| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
x&=t \left (1+x^{\prime }\right )+x^{\prime } \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.324 |
|
| \begin{align*}
x^{\prime }&=y \\
y^{\prime }&=-x \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.455 |
|
| \begin{align*}
x^{\prime }&=a y \\
y^{\prime }&=-a x \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.528 |
|
| \begin{align*}
x^{\prime \prime }+x&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.362 |
|
| \begin{align*}
x^{\prime \prime }+4 x&=0 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
4.804 |
|
| \begin{align*}
x^{\prime \prime }+p \left (t \right ) x^{\prime }+q \left (t \right ) x&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✗ |
✗ |
✗ |
1.398 |
|
| \begin{align*}
x^{\prime \prime }+\frac {x^{\prime }}{t}+q \left (t \right ) x&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✗ |
✗ |
✗ |
0.945 |
|
| \begin{align*}
2 x^{\prime \prime }+x^{\prime }-x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.244 |
|
| \begin{align*}
x^{\prime \prime }+2 x^{\prime }+2 x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.430 |
|
| \begin{align*}
x^{\prime \prime }+8 x^{\prime }+16 x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.312 |
|
| \begin{align*}
x^{\prime \prime }+2 x^{\prime }-15 x&=0 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.373 |
|
| \begin{align*}
x^{\prime \prime }-3 x^{\prime }+2 x&=0 \\
x \left (1\right ) &= 0 \\
x^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.435 |
|
| \begin{align*}
4 x^{\prime }+2 x^{\prime \prime }&=-5 x \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.681 |
|
| \begin{align*}
x^{\prime \prime }-6 x^{\prime }+9 x&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.482 |
|
| \begin{align*}
x^{\prime \prime }+x^{\prime }-\beta x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.542 |
|
| \begin{align*}
x^{\prime \prime }+4 x^{\prime }+k x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.570 |
|
| \begin{align*}
x^{\prime \prime }+b x^{\prime }+c x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.814 |
|
| \begin{align*}
x^{\prime \prime }+5 x^{\prime }+6 x&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.231 |
|
| \begin{align*}
x^{\prime \prime }+p x^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.922 |
|
| \begin{align*}
x^{\prime \prime }+x^{\prime }-2 x&=0 \\
x \left (0\right ) &= a \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.351 |
|
| \begin{align*}
x^{\prime \prime }-2 x^{\prime }+2 x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.422 |
|
| \begin{align*}
x^{\prime \prime }-2 a x^{\prime }+b x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.788 |
|
| \begin{align*}
x^{\prime \prime }+\lambda ^{2} x&=0 \\
x \left (0\right ) &= 0 \\
x \left (\pi \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.337 |
|
| \begin{align*}
x^{\prime \prime }+x&=0 \\
x \left (a \right ) &= 0 \\
x \left (b \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.115 |
|
| \begin{align*}
x^{\prime \prime }-x&=0 \\
x \left (0\right ) &= 0 \\
x \left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.962 |
|
| \begin{align*}
x^{\prime \prime }+x^{\prime }-2 x&=0 \\
x \left (0\right ) &= 0 \\
x \left (\infty \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| \begin{align*}
x^{\prime \prime }-2 x^{\prime }+5 x&=0 \\
x \left (0\right ) &= 0 \\
x \left (\frac {\pi }{4}\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.478 |
|
| \begin{align*}
x^{\prime \prime }-2 x^{\prime }+5 x&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (\theta \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.412 |
|
| \begin{align*}
x^{\prime \prime }+2 x^{\prime }&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (\infty \right ) &= a \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✗ |
✓ |
✗ |
✓ |
1.207 |
|
| \begin{align*}
x^{\prime \prime }-4 x&=t \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.368 |
|
| \begin{align*}
x^{\prime \prime }-4 x&=4 t^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.382 |
|
| \begin{align*}
x^{\prime \prime }+x&=t^{2}-2 t \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.556 |
|
| \begin{align*}
x^{\prime \prime }+x&=3 t^{2}+t \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.548 |
|
| \begin{align*}
x^{\prime \prime }-x&={\mathrm e}^{-3 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| \begin{align*}
x^{\prime \prime }-x&=3 \,{\mathrm e}^{2 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| \begin{align*}
x^{\prime \prime }-x&={\mathrm e}^{2 t} t \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.423 |
|
| \begin{align*}
