2.1.55 Problem 55

Solved using first_order_ode_homog_type_G
Solved using first_order_nonlinear_p_but_separable
Solved using first_order_ode_parametric method
Maple
Mathematica
Sympy

Internal problem ID [10313]
Book : First order enumerated odes
Section : section 1
Problem number : 55
Date solved : Thursday, November 27, 2025 at 10:33:09 AM
CAS classification : [[_homogeneous, `class G`]]

Solved using first_order_ode_homog_type_G

Time used: 0.181 (sec)

Solve

\begin{align*} {y^{\prime }}^{2}&=\frac {1}{x y} \\ \end{align*}
Multiplying the right side of the ode, which is \(\frac {1}{\sqrt {x y}}\) by \(\frac {x}{y}\) gives
\begin{align*} y^{\prime } &= \left (\frac {x}{y}\right ) \frac {1}{\sqrt {x y}}\\ &= \frac {x}{y \sqrt {x y}}\\ &= F(x,y) \end{align*}

Since \(F \left (x , y\right )\) has \(y\), then let

\begin{align*} f_x&= x \left (\frac {\partial }{\partial x}F \left (x , y\right )\right )\\ &= \frac {x^{2}}{2 \left (x y \right )^{{3}/{2}}}\\ f_y&= y \left (\frac {\partial }{\partial y}F \left (x , y\right )\right )\\ &= -\frac {3 x^{2}}{2 \left (x y \right )^{{3}/{2}}}\\ \alpha &= \frac {f_x}{f_y} \\ &=-{\frac {1}{3}} \end{align*}

Since \(\alpha \) is independent of \(x,y\) then this is Homogeneous type G.

Let

\begin{align*} y&=\frac {z}{x^ \alpha }\\ &=\frac {z}{\frac {1}{x^{{1}/{3}}}} \end{align*}

Substituting the above back into \(F(x,y)\) gives

\begin{align*} F \left (z \right ) &=\frac {1}{z^{{3}/{2}}} \end{align*}

We see that \(F \left (z \right )\) does not depend on \(x\) nor on \(y\). If this was not the case, then this method will not work.

Therefore, the implicit solution is given by

\begin{align*} \ln \left (x \right )- c_1 - \int ^{y x^\alpha } \frac {1}{z \left (\alpha + F(z)\right ) } \,dz & = 0 \end{align*}

Which gives

\[ \ln \left (x \right )-c_1 +\int _{}^{\frac {y}{x^{{1}/{3}}}}\frac {1}{z \left (\frac {1}{3}-\frac {1}{z^{{3}/{2}}}\right )}d z = 0 \]
Multiplying the right side of the ode, which is \(-\frac {1}{\sqrt {x y}}\) by \(\frac {x}{y}\) gives
\begin{align*} y^{\prime } &= \left (\frac {x}{y}\right ) -\frac {1}{\sqrt {x y}}\\ &= -\frac {x}{y \sqrt {x y}}\\ &= F(x,y) \end{align*}

Since \(F \left (x , y\right )\) has \(y\), then let

\begin{align*} f_x&= x \left (\frac {\partial }{\partial x}F \left (x , y\right )\right )\\ &= -\frac {x^{2}}{2 \left (x y \right )^{{3}/{2}}}\\ f_y&= y \left (\frac {\partial }{\partial y}F \left (x , y\right )\right )\\ &= \frac {3 x^{2}}{2 \left (x y \right )^{{3}/{2}}}\\ \alpha &= \frac {f_x}{f_y} \\ &=-{\frac {1}{3}} \end{align*}

Since \(\alpha \) is independent of \(x,y\) then this is Homogeneous type G.

Let

\begin{align*} y&=\frac {z}{x^ \alpha }\\ &=\frac {z}{\frac {1}{x^{{1}/{3}}}} \end{align*}

Substituting the above back into \(F(x,y)\) gives

\begin{align*} F \left (z \right ) &=-\frac {1}{z^{{3}/{2}}} \end{align*}

We see that \(F \left (z \right )\) does not depend on \(x\) nor on \(y\). If this was not the case, then this method will not work.

