2.12.1 Problem (a)
Internal
problem
ID
[20994]
Book
:
Ordinary
Differential
Equations.
By
Wolfgang
Walter.
Graduate
texts
in
Mathematics.
Springer.
NY.
QA372.W224
1998
Section
:
Chapter
IV.
Linear
Differential
Equations.
Excercise
XIII
at
page
189
Problem
number
:
(a)
Date
solved
:
Saturday, November 29, 2025 at 01:34:20 AM
CAS
classification
:
system_of_ODEs
\begin{align*}
x^{\prime }&=3 x+6 y \\
y^{\prime }&=-2 x-3 y \\
\end{align*}
Solution using Matrix exponential method
In this method, we will assume we have found the matrix exponential \(e^{A t}\) allready. There are different
methods to determine this but will not be shown here. This is a system of linear ODE’s given as
\begin{align*} \vec {x}'(t) &= A\, \vec {x}(t) \end{align*}
Or
\begin{align*} \left [\begin {array}{c} x^{\prime } \\ y^{\prime } \end {array}\right ] &= \left [\begin {array}{cc} 3 & 6 \\ -2 & -3 \end {array}\right ]\, \left [\begin {array}{c} x \\ y \end {array}\right ] \end{align*}
For the above matrix \(A\) , the matrix exponential can be found to be
\begin{align*} e^{A t} &= \left [\begin {array}{cc} \cos \left (\sqrt {3}\, t \right )+\sqrt {3}\, \sin \left (\sqrt {3}\, t \right ) & 2 \sqrt {3}\, \sin \left (\sqrt {3}\, t \right ) \\ -\frac {2 \sqrt {3}\, \sin \left (\sqrt {3}\, t \right )}{3} & \cos \left (\sqrt {3}\, t \right )-\sqrt {3}\, \sin \left (\sqrt {3}\, t \right ) \end {array}\right ] \end{align*}
Therefore the homogeneous solution is
\begin{align*} \vec {x}_h(t) &= e^{A t} \vec {c} \\ &= \left [\begin {array}{cc} \cos \left (\sqrt {3}\, t \right )+\sqrt {3}\, \sin \left (\sqrt {3}\, t \right ) & 2 \sqrt {3}\, \sin \left (\sqrt {3}\, t \right ) \\ -\frac {2 \sqrt {3}\, \sin \left (\sqrt {3}\, t \right )}{3} & \cos \left (\sqrt {3}\, t \right )-\sqrt {3}\, \sin \left (\sqrt {3}\, t \right ) \end {array}\right ] \left [\begin {array}{c} c_{1} \\ c_{2} \end {array}\right ] \\ &= \left [\begin {array}{c} \left (\cos \left (\sqrt {3}\, t \right )+\sqrt {3}\, \sin \left (\sqrt {3}\, t \right )\right ) c_{1}+2 \sqrt {3}\, \sin \left (\sqrt {3}\, t \right ) c_{2} \\ -\frac {2 \sqrt {3}\, \sin \left (\sqrt {3}\, t \right ) c_{1}}{3}+\left (\cos \left (\sqrt {3}\, t \right )-\sqrt {3}\, \sin \left (\sqrt {3}\, t \right )\right ) c_{2} \end {array}\right ]\\ &= \left [\begin {array}{c} \sqrt {3}\, \left (c_{1}+2 c_{2}\right ) \sin \left (\sqrt {3}\, t \right )+\cos \left (\sqrt {3}\, t \right ) c_{1} \\ -\frac {2 \sqrt {3}\, \left (c_{1}+\frac {3 c_{2}}{2}\right ) \sin \left (\sqrt {3}\, t \right )}{3}+\cos \left (\sqrt {3}\, t \right ) c_{2} \end {array}\right ] \end{align*}
Since no forcing function is given, then the final solution is \(\vec {x}_h(t)\) above.