x^{\prime \prime }-3 x^{\prime }-x&=t^{2}+t \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.512 |
|
| \begin{align*}
x^{\prime \prime }-4 x^{\prime }+13 x&=20 \,{\mathrm e}^{t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.655 |
|
| \begin{align*}
x^{\prime \prime }-x^{\prime }-2 x&=2 t +{\mathrm e}^{t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.420 |
|
| \begin{align*}
x^{\prime \prime }+4 x&=\cos \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.657 |
|
| \begin{align*}
x^{\prime \prime }+x&=\sin \left (2 t \right )-\cos \left (3 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.008 |
|
| \begin{align*}
x^{\prime \prime }+2 x^{\prime }+2 x&=\cos \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.618 |
|
| \begin{align*}
x^{\prime \prime }+x&=t \sin \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.787 |
|
| \begin{align*}
x^{\prime \prime }-x^{\prime }&=t \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.126 |
|
| \begin{align*}
x^{\prime \prime }-x&={\mathrm e}^{k t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.406 |
|
| \begin{align*}
x^{\prime \prime }-x^{\prime }-2 x&=3 \,{\mathrm e}^{-t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.402 |
|
| \begin{align*}
x^{\prime \prime }-3 x^{\prime }+2 x&=3 \,{\mathrm e}^{t} t \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.434 |
|
| \begin{align*}
x^{\prime \prime }-4 x^{\prime }+3 x&=2 \,{\mathrm e}^{t}-5 \,{\mathrm e}^{2 t} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.562 |
|
| \begin{align*}
x^{\prime \prime }+2 x&=\cos \left (t \sqrt {2}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.763 |
|
| \begin{align*}
x^{\prime \prime }+4 x&=\sin \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.639 |
|
| \begin{align*}
x^{\prime \prime }+x&=2 \sin \left (t \right )+2 \cos \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.813 |
|
| \begin{align*}
x^{\prime \prime }+9 x&=\sin \left (t \right )+\sin \left (3 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.101 |
|
| \begin{align*}
x^{\prime \prime }-x&=t \\
x \left (0\right ) &= 0 \\
x \left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.474 |
|
| \begin{align*}
x^{\prime \prime }+4 x^{\prime }+x&=k \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.603 |
|
| \begin{align*}
x^{\prime \prime }-2 x&=2 \,{\mathrm e}^{t} \\
x \left (0\right ) &= 0 \\
x \left (a \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.664 |
|
| \begin{align*}
x^{\prime \prime }+\frac {\left (t^{5}+1\right ) x}{t^{4}+5}&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✗ |
✗ |
✗ |
1.051 |
|
| \begin{align*}
x^{\prime \prime }+\sqrt {t^{6}+3 t^{5}+1}\, x&=0 \\
\end{align*} | [[_Emden, _Fowler]] | ✗ | ✗ | ✗ | ✗ | 0.497 |
|
| \begin{align*}
x^{\prime \prime }+2 t^{3} x&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✗ |
0.247 |
|
| \begin{align*}
x^{\prime \prime }-p \left (t \right ) x&=q \left (t \right ) \\
x \left (a \right ) &= 0 \\
x \left (b \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
✗ |
✗ |
✗ |
0.698 |
|
| \begin{align*}
x^{\prime \prime }+p \left (t \right ) x^{\prime }+q \left (t \right ) x&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✗ |
✗ |
✗ |
0.924 |
|
| \begin{align*}
x^{\prime \prime }+x^{\prime }+x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.531 |
|
| \begin{align*}
x^{\prime \prime }-\frac {t x^{\prime }}{4}+x&=0 \\
\end{align*} |
[_Lienard] |
✓ |
✓ |
✓ |
✗ |
1.147 |
|
| \begin{align*}
x^{\prime \prime }-\frac {x^{\prime }}{t}&=0 \\
x \left (1\right ) &= 0 \\
x^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.865 |
|
| \begin{align*}
x^{\prime \prime }-2 x^{\prime } \left (x-1\right )&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✗ |
✗ |
2.065 |
|
| \begin{align*}
x^{\prime \prime }&=2 {x^{\prime }}^{3} x \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✗ |
0.495 |
|
| \begin{align*}
x x^{\prime \prime }-2 {x^{\prime }}^{2}-x^{2}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
9.632 |
|
| \begin{align*}
x x^{\prime \prime }-{x^{\prime }}^{2}+{\mathrm e}^{t} x^{2}&=0 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
✗ |
✓ |
✓ |
✗ |
0.379 |
|
| \begin{align*}
x x^{\prime \prime }-{x^{\prime }}^{2}+{\mathrm e}^{t} x^{2}&=0 \\
x \left (0\right ) &= -1 \\
x^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
✗ |
✓ |
✓ |
✗ |
0.232 |
|
| \begin{align*}
t^{2} x^{\prime \prime }-2 x&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.654 |
|
| \begin{align*}
t^{2} x^{\prime \prime }+a t x^{\prime }+x&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
2.637 |
|
| \begin{align*}
t^{2} x^{\prime \prime }-t x^{\prime }-3 x&=0 \\
x \left (1\right ) &= 0 \\
x^{\prime }\left (1\right ) &= 1 \\
