 |
|
| \begin{align*}
y \left (y+x^{2}\right )+x \left (x^{2}-2 y\right ) y^{\prime }&=0 \\
y \left (1\right ) &= 2 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
6.337 |
|
| \begin{align*}
y \left (2-3 y x \right )-y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
7.410 |
|
| \begin{align*}
y \left (y^{2}+2 x \right )+x \left (y^{2}-x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
6.993 |
|
| \begin{align*}
y+2 \left (y^{4}-x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
6.191 |
|
| \begin{align*}
2 x^{5} y^{\prime }&=y \left (3 x^{4}+y^{2}\right ) \\
\end{align*} | [[_homogeneous, ‘class G‘], _rational, _Bernoulli] | ✓ | ✓ | ✓ | ✓ | 14.217 |
|
| \begin{align*}
x^{4}+2 y-y^{\prime } x&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.682 |
|
| \begin{align*}
y^{\prime } x +x +y&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.925 |
|
| \begin{align*}
y^{2}-x \left (2 x +3 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
43.328 |
|
| \begin{align*}
x^{3}+y^{3}+y^{2} \left (3 x +k y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
49.009 |
|
| \begin{align*}
y^{\prime } x&=y^{2} x^{2}+2 y \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.928 |
|
| \begin{align*}
y \left (x +3 y\right )+x^{2} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
8.354 |
|
| \begin{align*}
\left (2 x^{3}-x^{2} y+y^{3}\right ) y-x \left (2 x^{3}+y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
11.558 |
|
| \begin{align*}
y^{\prime } x&=y \left (2 y x +1\right ) \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
6.119 |
|
| \begin{align*}
x -y \cos \left (\frac {y}{x}\right )+x y^{\prime } \cot \left (\frac {y}{x}\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
13.110 |
|
| \begin{align*}
y \left (y^{2}+x^{2}\right )+x \left (3 x^{2}-5 y^{2}\right ) y^{\prime }&=0 \\
y \left (2\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
16.891 |
|
| \begin{align*}
x -y-\left (x +y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
7.528 |
|
| \begin{align*}
x y \left (1-y^{\prime }\right )&=x^{2} y^{\prime }+y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
11.513 |
|
| \begin{align*}
x -y+\left (3 x +y\right ) y^{\prime }&=0 \\
y \left (2\right ) &= -1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
11.215 |
|
| \begin{align*}
y^{2}-\left (y x +2\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
23.723 |
|
| \begin{align*}
y \left (y^{2}-3 x^{2}\right )+x^{3} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
55.501 |
|
| \begin{align*}
x^{3}-3 x y^{2}+\left (y^{3}-3 x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
78.919 |
|
| \begin{align*}
y^{3}-x^{3}&=x y \left (y^{\prime } y+x \right ) \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _dAlembert] | ✓ | ✓ | ✓ | ✗ | 11.127 |
|
| \begin{align*}
y x +\left (x^{2}-3 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
7.797 |
|
| \begin{align*}
6 y^{2}-x \left (2 x^{3}+y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
24.714 |
|
| \begin{align*}
2 x^{3} y^{\prime }&=y \left (3 x^{2}+y^{2}\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
38.617 |
|
| \begin{align*}
y+x \left (3 y x -2\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
7.511 |
|
| \begin{align*}
-y+y^{\prime } x&=y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.416 |
|
| \begin{align*}
2 x y^{\prime } y&=y^{2}-2 x^{3} \\
y \left (1\right ) &= 2 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.225 |
|
| \begin{align*}
y^{4}-2 y x +3 x^{2} y^{\prime }&=0 \\
y \left (2\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.057 |
|
| \begin{align*}
2 y^{3}-x^{3}+3 y^{2} y^{\prime } x&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
16.356 |
|
| \begin{align*}
x^{2}+6 y^{2}-4 x y^{\prime } y&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
11.557 |
|
| \begin{align*}
y \left (8 x -9 y\right )+2 x \left (x -3 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
12.954 |
|
| \begin{align*}
x^{3} y+\left (3 x^{4}-y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
10.725 |
|
| \begin{align*}
y^{\prime } x&=x^{3} y^{3}-2 y \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
11.624 |
|
| \begin{align*}
x^{4}-4 y^{2} x^{2}-y^{4}+4 x^{3} y y^{\prime }&=0 \\
y \left (1\right ) &= 2 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
19.141 |
|
| \begin{align*}
4 x -2 y^{\prime } y+x {y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.619 |
|
| \begin{align*}
3 x^{4} {y^{\prime }}^{2}-y^{\prime } x -y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
0.353 |
|
| \begin{align*}
x^{8} {y^{\prime }}^{2}+3 y^{\prime } x +9 y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| \begin{align*}
x^{4} {y^{\prime }}^{2}+2 x^{3} y y^{\prime }-4&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
0.357 |
|
| \begin{align*}
4 x -2 y^{\prime } y+x {y^{\prime }}^{2}&=0 \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _dAlembert] | ✓ | ✓ | ✓ | ✓ | 0.402 |
|
| \begin{align*}
