2.2.213 Problems 21201 to 21300

Table 2.439: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

21201

\begin{align*} x^{\prime \prime \prime \prime }+x^{\prime \prime \prime }&=t \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ x^{\prime \prime }\left (0\right ) &= 0 \\ \end{align*}

[[_high_order, _missing_y]]

0.171

21202

\begin{align*} x^{\prime \prime \prime \prime }-3 x^{\prime \prime \prime }+2 x^{\prime }-5 x&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.101

21203

\begin{align*} t^{3} x^{\prime \prime \prime }+4 t^{2} x^{\prime \prime }+3 t x^{\prime }+x&=0 \\ \end{align*}

[[_3rd_order, _exact, _linear, _homogeneous]]

0.177

21204

\begin{align*} x^{\prime }&=x \\ y^{\prime }&=-3 y \\ \end{align*}

system_of_ODEs

0.347

21205

\begin{align*} x^{\prime }&=a x \\ y^{\prime }&=a y \\ \end{align*}

system_of_ODEs

0.282

21206

\begin{align*} x^{\prime }&=a x+y \\ y^{\prime }&=a y \\ \end{align*}

system_of_ODEs

0.333

21207

\begin{align*} x^{\prime }&=3 x-y \\ y^{\prime }&=x+3 y \\ \end{align*}

system_of_ODEs

0.470

21208

\begin{align*} x^{\prime }&=2 x+y \\ y^{\prime }&=-x+2 y \\ \end{align*}

system_of_ODEs

0.459

21209

\begin{align*} x^{\prime }&=x+3 y \\ y^{\prime }&=-3 x+y \\ \end{align*}

system_of_ODEs

0.482

21210

\begin{align*} x^{\prime }&=-x \\ y^{\prime }&=y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.365

21211

\begin{align*} x^{\prime }&=2 y \\ y^{\prime }&=-2 x \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= a \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.472

21212

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=-x \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.436

21213

\begin{align*} x^{\prime }&=3 x+t \\ y^{\prime }&=-y+2 t \\ \end{align*}

system_of_ODEs

0.550

21214

\begin{align*} x^{\prime }&=-x \\ y^{\prime }&=3 x+y \\ \end{align*}

system_of_ODEs

0.393

21215

\begin{align*} x^{\prime }&=2 x+6 y \\ y^{\prime }&=x+3 y \\ \end{align*}

system_of_ODEs

0.480

21216

\begin{align*} x^{\prime }&=2 x+6 y+{\mathrm e}^{t} \\ y^{\prime }&=x+3 y-{\mathrm e}^{t} \\ \end{align*}

system_of_ODEs

0.708

21217

\begin{align*} x^{\prime }&=x+2 y \\ y^{\prime }&=3 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= 3 \\ \end{align*}

system_of_ODEs

0.436

21218

\begin{align*} x^{\prime }&=x+2 y+2 t \\ y^{\prime }&=3 y+t^{2} \\ \end{align*}

system_of_ODEs

0.783

21219

\begin{align*} x^{\prime }&=3 x-y \\ y^{\prime }&=2 y \\ \end{align*}

system_of_ODEs

0.382

21220

\begin{align*} x^{\prime }&=x \\ y^{\prime }&=4 x-y \\ \end{align*}

system_of_ODEs

0.398

21221

\begin{align*} x^{\prime }&=x \\ y^{\prime }&=3 x+y \\ \end{align*}

system_of_ODEs

0.335

21222

\begin{align*} x^{\prime }&=x+3 y \\ y^{\prime }&=x-y \\ \end{align*}

system_of_ODEs

0.431

21223

\begin{align*} x^{\prime }&=x+y \\ y^{\prime }&=x-y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.574

21224

\begin{align*} x^{\prime }&=x+y \\ y^{\prime }&=-y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= -1 \\ y \left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.435