Therefore, the implicit solution is given by

\begin{align*} \ln \left (x \right )- c_1 - \int ^{y x^\alpha } \frac {1}{z \left (\alpha + F(z)\right ) } \,dz & = 0 \end{align*}

Which gives

\[ \ln \left (x \right )-c_2 +\int _{}^{\frac {y}{x^{{1}/{3}}}}\frac {1}{z \left (\frac {1}{3}+\frac {1}{z^{{3}/{2}}}\right )}d z = 0 \]

Summary of solutions found

\begin{align*} \ln \left (x \right )-c_1 +\int _{}^{\frac {y}{x^{{1}/{3}}}}\frac {1}{z \left (\frac {1}{3}-\frac {1}{z^{{3}/{2}}}\right )}d z &= 0 \\ \ln \left (x \right )-c_2 +\int _{}^{\frac {y}{x^{{1}/{3}}}}\frac {1}{z \left (\frac {1}{3}+\frac {1}{z^{{3}/{2}}}\right )}d z &= 0 \\ \end{align*}
Solved using first_order_nonlinear_p_but_separable

Time used: 0.246 (sec)

Solve

\begin{align*} {y^{\prime }}^{2}&=\frac {1}{x y} \\ \end{align*}
The ode has the form
\begin{align*} (y')^{\frac {n}{m}} &= f(x) g(y)\tag {1} \end{align*}

Where \(n=2, m=1, f=\frac {1}{x} , g=\frac {1}{y}\). Hence the ode is

\begin{align*} (y')^{2} &= \frac {1}{x y} \end{align*}

Solving for \(y^{\prime }\) from (1) gives

\begin{align*} y^{\prime } &=\sqrt {f g}\\ y^{\prime } &=-\sqrt {f g} \end{align*}

To be able to solve as separable ode, we have to now assume that \(f>0,g>0\).

\begin{align*} \frac {1}{x} &> 0\\ \frac {1}{y} &> 0 \end{align*}

Under the above assumption the differential equations become separable and can be written as

\begin{align*} y^{\prime } &=\sqrt {f}\, \sqrt {g}\\ y^{\prime } &=-\sqrt {f}\, \sqrt {g} \end{align*}

Therefore

\begin{align*} \frac {1}{\sqrt {g}} \, dy &= \left (\sqrt {f}\right )\,dx\\ -\frac {1}{\sqrt {g}} \, dy &= \left (\sqrt {f}\right )\,dx \end{align*}

Replacing \(f(x),g(y)\) by their values gives

\begin{align*} \frac {1}{\sqrt {\frac {1}{y}}} \, dy &= \left (\sqrt {\frac {1}{x}}\right )\,dx\\ -\frac {1}{\sqrt {\frac {1}{y}}} \, dy &= \left (\sqrt {\frac {1}{x}}\right )\,dx \end{align*}

Integrating now gives the following solutions

\begin{align*} \int \frac {1}{\sqrt {\frac {1}{y}}}d y &= \int \sqrt {\frac {1}{x}}d x +c_1\\ \frac {2 y}{3 \sqrt {\frac {1}{y}}} &= 2 x \sqrt {\frac {1}{x}}\\ \int -\frac {1}{\sqrt {\frac {1}{y}}}d y &= \int \sqrt {\frac {1}{x}}d x +c_1\\ -\frac {2 y}{3 \sqrt {\frac {1}{y}}} &= 2 x \sqrt {\frac {1}{x}} \end{align*}

Therefore

\begin{align*} \frac {2 y}{3 \sqrt {\frac {1}{y}}} &= 2 x \sqrt {\frac {1}{x}}+c_1 \\ -\frac {2 y}{3 \sqrt {\frac {1}{y}}} &= 2 x \sqrt {\frac {1}{x}}+c_1 \\ \end{align*}

Summary of solutions found

\begin{align*} -\frac {2 y}{3 \sqrt {\frac {1}{y}}} &= 2 x \sqrt {\frac {1}{x}}+c_1 \\ \frac {2 y}{3 \sqrt {\frac {1}{y}}} &= 2 x \sqrt {\frac {1}{x}}+c_1 \\ \end{align*}
Solved using first_order_ode_parametric method

Time used: 1.380 (sec)

Solve

\begin{align*} {y^{\prime }}^{2}&=\frac {1}{x y} \\ \end{align*}
Let \(y^{\prime }\) be a parameter \(\lambda \). The ode becomes
\begin{align*} \lambda ^{2}-\frac {1}{x y} = 0 \end{align*}

Isolating \(y\) gives

\begin{align*} y&=\frac {1}{\lambda ^{2} x}\\ &=\frac {1}{\lambda ^{2} x}\\ &=F \left (x , \lambda \right ) \end{align*}

Now we generate an ode in \(x \left (\lambda \right )\) using

\begin{align*} \frac {d}{d \lambda }x \left (\lambda \right ) &= \frac { \frac {\partial F}{\partial \lambda }} { \lambda -\frac {\partial F}{\partial x} } \\ &= -\frac {2}{\lambda ^{3} x \left (\lambda +\frac {1}{\lambda ^{2} x^{2}}\right )}\\ &= -\frac {2 x \left (\lambda \right )}{\lambda \left (\lambda ^{3} x \left (\lambda \right )^{2}+1\right )} \end{align*}

Which is now solved for \(x\).