Solution using explicit Eigenvalue and Eigenvector method
This is a system of linear ODE’s given as
\begin{align*} \vec {x}'(t) &= A\, \vec {x}(t) \end{align*}
Or
\begin{align*} \left [\begin {array}{c} x^{\prime } \\ y^{\prime } \end {array}\right ] &= \left [\begin {array}{cc} 3 & 6 \\ -2 & -3 \end {array}\right ]\, \left [\begin {array}{c} x \\ y \end {array}\right ] \end{align*}
The first step is find the homogeneous solution. We start by finding the eigenvalues of \(A\) . This is
done by solving the following equation for the eigenvalues \(\lambda \)
\begin{align*} \operatorname {det} \left ( A- \lambda I \right ) &= 0 \end{align*}
Expanding gives
\begin{align*} \operatorname {det} \left (\left [\begin {array}{cc} 3 & 6 \\ -2 & -3 \end {array}\right ]-\lambda \left [\begin {array}{cc} 1 & 0 \\ 0 & 1 \end {array}\right ]\right ) &= 0 \end{align*}
Therefore
\begin{align*} \operatorname {det} \left (\left [\begin {array}{cc} 3-\lambda & 6 \\ -2 & -3-\lambda \end {array}\right ]\right ) &= 0 \end{align*}
Which gives the characteristic equation
\begin{align*} \lambda ^{2}+3&=0 \end{align*}
The roots of the above are the eigenvalues.
\begin{align*} \lambda _1 &= i \sqrt {3}\\ \lambda _2 &= -i \sqrt {3} \end{align*}
This table summarises the above result
eigenvalue
algebraic multiplicity
type of eigenvalue
\(i \sqrt {3}\) \(1\) complex eigenvalue
\(-i \sqrt {3}\) \(1\) complex eigenvalue
Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue \(\lambda _{1} = -i \sqrt {3}\)
We need to solve \(A \vec {v} = \lambda \vec {v}\) or \((A-\lambda I) \vec {v} = \vec {0}\) which becomes
\begin{align*} \left (\left [\begin {array}{cc} 3 & 6 \\ -2 & -3 \end {array}\right ] - \left (-i \sqrt {3}\right ) \left [\begin {array}{cc} 1 & 0 \\ 0 & 1 \end {array}\right ]\right ) \left [\begin {array}{c} v_{1} \\ v_{2} \end {array}\right ]&=\left [\begin {array}{c} 0 \\ 0 \end {array}\right ]\\ \left [\begin {array}{cc} i \sqrt {3}+3 & 6 \\ -2 & i \sqrt {3}-3 \end {array}\right ] \left [\begin {array}{c} v_{1} \\ v_{2} \end {array}\right ]&=\left [\begin {array}{c} 0 \\ 0 \end {array}\right ] \end{align*}
Now forward elimination is applied to solve for the eigenvector \(\vec {v}\) . The augmented matrix is
\[ \left [\begin {array}{@{}cc!{\ifdefined \HCode |\else \color {red}\vline width 0.6pt\fi }c@{}} i \sqrt {3}+3&6&0\\ -2&i \sqrt {3}-3&0 \end {array} \right ] \]
\begin{align*} R_{2} = R_{2}+\frac {2 R_{1}}{i \sqrt {3}+3} &\Longrightarrow \hspace {5pt}\left [\begin {array}{@{}cc!{\ifdefined \HCode |\else \color {red}\vline width 0.6pt\fi }c@{}} i \sqrt {3}+3&6&0\\ 0&0&0 \end {array} \right ] \end{align*}
Therefore the system in Echelon form is
\[ \left [\begin {array}{cc} i \sqrt {3}+3 & 6 \\ 0 & 0 \end {array}\right ] \left [\begin {array}{c} v_{1} \\ v_{2} \end {array}\right ] = \left [\begin {array}{c} 0 \\ 0 \end {array}\right ] \]
The free variables are
\(\{v_{2}\}\) and the leading variables are
\(\{v_{1}\}\) . Let
\(v_{2} = t\) . Now we start back substitution. Solving the above equation for the leading variables in terms of
free variables gives equation
\(\left \{v_{1} = -\frac {6 t}{i \sqrt {3}+3}\right \}\)
Hence the solution is
\[ \left [\begin {array}{c} v_{1} \\ t \end {array}\right ] = \left [\begin {array}{c} -\frac {6 t}{i \sqrt {3}+3} \\ t \end {array}\right ] \]
Since there is one free Variable, we have found one eigenvector associated
with this eigenvalue. The above can be written as