21225

\begin{align*} x^{\prime }&=x+3 y+2 t \\ y^{\prime }&=x-y+t^{2} \\ \end{align*}

system_of_ODEs

1.001

21226

\begin{align*} x^{\prime }&=x+2 y+{\mathrm e}^{t} \\ y^{\prime }&=x-2 y-{\mathrm e}^{t} \\ \end{align*}

system_of_ODEs

2.277

21227

\begin{align*} x^{\prime }&=x \\ y^{\prime }&=x-y \\ z^{\prime }&=-2 x+2 z \\ \end{align*}

system_of_ODEs

0.687

21228

\begin{align*} x^{\prime }&=x \\ y^{\prime }&=2 y+z \\ z^{\prime }&=x+3 z \\ \end{align*}

system_of_ODEs

0.658

21229

\begin{align*} x^{\prime }&=x+z \\ y^{\prime }&=-y \\ z^{\prime }&=4 z \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ z \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.711

21230

\begin{align*} x^{\prime }&=x \\ y^{\prime }&=2 y+z \\ z^{\prime }&=x+z \\ \end{align*}

system_of_ODEs

0.563

21231

\begin{align*} x^{\prime \prime \prime }-2 x^{\prime \prime }+3 x^{\prime }+x&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.110

21232

\begin{align*} x^{\prime }&=x+z \\ y^{\prime }&=z-y \\ z^{\prime }&=y-z \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 1 \\ z \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.681

21233

\begin{align*} x^{\prime }&=2 x \\ y^{\prime }&=2 y+z \\ z^{\prime }&=-x-z \\ \end{align*}

system_of_ODEs

0.648

21234

\begin{align*} x^{\prime }&=\left (a -2\right ) x+y \\ y^{\prime }&=-x+\left (a -2\right ) y \\ z^{\prime }&=-a z \\ \end{align*}

system_of_ODEs

1.045

21235

\begin{align*} x^{\prime }+t y&=-1 \\ x^{\prime }+y^{\prime }&=2 \\ \end{align*}

system_of_ODEs

0.039

21236

\begin{align*} x^{\prime }+y&=3 t \\ y^{\prime }-t x^{\prime }&=0 \\ \end{align*}

system_of_ODEs

0.043

21237

\begin{align*} x^{\prime }-t y&=1 \\ y^{\prime }-t x^{\prime }&=3 \\ \end{align*}

system_of_ODEs

0.041

21238

\begin{align*} t^{2} x^{\prime }-y&=1 \\ y^{\prime }-2 x&=0 \\ \end{align*}

system_of_ODEs

0.038

21239

\begin{align*} x^{\prime }-y&=3 \\ y^{\prime }-3 x^{\prime }&=-2 x \\ \end{align*}

system_of_ODEs

0.712

21240

\begin{align*} t x^{\prime }+y^{\prime }&=1 \\ y^{\prime }+x+{\mathrm e}^{x^{\prime }}&=1 \\ \end{align*}

system_of_ODEs

0.074

21241

\begin{align*} x x^{\prime }+y&=2 t \\ y^{\prime }+2 x^{2}&=1 \\ \end{align*}

system_of_ODEs

0.050

21242

\begin{align*} x^{\prime }&=1+x \\ y^{\prime }&=x+3 y-1 \\ \end{align*}

system_of_ODEs

0.726

21243

\begin{align*} x^{\prime }&=x+3 y+a \\ y^{\prime }&=x-y+b \\ \end{align*}

system_of_ODEs

0.806

21244

\begin{align*} x^{\prime }&=a x+y \\ y^{\prime }&=-2 x+b y \\ \end{align*}

system_of_ODEs

0.978

21245

\begin{align*} x^{\prime }&=x+y \\ y^{\prime }&=-2 c x-y \\ \end{align*}

system_of_ODEs

0.697

21246

\begin{align*} x^{\prime }&=x+y \\ y^{\prime }&=-2 x-y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.507

21247

\begin{align*} x^{\prime }&=x-6 y \\ y^{\prime }&=-2 x-y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.643

21248

\begin{align*} L x^{\prime \prime }+g \sin \left (x\right )&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

