2.2.5 Problem (f)

Existence and uniqueness analysis
Solved using first_order_ode_separable
Solved using first_order_ode_exact
Maple
Mathematica
Sympy

Internal problem ID [20971]
Book : Ordinary Differential Equations. By Wolfgang Walter. Graduate texts in Mathematics. Springer. NY. QA372.W224 1998
Section : Chapter 1. First order equations: Some integrable cases. Excercises XIII at page 24
Problem number : (f)
Date solved : Saturday, November 29, 2025 at 01:16:07 AM
CAS classification : [_separable]

Existence and uniqueness analysis
\begin{align*} y^{\prime }&=\frac {\cos \left (x \right )}{\cos \left (y\right )^{2}} \\ y \left (\pi \right ) &= \frac {\pi }{4} \\ \end{align*}
This is non linear first order ODE. In canonical form it is written as
\begin{align*} y^{\prime } &= f(x,y)\\ &= \frac {\cos \left (x \right )}{\cos \left (y \right )^{2}} \end{align*}

The \(x\) domain of \(f(x,y)\) when \(y=\frac {\pi }{4}\) is

\[ \{-\infty <x <\infty \} \]
And the point \(x_0 = \pi \) is inside this domain. The \(y\) domain of \(f(x,y)\) when \(x=\pi \) is
\[ \left \{y <\frac {1}{2} \pi +\pi \_Z357 \boldsymbol {\lor }\frac {1}{2} \pi +\pi \_Z357 <y\right \} \]
And the point \(y_0 = \frac {\pi }{4}\) is inside this domain. Now we will look at the continuity of
\begin{align*} \frac {\partial f}{\partial y} &= \frac {\partial }{\partial y}\left (\frac {\cos \left (x \right )}{\cos \left (y \right )^{2}}\right ) \\ &= \frac {2 \cos \left (x \right ) \sin \left (y \right )}{\cos \left (y \right )^{3}} \end{align*}

The \(x\) domain of \(\frac {\partial f}{\partial y}\) when \(y=\frac {\pi }{4}\) is

\[ \{-\infty <x <\infty \} \]
And the point \(x_0 = \pi \) is inside this domain. The \(y\) domain of \(\frac {\partial f}{\partial y}\) when \(x=\pi \) is
\[ \left \{y <\frac {1}{2} \pi +\pi \_Z357 \boldsymbol {\lor }\frac {1}{2} \pi +\pi \_Z357 <y\right \} \]
And the point \(y_0 = \frac {\pi }{4}\) is inside this domain. Therefore solution exists and is unique.
Solved using first_order_ode_separable

Time used: 0.171 (sec)

Solve

\begin{align*} y^{\prime }&=\frac {\cos \left (x \right )}{\cos \left (y\right )^{2}} \\ y \left (\pi \right ) &= \frac {\pi }{4} \\ \end{align*}
The ode
\begin{equation} y^{\prime } = \frac {\cos \left (x \right )}{\cos \left (y\right )^{2}} \end{equation}
is separable as it can be written as
\begin{align*} y^{\prime }&= \frac {\cos \left (x \right )}{\cos \left (y\right )^{2}}\\ &= f(x) g(y) \end{align*}

Where

\begin{align*} f(x) &= \cos \left (x \right )\\ g(y) &= \frac {1}{\cos \left (y \right )^{2}} \end{align*}

Integrating gives

\begin{align*} \int { \frac {1}{g(y)} \,dy} &= \int { f(x) \,dx} \\ \int { \cos \left (y \right )^{2}\,dy} &= \int { \cos \left (x \right ) \,dx} \\ \end{align*}
\[ \frac {\cos \left (y\right ) \sin \left (y\right )}{2}+\frac {y}{2}=\sin \left (x \right )+c_1 \]
Simplifying the above gives
\begin{align*} \frac {\sin \left (2 y\right )}{4}+\frac {y}{2} &= \sin \left (x \right )+c_1 \\ \end{align*}
Solving for initial conditions the solution is
\begin{align*} \frac {\sin \left (2 y\right )}{4}+\frac {y}{2} &= \sin \left (x \right )+\frac {1}{4}+\frac {\pi }{8} \\ \end{align*}
Solving for \(y\) gives
\begin{align*} y &= \frac {\operatorname {RootOf}\left (2 \textit {\_Z} +2 \sin \left (\textit {\_Z} \right )-2-8 \sin \left (x \right )-\pi \right )}{2} \\ \end{align*}
Figure 2.27: Slope field \(y^{\prime } = \frac {\cos \left (x \right )}{\cos \left (y\right )^{2}}\)

Summary of solutions found

\begin{align*} y &= \frac {\operatorname {RootOf}\left (2 \textit {\_Z} +2 \sin \left (\textit {\_Z} \right )-2-8 \sin \left (x \right )-\pi \right )}{2} \\ \end{align*}
Solved using first_order_ode_exact