\end{align*} | [[_2nd_order, _exact, _linear, _homogeneous]] | ✓ | ✓ | ✓ | ✓ | 1.835 |
|
| \begin{align*}
t^{2} x^{\prime \prime }+t x^{\prime }+x&=t \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
2.123 |
|
| \begin{align*}
t^{2} x^{\prime \prime }+3 t x^{\prime }-3 x&=t^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.619 |
|
| \begin{align*}
x^{\prime \prime }-t x^{\prime }+3 x&=0 \\
\end{align*} |
[_Hermite] |
✓ |
✓ |
✓ |
✗ |
1.235 |
|
| \begin{align*}
2 x^{\prime \prime \prime }&=0 \\
\end{align*} |
[[_3rd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.057 |
|
| \begin{align*}
x^{\prime \prime \prime }-x^{\prime }&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.060 |
|
| \begin{align*}
x^{\prime \prime \prime }+5 x^{\prime \prime }-6 x&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.076 |
|
| \begin{align*}
x^{\prime \prime \prime }-4 x^{\prime \prime }+x^{\prime }-4 x&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.074 |
|
| \begin{align*}
x^{\prime \prime \prime }-3 x^{\prime \prime }+4 x&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.065 |
|
| \begin{align*}
x^{\prime \prime \prime }+4 x^{\prime }&=0 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= -1 \\
x^{\prime \prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.136 |
|
| \begin{align*}
x^{\prime \prime \prime }-x^{\prime }&=0 \\
x \left (0\right ) &= 1 \\
x \left (\infty \right ) &= 0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.096 |
|
| \begin{align*}
x^{\prime \prime \prime }-x^{\prime }&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
x^{\prime \prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.094 |
|
| \begin{align*}
x^{\prime \prime \prime }+x^{\prime \prime }-2 x&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
x^{\prime \prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.089 |
|
| \begin{align*}
x^{\prime \prime \prime }+a x^{\prime \prime }+b x^{\prime }+c x&=0 \\
x \left (\infty \right ) &= 0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✗ |
✗ |
3.068 |
|
| \begin{align*}
x^{\prime \prime \prime }-3 x^{\prime }+k x&=0 \\
x \left (0\right ) &= 1 \\
x \left (\infty \right ) &= 0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✗ |
✗ |
1.856 |
|
| \begin{align*}
x^{\prime \prime \prime \prime }-6 x^{\prime \prime }+5 x&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.077 |
|
| \begin{align*}
x^{\prime \prime \prime \prime }-x&=0 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 0 \\
x^{\prime \prime }\left (0\right ) &= 0 \\
x^{\prime \prime \prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.125 |
|
| \begin{align*}
x^{\prime \prime \prime \prime }-x^{\prime \prime }&=0 \\
x \left (0\right ) &= 1 \\
x^{\prime \prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.087 |
|
| \begin{align*}
x^{\prime \prime \prime \prime }-4 x^{\prime \prime }+x&=0 \\
x \left (0\right ) &= 0 \\
x \left (\infty \right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.173 |
|
| \begin{align*}
x^{\prime \prime \prime \prime }-8 x^{\prime \prime \prime }+23 x^{\prime \prime }-28 x^{\prime }+12 x&=0 \\
x \left (\infty \right ) &= 0 \\
\end{align*} | [[_high_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.099 |
|
| \begin{align*}
x^{\prime \prime \prime \prime }+2 x^{\prime \prime }-4 x&=0 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.252 |
|
| \begin{align*}
x^{\left (5\right )}-x^{\prime }&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.078 |
|
| \begin{align*}
x^{\left (5\right )}+x^{\prime \prime \prime \prime }-x^{\prime }-x&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.080 |
|
| \begin{align*}
x^{\left (5\right )}+x&=0 \\
x \left (\infty \right ) &= 0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✗ |
✗ |
✗ |
1.001 |
|
| \begin{align*}
x^{\left (6\right )}-x^{\prime \prime }&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.089 |
|
| \begin{align*}
x^{\left (6\right )}-64 x&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.095 |
|
| \begin{align*}
x^{\prime \prime \prime \prime }+3 x^{\prime \prime \prime }+2 x^{\prime \prime }&={\mathrm e}^{t} \\
\end{align*} |
[[_high_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.150 |
|
| \begin{align*}
x^{\prime \prime \prime }+4 x^{\prime }&=\sec \left (2 t \right ) \\
\end{align*} |
[[_3rd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.589 |
|
| \begin{align*}
x^{\prime \prime \prime }-x^{\prime \prime }&=1 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.127 |
|
| \begin{align*}
x^{\prime \prime \prime }-x^{\prime }&=t \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
x^{\prime \prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_3rd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.172 |
|