3 x^{4} {y^{\prime }}^{2}-y^{\prime } x -y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| \begin{align*}
4 x {y^{\prime }}^{2}-3 y^{\prime } y+3&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.723 |
|
| \begin{align*}
y&=y^{\prime } x +x^{3} {y^{\prime }}^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
0.730 |
|
| \begin{align*}
8 y&={y^{\prime }}^{2}+3 x^{2} \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
1.192 |
|
| \begin{align*}
x {y^{\prime }}^{2}+y^{\prime } y&=3 y^{4} \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
0.856 |
|
| \begin{align*}
9 x {y^{\prime }}^{2}+3 y^{\prime } y+y^{8}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
0.520 |
|
| \begin{align*}
{y^{\prime }}^{2}+y^{2} y^{\prime } x +y^{3}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
0.734 |
|
| \begin{align*}
4 x {y^{\prime }}^{2}+4 y^{\prime } y-y^{4}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
0.841 |
|
| \begin{align*}
2 x y^{2} {y^{\prime }}^{2}-y^{3} y^{\prime }-1&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
0.646 |
|
| \begin{align*}
{y^{\prime }}^{2}+2 x y^{3} y^{\prime }+y^{4}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
1.035 |
|
| \begin{align*}
x {y^{\prime }}^{2}-y^{\prime } y-y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.726 |
|
| \begin{align*}
x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+4&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
0.459 |
|
| \begin{align*}
x^{6} {y^{\prime }}^{2}-2 y^{\prime } x -4 y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✓ |
0.376 |
|
| \begin{align*}
4 x^{5} {y^{\prime }}^{2}+12 x^{4} y y^{\prime }+9&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
0.457 |
|
| \begin{align*}
16 x {y^{\prime }}^{2}+8 y^{\prime } y+y^{6}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✗ |
✗ |
0.430 |
|
| \begin{align*}
9 x y^{4} {y^{\prime }}^{2}-3 y^{5} y^{\prime }-1&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
0.571 |
|
| \begin{align*}
t y^{\prime }&=y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.353 |
|
| \begin{align*}
2 y y^{\prime }&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.500 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}-4 t y+6 t^{2}}{t^{2}} \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _Riccati] | ✓ | ✓ | ✓ | ✓ | 1.996 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.695 |
|
| \begin{align*}
y^{\prime }&=t \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.279 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.620 |
|
| \begin{align*}
y^{\prime }&=t y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.211 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.665 |
|
| \begin{align*}
t^{2} y^{\prime }&=1-2 t y \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
0.782 |
|
| \begin{align*}
\left (t^{2}+3 y^{2}\right ) y^{\prime }&=-2 t y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
3.356 |
|
| \begin{align*}
y y^{\prime }&=t \\
y \left (2\right ) &= -1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.358 |
|
| \begin{align*}
1-y^{2}-t y y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.992 |
|
| \begin{align*}
y^{3} y^{\prime }&=t \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.874 |
|
| \begin{align*}
y^{\prime }&=t y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.098 |
|
| \begin{align*}
y^{\prime }&=4 t y^{2} \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
2.992 |
|
| \begin{align*}
y^{\prime }&=\frac {\cot \left (y\right )}{t} \\
y \left (1\right ) &= \frac {\pi }{4} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.584 |
|
| \begin{align*}
y^{\prime }&=\frac {1+y^{2}}{t} \\
y \left (1\right ) &= \sqrt {3} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.496 |
|
| \begin{align*}
t y^{\prime }+3 y&=t^{2} \\
y \left (-1\right ) &= 2 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.231 |
|
| \begin{align*}
t^{2} y^{\prime }+2 t y&=1 \\
y \left (2\right ) &= a \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.115 |
|
| \begin{align*}
t^{2} y^{\prime }&=y^{2}+t y+t^{2} \\
y \left (1\right ) &= 1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
3.209 |
|
| \begin{align*}
y^{\prime }&=\frac {4 t -3 y}{t -y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
3.636 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}-4 t y+6 t^{2}}{t^{2}} \\
y \left (2\right ) &= 4 \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _Riccati] | ✓ | ✓ | ✓ | ✓ | 2.321 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}+2 t y}{t^{2}+t y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✗ |
4.098 |
|
| \begin{align*}
y^{\prime }&=\frac {3 y^{2}-t^{2}}{2 t y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
60.106 |
|
| \begin{align*}
y^{\prime }&=\frac {t^{2}+y^{2}}{t y} \\
y \left ({\mathrm e}\right ) &= 2 \,{\mathrm e} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.836 |
|
| \begin{align*}
y-t +\left (t +2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.887 |
|
| \begin{align*}