\[ \left [\begin {array}{c} v_{1} \\ t \end {array}\right ] = t \left [\begin {array}{c} -\frac {6}{i \sqrt {3}+3} \\ 1 \end {array}\right ] \]
Let
\(t = 1\) the eigenvector becomes
\[ \left [\begin {array}{c} v_{1} \\ t \end {array}\right ] = \left [\begin {array}{c} -\frac {6}{i \sqrt {3}+3} \\ 1 \end {array}\right ] \]
Which is
normalized to
\[ \left [\begin {array}{c} v_{1} \\ t \end {array}\right ] = \left [\begin {array}{c} -\frac {6}{i \sqrt {3}+3} \\ 1 \end {array}\right ] \]
Considering the eigenvalue
\(\lambda _{2} = i \sqrt {3}\)
We need to solve \(A \vec {v} = \lambda \vec {v}\) or \((A-\lambda I) \vec {v} = \vec {0}\) which becomes
\begin{align*} \left (\left [\begin {array}{cc} 3 & 6 \\ -2 & -3 \end {array}\right ] - \left (i \sqrt {3}\right ) \left [\begin {array}{cc} 1 & 0 \\ 0 & 1 \end {array}\right ]\right ) \left [\begin {array}{c} v_{1} \\ v_{2} \end {array}\right ]&=\left [\begin {array}{c} 0 \\ 0 \end {array}\right ]\\ \left [\begin {array}{cc} -i \sqrt {3}+3 & 6 \\ -2 & -i \sqrt {3}-3 \end {array}\right ] \left [\begin {array}{c} v_{1} \\ v_{2} \end {array}\right ]&=\left [\begin {array}{c} 0 \\ 0 \end {array}\right ] \end{align*}
Now forward elimination is applied to solve for the eigenvector \(\vec {v}\) . The augmented matrix is
\[ \left [\begin {array}{@{}cc!{\ifdefined \HCode |\else \color {red}\vline width 0.6pt\fi }c@{}} -i \sqrt {3}+3&6&0\\ -2&-i \sqrt {3}-3&0 \end {array} \right ] \]
\begin{align*} R_{2} = R_{2}+\frac {2 R_{1}}{-i \sqrt {3}+3} &\Longrightarrow \hspace {5pt}\left [\begin {array}{@{}cc!{\ifdefined \HCode |\else \color {red}\vline width 0.6pt\fi }c@{}} -i \sqrt {3}+3&6&0\\ 0&0&0 \end {array} \right ] \end{align*}
Therefore the system in Echelon form is
\[ \left [\begin {array}{cc} -i \sqrt {3}+3 & 6 \\ 0 & 0 \end {array}\right ] \left [\begin {array}{c} v_{1} \\ v_{2} \end {array}\right ] = \left [\begin {array}{c} 0 \\ 0 \end {array}\right ] \]
The free variables are
\(\{v_{2}\}\) and the leading variables are
\(\{v_{1}\}\) . Let
\(v_{2} = t\) . Now we start back substitution. Solving the above equation for the leading variables in terms of
free variables gives equation
\(\left \{v_{1} = \frac {6 t}{i \sqrt {3}-3}\right \}\)
Hence the solution is
\[ \left [\begin {array}{c} v_{1} \\ t \end {array}\right ] = \left [\begin {array}{c} \frac {6 t}{i \sqrt {3}-3} \\ t \end {array}\right ] \]
Since there is one free Variable, we have found one eigenvector associated
with this eigenvalue. The above can be written as
\[ \left [\begin {array}{c} v_{1} \\ t \end {array}\right ] = t \left [\begin {array}{c} \frac {6}{i \sqrt {3}-3} \\ 1 \end {array}\right ] \]
Let
\(t = 1\) the eigenvector becomes
\[ \left [\begin {array}{c} v_{1} \\ t \end {array}\right ] = \left [\begin {array}{c} \frac {6}{i \sqrt {3}-3} \\ 1 \end {array}\right ] \]
Which is
normalized to
\[ \left [\begin {array}{c} v_{1} \\ t \end {array}\right ] = \left [\begin {array}{c} \frac {6}{i \sqrt {3}-3} \\ 1 \end {array}\right ] \]
The following table gives a summary of this result. It shows for each eigenvalue the
algebraic multiplicity
\(m\) , and its geometric multiplicity
\(k\) and the eigenvectors associated with the
eigenvalue. If
\(m>k\) then the eigenvalue is defective which means the number of normal linearly
independent eigenvectors associated with this eigenvalue (called the geometric multiplicity
\(k\) ) does
not equal the algebraic multiplicity
\(m\) , and we need to determine an additional
\(m-k\) generalized
eigenvectors for this eigenvalue.