48.559

21249

\begin{align*} x^{\prime }&=x-x y \\ y^{\prime }&=-y+x y \\ \end{align*}

system_of_ODEs

0.050

21250

\begin{align*} x^{\prime }&=2 x-7 x y-a x \\ y^{\prime }&=-y+4 x y-a y \\ \end{align*}

system_of_ODEs

0.057

21251

\begin{align*} x^{\prime }&=2 x-2 x y \\ y^{\prime }&=-y+x y \\ \end{align*}

system_of_ODEs

0.052

21252

\begin{align*} x^{\prime }&=x-4 x y \\ y^{\prime }&=-2 y+x y \\ \end{align*}

system_of_ODEs

0.049

21253

\begin{align*} x^{\prime }&=x \left (3-y\right ) \\ y^{\prime }&=y \left (x-5\right ) \\ \end{align*}

system_of_ODEs

0.054

21254

\begin{align*} x^{\prime \prime }&=x-x^{3} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

4.690

21255

\begin{align*} x^{\prime \prime }&=x^{3}-x \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= {\frac {1}{2}} \\ \end{align*}

[[_2nd_order, _missing_x], _Duffing, [_2nd_order, _reducible, _mu_x_y1]]

7.876

21256

\begin{align*} x^{\prime \prime }&=x^{3}-x \\ x \left (0\right ) &= 2 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], _Duffing, [_2nd_order, _reducible, _mu_x_y1]]

5.146

21257

\begin{align*} x^{\prime \prime }&=x^{3}-x \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x], _Duffing, [_2nd_order, _reducible, _mu_x_y1]]

3.771

21258

\begin{align*} x^{\prime \prime }&=x-x^{3} \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.670

21259

\begin{align*} x^{\prime \prime }&=x-x^{3} \\ x \left (0\right ) &= 2 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3.625

21260

\begin{align*} x^{\prime \prime }&=x-x^{3} \\ x \left (0\right ) &= \frac {\sqrt {2}}{2} \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

7.002

21261

\begin{align*} x^{\prime \prime }+x+8 x^{7}&=0 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= a \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

9.929

21262

\begin{align*} x^{\prime \prime }+x+\frac {x^{2}}{3}&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

27.558

21263

\begin{align*} x^{\prime \prime }-x+3 x^{2}&=0 \\ x \left (0\right ) &= {\frac {1}{2}} \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

24.089

21264

\begin{align*} x^{\prime \prime }-x+3 x^{2}&=0 \\ x \left (0\right ) &= {\frac {1}{4}} \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

34.511

21265

\begin{align*} x^{\prime \prime }-x+3 x^{2}&=0 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

4.403

21266

\begin{align*} x^{\prime \prime }-x+3 x^{2}&=0 \\ x \left (0\right ) &= -{\frac {1}{4}} \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

49.572

21267

\begin{align*} t x^{\prime \prime }&=x \\ \end{align*}
Series expansion around \(t=0\).

[[_Emden, _Fowler]]

4.394

21268

\begin{align*} t x^{\prime \prime }&=x^{\prime } \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _missing_y]]

0.669

21269

\begin{align*} t x^{\prime \prime }&=t x+1 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.754

21270

\begin{align*} x^{\prime \prime }+t x^{\prime }+x&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.436

21271

\begin{align*} 4 t^{2} x^{\prime \prime }+4 t x^{\prime }-x&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.794

21272

\begin{align*} t^{2} x^{\prime \prime }+3 t x^{\prime }&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _missing_y]]

0.668

21273

\begin{align*} t^{2} x^{\prime \prime }-3 t x^{\prime }+\left (-t +4\right ) x&=0 \\ \end{align*}
Series expansion around \(t=0\).

[[_2nd_order, _with_linear_symmetries]]

0.758

21274

\begin{align*} t^{2} x^{\prime \prime }+t x^{\prime }+t^{2} x&=0 \\ \end{align*}
Series expansion around \(t=0\).