Solve Solving for \(x'\) gives

\begin{align*} \tag{1} x' &= -\frac {2 x \left (\lambda \right )}{\lambda \left (\lambda ^{3} x \left (\lambda \right )^{2}+1\right )} \\ \end{align*}
Each of the above ode’s is now solved An ode \(\frac {d}{d \lambda }x \left (\lambda \right )=f(\lambda ,x)\) is isobaric if
\[ f(t \lambda , t^m x) = t^{m-1} f(\lambda ,x)\tag {1} \]
Where here
\[ f(\lambda ,x) = -\frac {2 x \left (\lambda \right )}{\lambda \left (\lambda ^{3} x \left (\lambda \right )^{2}+1\right )}\tag {2} \]
\(m\) is the order of isobaric. Substituting (2) into (1) and solving for \(m\) gives
\[ m = -{\frac {3}{2}} \]
Since the ode is isobaric of order \(m=-{\frac {3}{2}}\), then the substitution
\begin{align*} x&=u \lambda ^m \\ &=\frac {u}{\lambda ^{{3}/{2}}} \end{align*}

Converts the ODE to a separable in \(u \left (\lambda \right )\). Performing this substitution gives

\[ -\frac {3 u \left (\lambda \right )}{2 \lambda ^{{5}/{2}}}+\frac {\frac {d}{d \lambda }u \left (\lambda \right )}{\lambda ^{{3}/{2}}} = -\frac {2 u \left (\lambda \right )}{\lambda ^{{5}/{2}} \left (u \left (\lambda \right )^{2}+1\right )} \]
The ode
\begin{equation} \frac {d}{d \lambda }u \left (\lambda \right ) = \frac {u \left (\lambda \right ) \left (3 u \left (\lambda \right )^{2}-1\right )}{2 \lambda \left (u \left (\lambda \right )^{2}+1\right )} \end{equation}
is separable as it can be written as
\begin{align*} \frac {d}{d \lambda }u \left (\lambda \right )&= \frac {u \left (\lambda \right ) \left (3 u \left (\lambda \right )^{2}-1\right )}{2 \lambda \left (u \left (\lambda \right )^{2}+1\right )}\\ &= f(\lambda ) g(u) \end{align*}

Where

\begin{align*} f(\lambda ) &= \frac {1}{2 \lambda }\\ g(u) &= \frac {\left (3 u^{2}-1\right ) u}{u^{2}+1} \end{align*}

Integrating gives

\begin{align*} \int { \frac {1}{g(u)} \,du} &= \int { f(\lambda ) \,d\lambda } \\ \int { \frac {u^{2}+1}{\left (3 u^{2}-1\right ) u}\,du} &= \int { \frac {1}{2 \lambda } \,d\lambda } \\ \end{align*}
\[ \frac {2 \ln \left (3 u \left (\lambda \right )^{2}-1\right )}{3}-\ln \left (u \left (\lambda \right )\right )=\ln \left (\sqrt {\lambda }\right )+c_1 \]
We now need to find the singular solutions, these are found by finding for what values \(g(u)\) is zero, since we had to divide by this above. Solving \(g(u)=0\) or
\[ \frac {\left (3 u^{2}-1\right ) u}{u^{2}+1}=0 \]
for \(u \left (\lambda \right )\) gives
\begin{align*} u \left (\lambda \right )&=0\\ u \left (\lambda \right )&=-\frac {\sqrt {3}}{3} \end{align*}

Now we go over each such singular solution and check if it verifies the ode itself and any initial conditions given. If it does not then the singular solution will not be used.