Time used: 0.088 (sec)

To solve an ode of the form

\begin{equation} M\left ( x,y\right ) +N\left ( x,y\right ) \frac {dy}{dx}=0\tag {A}\end{equation}
We assume there exists a function \(\phi \left ( x,y\right ) =c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi \) w.r.t. \(x\) gives
\[ \frac {d}{dx}\phi \left ( x,y\right ) =0 \]
Hence
\begin{equation} \frac {\partial \phi }{\partial x}+\frac {\partial \phi }{\partial y}\frac {dy}{dx}=0\tag {B}\end{equation}
Comparing (A,B) shows that
\begin{align*} \frac {\partial \phi }{\partial x} & =M\\ \frac {\partial \phi }{\partial y} & =N \end{align*}

But since \(\frac {\partial ^{2}\phi }{\partial x\partial y}=\frac {\partial ^{2}\phi }{\partial y\partial x}\) then for the above to be valid, we require that

\[ \frac {\partial M}{\partial y}=\frac {\partial N}{\partial x}\]
If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi \left ( x,y\right ) \) but at least we know now that we can do that since the condition \(\frac {\partial ^{2}\phi }{\partial x\partial y}=\frac {\partial ^{2}\phi }{\partial y\partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[ M(x,y) \mathop {\mathrm {d}x}+ N(x,y) \mathop {\mathrm {d}y}=0 \tag {1A} \]
Therefore
\begin{align*} \left (\cos \left (y \right )^{2}\right )\mathop {\mathrm {d}y} &= \left (\cos \left (x \right )\right )\mathop {\mathrm {d}x}\\ \left (-\cos \left (x \right )\right )\mathop {\mathrm {d}x} + \left (\cos \left (y \right )^{2}\right )\mathop {\mathrm {d}y} &= 0 \tag {2A} \end{align*}

Comparing (1A) and (2A) shows that

\begin{align*} M(x,y) &= -\cos \left (x \right )\\ N(x,y) &= \cos \left (y \right )^{2} \end{align*}

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

\[ \frac {\partial M}{\partial y} = \frac {\partial N}{\partial x} \]
Using result found above gives
\begin{align*} \frac {\partial M}{\partial y} &= \frac {\partial }{\partial y} \left (-\cos \left (x \right )\right )\\ &= 0 \end{align*}

And

\begin{align*} \frac {\partial N}{\partial x} &= \frac {\partial }{\partial x} \left (\cos \left (y \right )^{2}\right )\\ &= 0 \end{align*}

Since \(\frac {\partial M}{\partial y}= \frac {\partial N}{\partial x}\), then the ODE is exact The following equations are now set up to solve for the function \(\phi \left (x,y\right )\)

\begin{align*} \frac {\partial \phi }{\partial x } &= M\tag {1} \\ \frac {\partial \phi }{\partial y } &= N\tag {2} \end{align*}

Integrating (1) w.r.t. \(x\) gives

\begin{align*} \int \frac {\partial \phi }{\partial x} \mathop {\mathrm {d}x} &= \int M\mathop {\mathrm {d}x} \\ \int \frac {\partial \phi }{\partial x} \mathop {\mathrm {d}x} &= \int -\cos \left (x \right )\mathop {\mathrm {d}x} \\ \tag{3} \phi &= -\sin \left (x \right )+ f(y) \\ \end{align*}
Where \(f(y)\) is used for the constant of integration since \(\phi \) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\begin{equation} \tag{4} \frac {\partial \phi }{\partial y} = 0+f'(y) \end{equation}
But equation (2) says that \(\frac {\partial \phi }{\partial y} = \cos \left (y \right )^{2}\). Therefore equation (4) becomes
\begin{equation} \tag{5} \cos \left (y \right )^{2} = 0+f'(y) \end{equation}
Solving equation (5) for \( f'(y)\) gives
\[ f'(y) = \cos \left (y \right )^{2} \]
Integrating the above w.r.t \(y\) gives
\begin{align*} \int f'(y) \mathop {\mathrm {d}y} &= \int \left ( \cos \left (y \right )^{2}\right ) \mathop {\mathrm {d}y} \\ f(y) &= \frac {\cos \left (y \right ) \sin \left (y \right )}{2}+\frac {y}{2}+ c_1 \\ \end{align*}
Where \(c_1\) is constant of integration. Substituting result found above for \(f(y)\) into equation (3) gives \(\phi \)
\[ \phi = -\sin \left (x \right )+\frac {\cos \left (y \right ) \sin \left (y \right )}{2}+\frac {y}{2}+ c_1 \]
But since \(\phi \) itself is a constant function, then let \(\phi =c_2\) where \(c_2\) is new constant and combining \(c_1\) and \(c_2\) constants into the constant \(c_1\) gives the solution as
\[ c_1 = -\sin \left (x \right )+\frac {\cos \left (y \right ) \sin \left (y \right )}{2}+\frac {y}{2} \]
Simplifying the above gives
\begin{align*} -\sin \left (x \right )+\frac {\sin \left (2 y\right )}{4}+\frac {y}{2} &= c_1 \\ \end{align*}
Solving for initial conditions the solution is
\begin{align*} -\sin \left (x \right )+\frac {\sin \left (2 y\right )}{4}+\frac {y}{2} &= \frac {1}{4}+\frac {\pi }{8} \\ \end{align*}
Solving for \(y\) gives
\begin{align*} y &= \frac {\operatorname {RootOf}\left (2 \textit {\_Z} +2 \sin \left (\textit {\_Z} \right )-2-8 \sin \left (x \right )-\pi \right )}{2} \\ \end{align*}
Figure 2.28: Slope field \(y^{\prime } = \frac {\cos \left (x \right )}{\cos \left (y\right )^{2}}\)