multiplicity
eigenvalue algebraic \(m\) geometric \(k\) defective? eigenvectors
\(i \sqrt {3}\) \(1\) \(1\) No \(\left [\begin {array}{c} \frac {6}{i \sqrt {3}-3} \\ 1 \end {array}\right ]\)
\(-i \sqrt {3}\)
\(1\)
\(1\)
No
\(\left [\begin {array}{c} \frac {6}{-i \sqrt {3}-3} \\ 1 \end {array}\right ]\)
Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and
generate the solution basis. The only problem we need to take care of is if the eigenvalue is
defective. Therefore the final solution is
\begin{align*} \vec {x}_h(t) &= c_{1} \vec {x}_{1}(t) + c_{2} \vec {x}_{2}(t) \end{align*}
Which is written as
\begin{align*} \left [\begin {array}{c} x \\ y \end {array}\right ] &= c_{1} \left [\begin {array}{c} \frac {6 \,{\mathrm e}^{i \sqrt {3}\, t}}{i \sqrt {3}-3} \\ {\mathrm e}^{i \sqrt {3}\, t} \end {array}\right ] + c_{2} \left [\begin {array}{c} \frac {6 \,{\mathrm e}^{-i \sqrt {3}\, t}}{-i \sqrt {3}-3} \\ {\mathrm e}^{-i \sqrt {3}\, t} \end {array}\right ] \end{align*}
Which becomes
\begin{align*} \left [\begin {array}{c} x \\ y \end {array}\right ] = \left [\begin {array}{c} \frac {3 i \left (i+\frac {\sqrt {3}}{3}\right ) c_2 \,{\mathrm e}^{-i \sqrt {3}\, t}}{2}+\frac {3 i {\mathrm e}^{i \sqrt {3}\, t} \left (i-\frac {\sqrt {3}}{3}\right ) c_1}{2} \\ c_1 \,{\mathrm e}^{i \sqrt {3}\, t}+c_2 \,{\mathrm e}^{-i \sqrt {3}\, t} \end {array}\right ] \end{align*}
Figure 2.59: Phase plot
✓ Maple. Time used: 0.078 (sec). Leaf size: 67
ode :=[ diff ( x ( t ), t ) = 3*x(t)+6*y(t), diff(y(t),t) = -2*x(t)-3*y(t)];
dsolve ( ode );
\begin{align*}
x \left (t \right ) &= c_1 \sin \left (\sqrt {3}\, t \right )+c_2 \cos \left (\sqrt {3}\, t \right ) \\
y \left (t \right ) &= \frac {c_1 \sqrt {3}\, \cos \left (\sqrt {3}\, t \right )}{6}-\frac {c_2 \sqrt {3}\, \sin \left (\sqrt {3}\, t \right )}{6}-\frac {c_1 \sin \left (\sqrt {3}\, t \right )}{2}-\frac {c_2 \cos \left (\sqrt {3}\, t \right )}{2} \\
\end{align*}
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left [\frac {d}{d t}x \left (t \right )=3 x \left (t \right )+6 y \left (t \right ), \frac {d}{d t}y \left (t \right )=-2 x \left (t \right )-3 y \left (t \right )\right ] \\ \bullet & {} & \textrm {Define vector}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{x}}\left (t \right )=\left [\begin {array}{c} x \left (t \right ) \\ y \left (t \right ) \end {array}\right ] \\ \bullet & {} & \textrm {Convert system into a vector equation}\hspace {3pt} \\ {} & {} & \frac {d}{d t}{\moverset {\rightarrow }{x}}\left (t \right )=\left [\begin {array}{cc} 3 & 6 \\ -2 & -3 \end {array}\right ]\cdot {\moverset {\rightarrow }{x}}\left (t \right )+\left [\begin {array}{c} 0 \\ 0 \end {array}\right ] \\ \bullet & {} & \textrm {System to solve}\hspace {3pt} \\ {} & {} & \frac {d}{d t}{\moverset {\rightarrow }{x}}\left (t \right )=\left [\begin {array}{cc} 3 & 6 \\ -2 & -3 \end {array}\right ]\cdot {\moverset {\rightarrow }{x}}\left (t \right ) \\ \bullet & {} & \textrm {Define the coefficient matrix}\hspace {3pt} \\ {} & {} & A =\left [\begin {array}{cc} 3 & 6 \\ -2 & -3 \end {array}\right ] \\ \bullet & {} & \textrm {Rewrite the system as}\hspace {3pt} \\ {} & {} & \frac {d}{d t}{\moverset {\rightarrow }{x}}\left (t \right )=A \cdot {\moverset {\rightarrow }{x}}\left (t \right ) \\ \bullet & {} & \textrm {To solve the system, find the eigenvalues and eigenvectors of}\hspace {3pt} A \\ \bullet & {} & \textrm {Eigenpairs of}\hspace {3pt} A \\ {} & {} & \left [\left [\mathrm {-I} \sqrt {3}, \left [\begin {array}{c} \frac {6}{-\mathrm {I} \sqrt {3}-3} \\ 1 \end {array}\right ]\right ], \left [\mathrm {I} \sqrt {3}, \left [\begin {array}{c} \frac {6}{\mathrm {I} \sqrt {3}-3} \\ 1 \end {array}\right ]\right ]\right ] \\ \bullet & {} & \textrm {Consider complex eigenpair, complex conjugate eigenvalue can be ignored}\hspace {3pt} \\ {} & {} & \left [\mathrm {-I} \sqrt {3}, \left [\begin {array}{c} \frac {6}{-\mathrm {I} \sqrt {3}-3} \\ 1 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution from eigenpair}\hspace {3pt} \\ {} & {} & {\mathrm e}^{\mathrm {-I} \sqrt {3}\, t}\cdot \left [\begin {array}{c} \frac {6}{-\mathrm {I} \sqrt {3}-3} \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Use Euler identity to write solution in terms of}\hspace {3pt} \sin \hspace {3pt}\textrm {and}\hspace {3pt} \cos \\ {} & {} & \left (\cos \left (\sqrt {3}\, t \right )-\mathrm {I} \sin \left (\sqrt {3}\, t \right )\right )\cdot \left [\begin {array}{c} \frac {6}{-\mathrm {I} \sqrt {3}-3} \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Simplify expression}\hspace {3pt} \\ {} & {} & \left [\begin {array}{c} \frac {6 \left (\cos \left (\sqrt {3}\, t \right )-\mathrm {I} \sin \left (\sqrt {3}\, t \right )\right )}{-\mathrm {I} \sqrt {3}-3} \\ \cos \left (\sqrt {3}\, t \right )-\mathrm {I} \sin \left (\sqrt {3}\, t \right ) \end {array}\right ] \\ \bullet & {} & \textrm {Both real and imaginary parts are solutions to the homogeneous system}\hspace {3pt} \\ {} & {} & \left [{\moverset {\rightarrow }{x}}_{1}\left (t \right )=\left [\begin {array}{c} -\frac {3 \cos \left (\sqrt {3}\, t \right )}{2}+\frac {\sin \left (\sqrt {3}\, t \right ) \sqrt {3}}{2} \\ \cos \left (\sqrt {3}\, t \right ) \end {array}\right ], {\moverset {\rightarrow }{x}}_{2}\left (t \right )=\left [\begin {array}{c} \frac {\cos \left (\sqrt {3}\, t \right ) \sqrt {3}}{2}+\frac {3 \sin \left (\sqrt {3}\, t \right )}{2} \\ -\sin \left (\sqrt {3}\, t \right ) \end {array}\right ]\right ] \\ \bullet & {} & \textrm {General