Therefore the solutions found are

\begin{align*} \frac {2 \ln \left (3 u \left (\lambda \right )^{2}-1\right )}{3}-\ln \left (u \left (\lambda \right )\right ) &= \ln \left (\sqrt {\lambda }\right )+c_1 \\ u \left (\lambda \right ) &= 0 \\ u \left (\lambda \right ) &= -\frac {\sqrt {3}}{3} \\ \end{align*}
Converting \(\frac {2 \ln \left (3 u \left (\lambda \right )^{2}-1\right )}{3}-\ln \left (u \left (\lambda \right )\right ) = \ln \left (\sqrt {\lambda }\right )+c_1\) back to \(x \left (\lambda \right )\) gives
\begin{align*} \frac {2 \ln \left (3 \lambda ^{3} x \left (\lambda \right )^{2}-1\right )}{3}-\ln \left (x \left (\lambda \right ) \lambda ^{{3}/{2}}\right ) = \ln \left (\sqrt {\lambda }\right )+c_1 \end{align*}

Converting \(u \left (\lambda \right ) = 0\) back to \(x \left (\lambda \right )\) gives

\begin{align*} x \left (\lambda \right ) \lambda ^{{3}/{2}} = 0 \end{align*}

Converting \(u \left (\lambda \right ) = -\frac {\sqrt {3}}{3}\) back to \(x \left (\lambda \right )\) gives

\begin{align*} x \left (\lambda \right ) \lambda ^{{3}/{2}} = -\frac {\sqrt {3}}{3} \end{align*}

Solving for \(x \left (\lambda \right )\) gives

\begin{align*} \frac {2 \ln \left (3 \lambda ^{3} x \left (\lambda \right )^{2}-1\right )}{3}-\ln \left (x \left (\lambda \right ) \lambda ^{{3}/{2}}\right ) &= \frac {\ln \left (\lambda \right )}{2}+c_1 \\ x \left (\lambda \right ) &= 0 \\ x \left (\lambda \right ) &= -\frac {\sqrt {3}}{3 \lambda ^{{3}/{2}}} \\ \end{align*}
Now that we found solution \(x\) we have two equations with parameter \(\lambda \). They are
\begin{align*} y &= \frac {1}{\lambda ^{2} x} \\ \frac {2 \ln \left (3 \lambda ^{3} x^{2}-1\right )}{3}-\ln \left (x \,\lambda ^{{3}/{2}}\right ) &= \frac {\ln \left (\lambda \right )}{2}+c_1 \\ \end{align*}
Eliminating \(\lambda \) gives the solution for \(y\).
\[ -4 \ln \left (\frac {3 x \operatorname {RootOf}\left (x y \textit {\_Z}^{2}-1\right )-y}{y}\right )+6 \ln \left (x \right )+12 \ln \left (\operatorname {RootOf}\left (x y \textit {\_Z}^{2}-1\right )\right )+6 c_1 \]
Which can be written as
\begin{align*} -4 \ln \left (\frac {3 x \sqrt {\frac {1}{x y}}-y}{y}\right )+6 \ln \left (x \right )+6 \ln \left (\frac {1}{x y}\right )+6 c_1 &= 0 \\ \end{align*}

Summary of solutions found

\begin{align*} -4 \ln \left (\frac {3 x \sqrt {\frac {1}{x y}}-y}{y}\right )+6 \ln \left (x \right )+6 \ln \left (\frac {1}{x y}\right )+6 c_1 &= 0 \\ \end{align*}
Maple. Time used: 0.029 (sec). Leaf size: 51
ode:=diff(y(x),x)^2 = 1/y(x)/x; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \frac {y \sqrt {y x}-c_1 \sqrt {x}-3 x}{\sqrt {x}} &= 0 \\ \frac {y \sqrt {y x}-c_1 \sqrt {x}+3 x}{\sqrt {x}} &= 0 \\ \end{align*}

Maple trace

Methods for first order ODEs: 
-> Solving 1st order ODE of high degree, 1st attempt 
trying 1st order WeierstrassP solution for high degree ODE 
trying 1st order WeierstrassPPrime solution for high degree ODE 
trying 1st order JacobiSN solution for high degree ODE 
trying 1st order ODE linearizable_by_differentiation 
trying differential order: 1; missing variables 
trying simple symmetries for implicit equations 
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each res\ 
ulting ODE. 
   *** Sublevel 2 *** 
   Methods for first order ODEs: 
   --- Trying classification methods --- 
   trying homogeneous types: 
   trying homogeneous G 
   1st order, trying the canonical coordinates of the invariance group 
   <- 1st order, canonical coordinates successful 
   <- homogeneous successful 
------------------- 
* Tackling next ODE. 
   *** Sublevel 2 *** 
   Methods for first order ODEs: 
   --- Trying classification methods --- 
   trying homogeneous types: 
   trying homogeneous G 
   1st order, trying the canonical coordinates of the invariance group 
   <- 1st order, canonical coordinates successful 
   <- homogeneous successful
 