Summary of solutions found

\begin{align*} y &= \frac {\operatorname {RootOf}\left (2 \textit {\_Z} +2 \sin \left (\textit {\_Z} \right )-2-8 \sin \left (x \right )-\pi \right )}{2} \\ \end{align*}
Maple. Time used: 0.122 (sec). Leaf size: 23
ode:=diff(y(x),x) = cos(x)/cos(y(x))^2; 
ic:=[y(Pi) = 1/4*Pi]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = \frac {\operatorname {RootOf}\left (2 \textit {\_Z} -\pi -2-8 \sin \left (x \right )+2 \sin \left (\textit {\_Z} \right )\right )}{2} \]

Maple trace

Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
trying Bernoulli 
trying separable 
<- separable successful
 

Maple step by step

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left [\frac {d}{d x}y \left (x \right )=\frac {\cos \left (x \right )}{\cos \left (y \left (x \right )\right )^{2}}, y \left (\pi \right )=\frac {\pi }{4}\right ] \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d x}y \left (x \right ) \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=\frac {\cos \left (x \right )}{\cos \left (y \left (x \right )\right )^{2}} \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \left (\frac {d}{d x}y \left (x \right )\right ) \cos \left (y \left (x \right )\right )^{2}=\cos \left (x \right ) \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \left (\frac {d}{d x}y \left (x \right )\right ) \cos \left (y \left (x \right )\right )^{2}d x =\int \cos \left (x \right )d x +\mathit {C1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & \frac {\cos \left (y \left (x \right )\right ) \sin \left (y \left (x \right )\right )}{2}+\frac {y \left (x \right )}{2}=\sin \left (x \right )+\mathit {C1} \\ \bullet & {} & \textrm {Use initial condition}\hspace {3pt} y \left (\pi \right )=\frac {\pi }{4} \\ {} & {} & \frac {1}{4}+\frac {\pi }{8}=\mathit {C1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} \textit {\_C1} \\ {} & {} & \mathit {C1} =\frac {1}{4}+\frac {\pi }{8} \\ \bullet & {} & \textrm {Substitute}\hspace {3pt} \textit {\_C1} =\frac {1}{4}+\frac {\pi }{8}\hspace {3pt}\textrm {into general solution and simplify}\hspace {3pt} \\ {} & {} & \frac {\sin \left (2 y \left (x \right )\right )}{4}+\frac {y \left (x \right )}{2}=\sin \left (x \right )+\frac {1}{4}+\frac {\pi }{8} \\ \bullet & {} & \textrm {Solution to the IVP}\hspace {3pt} \\ {} & {} & \frac {\sin \left (2 y \left (x \right )\right )}{4}+\frac {y \left (x \right )}{2}=\sin \left (x \right )+\frac {1}{4}+\frac {\pi }{8} \end {array} \]
Mathematica. Time used: 0.227 (sec). Leaf size: 36
ode=D[y[x],x]== Cos[x]/Cos[y[x]]^2; 
ic={y[Pi]==Pi/4}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \text {InverseFunction}\left [2 \left (\frac {\text {$\#$1}}{2}+\frac {1}{4} \sin (2 \text {$\#$1})\right )\&\right ]\left [\frac {1}{4} (8 \sin (x)+\pi +2)\right ] \end{align*}
Sympy. Time used: 3.051 (sec). Leaf size: 26
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-cos(x)/cos(y(x))**2 + Derivative(y(x), x),0) 
ics = {y(pi): pi/4} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \frac {y{\left (x \right )}}{2} - \sin {\left (x \right )} + \frac {\sin {\left (y{\left (x \right )} \right )} \cos {\left (y{\left (x \right )} \right )}}{2} = \frac {1}{4} + \frac {\pi }{8} \]