y^{2}+2 t y y^{\prime }+3 t^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
4.376 |
|
| \begin{align*}
3 y-5 t +2 y y^{\prime }-t y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
6.857 |
|
| \begin{align*}
2 t y+2 t^{3}+\left (t^{2}-y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.480 |
|
| \begin{align*}
t^{2}-y-t y^{\prime }&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.744 |
|
| \begin{align*}
\left (y^{3}-t \right ) y^{\prime }&=y \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational] |
✓ |
✓ |
✓ |
✓ |
3.215 |
|
| \begin{align*}
a t +b y-\left (c t +d y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
7.496 |
|
| \begin{align*}
y^{\prime }&=\frac {t -y}{t +y} \\
y \left (1\right ) &= -1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.513 |
|
| \begin{align*}
t y^{\prime }&=2 y-t \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.990 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
y \left (t_{0} \right ) &= y_{0} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.941 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{t} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.835 |
|
| \begin{align*}
y^{\prime }&=\frac {c t -a y}{A t +b y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
47.760 |
|
| \begin{align*}
y^{\prime }&=\frac {y^{2}}{t^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.409 |
|
| \begin{align*}
y^{\prime }&=\frac {-3 t^{2}-2 y^{2}}{4 t y+6 y^{2}} \\
\end{align*} | [[_homogeneous, ‘class A‘], _rational, _dAlembert] | ✓ | ✓ | ✓ | ✗ | 12.593 |
|
| \begin{align*}
y^{\prime }&=\frac {4 t -y}{t -6 y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.990 |
|
| \begin{align*}
y^{\prime }&=-\frac {3 t^{2}+2 y^{2}}{4 t y+6 y^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
10.343 |
|
| \begin{align*}
y^{2}-1+y^{\prime } x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.868 |
|
| \begin{align*}
y^{\prime }&=2 x y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.488 |
|
| \begin{align*}
2 y x +\left (x^{2}-y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.547 |
|
| \begin{align*}
y^{\prime } x -2 y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.199 |
|
| \begin{align*}
y^{\prime }&=-\frac {x}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.147 |
|
| \begin{align*}
3 y^{\prime } x +5 y&=10 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.439 |
|
| \begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
y \left (2\right ) &= {\frac {1}{3}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.822 |
|
| \begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
y \left (-2\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.811 |
|
| \begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
y \left (\frac {1}{2}\right ) &= -4 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.874 |
|
| \begin{align*}
y^{\prime } x&=y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.820 |
|
| \begin{align*}
\left (y^{2}+x^{2}\right ) y^{\prime }&=y^{2} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
6.010 |
|
| \begin{align*}
\left (y-x \right ) y^{\prime }&=x +y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.286 |
|
| \begin{align*}
y^{\prime } y&=3 x \\
y \left (-2\right ) &= 3 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.149 |
|
| \begin{align*}
y^{\prime } y&=3 x \\
y \left (2\right ) &= -4 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.790 |
|
| \begin{align*}
y^{\prime }&=x \sqrt {y} \\
y \left (2\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
12.730 |
|
| \begin{align*}
y^{\prime } x&=2 y \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 2.963 |
|
| \begin{align*}
y^{\prime } x&=2 y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.027 |
|
| \begin{align*}
y^{\prime } x&=y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.528 |
|
| \begin{align*}
3 y^{\prime } x -2 y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.985 |
|
| \begin{align*}
y^{\prime } x +y&=2 x \\
y \left (x_{0} \right ) &= 1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
4.430 |
|
| \begin{align*}
y^{\prime } x +y&=\frac {1}{y^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.709 |
|
| \begin{align*}
\left (y x +1\right ) y^{\prime }+y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
4.713 |
|
| \begin{align*}
y^{\prime } y&=-x \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.944 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{y} \\
y \left (-2\right ) &= -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.225 |
|
| \begin{align*}
y^{\prime }&=1-\frac {y}{x} \\
y \left (-\frac {1}{2}\right ) &= 2 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
5.337 |
|
| \begin{align*}
y^{\prime }&=1-\frac {y}{x} \\
y \left (\frac {3}{2}\right ) &= 0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
5.346 |
|
| \begin{align*}
y^{\prime } x&=4 y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.026 |
|
| \begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.486 |
|