Maple step by step

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left (\frac {d}{d x}y \left (x \right )\right )^{2}=\frac {1}{y \left (x \right ) x} \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d x}y \left (x \right ) \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \left [\frac {d}{d x}y \left (x \right )=\frac {1}{\sqrt {y \left (x \right ) x}}, \frac {d}{d x}y \left (x \right )=-\frac {1}{\sqrt {y \left (x \right ) x}}\right ] \\ \bullet & {} & \textrm {Solve the equation}\hspace {3pt} \frac {d}{d x}y \left (x \right )=\frac {1}{\sqrt {y \left (x \right ) x}} \\ \bullet & {} & \textrm {Solve the equation}\hspace {3pt} \frac {d}{d x}y \left (x \right )=-\frac {1}{\sqrt {y \left (x \right ) x}} \\ \bullet & {} & \textrm {Set of solutions}\hspace {3pt} \\ {} & {} & \left \{\mathit {workingODE} , \mathit {workingODE}\right \} \end {array} \]
Mathematica. Time used: 3.314 (sec). Leaf size: 53
ode=(D[y[x],x])^2==1/(y[x]*x); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \left (\frac {3}{2}\right )^{2/3} \left (-2 \sqrt {x}+c_1\right ){}^{2/3}\\ y(x)&\to \left (\frac {3}{2}\right )^{2/3} \left (2 \sqrt {x}+c_1\right ){}^{2/3} \end{align*}
Sympy. Time used: 33.807 (sec). Leaf size: 374
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x)**2 - 1/(x*y(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \frac {\left (-1 - \sqrt {3} i\right ) \sqrt [3]{\frac {9 C_{1}^{2}}{4} - 9 C_{1} \sqrt {x} + 9 x}}{2}, \ y{\left (x \right )} = \frac {\left (-1 + \sqrt {3} i\right ) \sqrt [3]{\frac {9 C_{1}^{2}}{4} - 9 C_{1} \sqrt {x} + 9 x}}{2}, \ y{\left (x \right )} = \frac {\left (-1 - \sqrt {3} i\right ) \sqrt [3]{\frac {9 C_{1}^{2}}{4} + 9 C_{1} \sqrt {x} + 9 x}}{2}, \ y{\left (x \right )} = \frac {\left (-1 + \sqrt {3} i\right ) \sqrt [3]{\frac {9 C_{1}^{2}}{4} + 9 C_{1} \sqrt {x} + 9 x}}{2}, \ y{\left (x \right )} = \sqrt [3]{\frac {9 C_{1}^{2}}{4} - 9 C_{1} \sqrt {x} + 9 x}, \ y{\left (x \right )} = \sqrt [3]{\frac {9 C_{1}^{2}}{4} + 9 C_{1} \sqrt {x} + 9 x}, \ y{\left (x \right )} = \frac {\left (-1 - \sqrt {3} i\right ) \sqrt [3]{\frac {9 C_{1}^{2}}{4} - 9 C_{1} \sqrt {x} + 9 x}}{2}, \ y{\left (x \right )} = \frac {\left (-1 + \sqrt {3} i\right ) \sqrt [3]{\frac {9 C_{1}^{2}}{4} - 9 C_{1} \sqrt {x} + 9 x}}{2}, \ y{\left (x \right )} = \frac {\left (-1 - \sqrt {3} i\right ) \sqrt [3]{\frac {9 C_{1}^{2}}{4} + 9 C_{1} \sqrt {x} + 9 x}}{2}, \ y{\left (x \right )} = \frac {\left (-1 + \sqrt {3} i\right ) \sqrt [3]{\frac {9 C_{1}^{2}}{4} + 9 C_{1} \sqrt {x} + 9 x}}{2}, \ y{\left (x \right )} = \sqrt [3]{\frac {9 C_{1}^{2}}{4} - 9 C_{1} \sqrt {x} + 9 x}, \ y{\left (x \right )} = \sqrt [3]{\frac {9 C_{1}^{2}}{4} + 9 C_{1} \sqrt {x} + 9 x}\right ] \]