[_Lienard]

0.617

21275

\begin{align*} t^{2} x^{\prime \prime }+t x^{\prime }+t^{2} x&=0 \\ x^{\prime }\left (0\right ) &= a \\ \end{align*}

[_Lienard]

2.070

21276

\begin{align*} t^{2} x^{\prime \prime }+t x^{\prime }+\left (t^{2}-1\right ) x&=0 \\ x^{\prime }\left (0\right ) &= a \\ \end{align*}

[_Bessel]

31.033

21277

\begin{align*} t^{2} x^{\prime \prime }+t x^{\prime }+\left (-m^{2}+t^{2}\right ) x&=0 \\ x \left (0\right ) &= 0 \\ \end{align*}

[_Bessel]

2.873

21278

\begin{align*} s y^{\prime \prime }+\lambda y&=0 \\ y \left (0\right ) &= 0 \\ y \left (1\right ) &= 0 \\ \end{align*}

[[_Emden, _Fowler]]

0.401

21279

\begin{align*} t^{2} x^{\prime \prime }+t x^{\prime }+t^{2} x&=\lambda x \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.608

21280

\begin{align*} x^{\prime }+x&={\mathrm e}^{t} \\ x \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.288

21281

\begin{align*} x^{\prime }+x&=t \\ x \left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.226

21282

\begin{align*} x^{\prime \prime }-2 x^{\prime }+x&=0 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.187

21283

\begin{align*} x^{\prime \prime }-4 x^{\prime }+3 x&=1 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.273

21284

\begin{align*} x^{\prime \prime \prime \prime }+x^{\prime \prime }&=0 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ x^{\prime \prime }\left (0\right ) &= 0 \\ x^{\prime \prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_high_order, _missing_x]]

0.329

21285

\begin{align*} x^{\prime }-x&=\operatorname {Heaviside}\left (t -a \right ) \\ x \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

17.793

21286

\begin{align*} x^{\prime }+x&=\operatorname {Heaviside}\left (t -a \right ) \\ x \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

6.896

21287

\begin{align*} x^{\prime }-x&=k \delta \left (t \right ) \\ x \left (0\right ) &= a \\ \end{align*}
Using Laplace transform method.

[[_linear, ‘class A‘]]

0.196

21288

\begin{align*} x^{\prime \prime }+x&=g \left (t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.314

21289

\begin{align*} x^{\prime \prime }&=\delta \left (-t +a \right ) \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _quadrature]]

1.104

21290

\begin{align*} x^{\prime }&=2 x+y \\ y^{\prime }&=-x-4 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.380

21291

\begin{align*} x^{\prime }&=-x+y \\ y^{\prime }&=x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.353

21292

\begin{align*} x^{\prime }&=x+y \\ y^{\prime }&=-y+\delta \left (t \right ) \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.303

21293

\begin{align*} x^{\prime }&=-2 x+y \\ y^{\prime }&=7 x-4 y \\ \end{align*}

system_of_ODEs

0.692

21294

\begin{align*} x^{\prime }&=-x-y \\ y^{\prime }&=4 x-y \\ \end{align*}

system_of_ODEs

0.517

21295

\begin{align*} x^{\prime }&=x-y \\ y^{\prime }&=3 x-y \\ \end{align*}

system_of_ODEs

1.274

21296

\begin{align*} x^{\prime }&=-2 a x-y \\ y^{\prime }&=\left (a^{2}+9\right ) x \\ \end{align*}

system_of_ODEs

0.725

21297

\begin{align*} x^{\prime }&=-x+4 y \\ y^{\prime }&=3 x-5 y \\ \end{align*}

system_of_ODEs

0.505

21298

\begin{align*} x^{\prime \prime }+2 x^{\prime }-x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.303

21299

\begin{align*} x^{\prime \prime }+2 x^{\prime }+x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.340

21300

\begin{align*} x^{\prime \prime }+2 h x^{\prime }+k^{2} x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.864