solution to the system of ODEs}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{x}}=\mathit {C1} {\moverset {\rightarrow }{x}}_{1}\left (t \right )+\mathit {C2} {\moverset {\rightarrow }{x}}_{2}\left (t \right ) \\ \bullet & {} & \textrm {Substitute solutions into the general solution}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{x}}=\left [\begin {array}{c} \mathit {C2} \left (\frac {\cos \left (\sqrt {3}\, t \right ) \sqrt {3}}{2}+\frac {3 \sin \left (\sqrt {3}\, t \right )}{2}\right )+\mathit {C1} \left (-\frac {3 \cos \left (\sqrt {3}\, t \right )}{2}+\frac {\sin \left (\sqrt {3}\, t \right ) \sqrt {3}}{2}\right ) \\ -\mathit {C2} \sin \left (\sqrt {3}\, t \right )+\mathit {C1} \cos \left (\sqrt {3}\, t \right ) \end {array}\right ] \\ \bullet & {} & \textrm {Substitute in vector of dependent variables}\hspace {3pt} \\ {} & {} & \left [\begin {array}{c} x \left (t \right ) \\ y \left (t \right ) \end {array}\right ]=\left [\begin {array}{c} \frac {\left (\mathit {C2} \sqrt {3}-3 \mathit {C1} \right ) \cos \left (\sqrt {3}\, t \right )}{2}+\frac {\sin \left (\sqrt {3}\, t \right ) \left (\mathit {C1} \sqrt {3}+3 \mathit {C2} \right )}{2} \\ -\mathit {C2} \sin \left (\sqrt {3}\, t \right )+\mathit {C1} \cos \left (\sqrt {3}\, t \right ) \end {array}\right ] \\ \bullet & {} & \textrm {Solution to the system of ODEs}\hspace {3pt} \\ {} & {} & \left \{x \left (t \right )=\frac {\left (\mathit {C2} \sqrt {3}-3 \mathit {C1} \right ) \cos \left (\sqrt {3}\, t \right )}{2}+\frac {\sin \left (\sqrt {3}\, t \right ) \left (\mathit {C1} \sqrt {3}+3 \mathit {C2} \right )}{2}, y \left (t \right )=-\mathit {C2} \sin \left (\sqrt {3}\, t \right )+\mathit {C1} \cos \left (\sqrt {3}\, t \right )\right \} \end {array} \]
✓ Mathematica. Time used: 0.008 (sec). Leaf size: 77
ode ={ D [ x [ t ], t ]==3* x [ t ]+6* y [ t ], D[y[t],t]==-2*x[t]-3*y[t]};
ic ={};
DSolve [{ ode , ic },{ x [ t ], y [ t ]}, t , IncludeSingularSolutions -> True ]
\begin{align*} x(t)&\to c_1 \cos \left (\sqrt {3} t\right )+\sqrt {3} (c_1+2 c_2) \sin \left (\sqrt {3} t\right )\\ y(t)&\to c_2 \cos \left (\sqrt {3} t\right )-\frac {(2 c_1+3 c_2) \sin \left (\sqrt {3} t\right )}{\sqrt {3}} \end{align*}
✓ Sympy. Time used: 0.108 (sec). Leaf size: 61
from sympy import *
t = symbols("t")
x = Function("x")
y = Function("y")
ode =[ Eq (-3* x ( t ) - 6*y(t) + Derivative(x(t), t),0),Eq(-2*x(t) + 3*y(t) + Derivative(y(t), t),0)]
ics = {}
dsolve ( ode , func =[ x ( t ), y ( t )], ics = ics )
\[
\left [ x{\left (t \right )} = \frac {C_{1} \left (3 - \sqrt {21}\right ) e^{- \sqrt {21} t}}{2} + \frac {C_{2} \left (3 + \sqrt {21}\right ) e^{\sqrt {21} t}}{2}, \ y{\left (t \right )} = C_{1} e^{- \sqrt {21} t} + C_{2} e^{\sqrt {21} t}\right ]
\]