2.7.1 Problem (a)
Internal
problem
ID
[20986]
Book
:
Ordinary
Differential
Equations.
By
Wolfgang
Walter.
Graduate
texts
in
Mathematics.
Springer.
NY.
QA372.W224
1998
Section
:
Chapter
2.
Theory
of
First
order
differential
equations.
Excercises
IV
at
page
89
Problem
number
:
(a)
Date
solved
:
Saturday, November 29, 2025 at 01:26:21 AM
CAS
classification
:
[`y=_G(x,y')`]
\begin{align*}
y^{\prime }&={\mathrm e}^{x}+\cos \left (y\right ) x \\
y \left (0\right ) &= 0 \\
\end{align*}
Series expansion around
\(x=0\).
Solving ode using Taylor series method. This gives review on how the Taylor series method
works for solving first order ode. Let
\[ y^{\prime }=f\left ( x,y\right ) \]
Where
\(f\left ( x,y\right ) \) is analytic at expansion point
\(x_{0}\). We can
always shift to
\(x_{0}=0\) if
\(x_{0}\) is not zero. So from now we assume
\(x_{0}=0\,\). Assume also that
\(y\left ( x_{0}\right ) =y_{0}\). Using Taylor
series
\begin{align*} y\left ( x\right ) & =y\left ( x_{0}\right ) +\left ( x-x_{0}\right ) y^{\prime }\left ( x_{0}\right ) +\frac {\left ( x-x_{0}\right ) ^{2}}{2}y^{\prime \prime }\left ( x_{0}\right ) +\frac {\left ( x-x_{0}\right ) ^{3}}{3!}y^{\prime \prime }\left ( x_{0}\right ) +\cdots \\ & =y_{0}+xf+\frac {x^{2}}{2}\left . \frac {df}{dx}\right \vert _{x_{0},y_{0}}+\frac {x^{3}}{3!}\left . \frac {d^{2}f}{dx^{2}}\right \vert _{x_{0},y_{0}}+\cdots \\ & =y_{0}+\sum _{n=0}^{\infty }\frac {x^{n+1}}{\left ( n+1\right ) !}\left . \frac {d^{n}f}{dx^{n}}\right \vert _{x_{0},y_{0}}\end{align*}
But
\begin{align} \frac {df}{dx} & =\frac {\partial f}{\partial x}+\frac {\partial f}{\partial y}f\tag {1}\\ \frac {d^{2}f}{dx^{2}} & =\frac {d}{dx}\left ( \frac {df}{dx}\right ) \nonumber \\ & =\frac {\partial }{\partial x}\left ( \frac {df}{dx}\right ) +\frac {\partial }{\partial y}\left ( \frac {df}{dx}\right ) f\tag {2}\\ \frac {d^{3}f}{dx^{3}} & =\frac {d}{dx}\left ( \frac {d^{2}f}{dx^{2}}\right ) \nonumber \\ & =\frac {\partial }{\partial x}\left ( \frac {d^{2}f}{dx^{2}}\right ) +\left ( \frac {\partial }{\partial y}\frac {d^{2}f}{dx^{2}}\right ) f\tag {3}\\ & \vdots \nonumber \end{align}
And so on. Hence if we name \(F_{0}=f\left ( x,y\right ) \) then the above can be written as
\begin{align} F_{0} & =f\left ( x,y\right ) \tag {4}\\ F_{n} & =\frac {d}{dx}\left ( F_{n-1}\right ) \nonumber \\ & =\frac {\partial }{\partial x}F_{n-1}+\left ( \frac {\partial F_{n-1}}{\partial y}\right ) F_{0} \tag {5}\end{align}
For example, for \(n=1\,\) we see that
\begin{align*} F_{1} & =\frac {d}{dx}\left ( F_{0}\right ) \\ & =\frac {\partial }{\partial x}F_{0}+\left ( \frac {\partial F_{0}}{\partial y}\right ) F_{0}\\ & =\frac {\partial f}{\partial x}+\frac {\partial f}{\partial y}f \end{align*}
Which is (1). And when \(n=2\)
\begin{align*} F_{2} & =\frac {d}{dx}\left ( F_{1}\right ) \\ & =\frac {\partial }{\partial x}F_{1}+\left ( \frac {\partial F_{1}}{\partial y}\right ) F_{0}\\ & =\frac {\partial }{\partial x}\left ( \frac {\partial f}{\partial x}+\frac {\partial f}{\partial y}f\right ) +\frac {\partial }{\partial y}\left ( \frac {\partial f}{\partial x}+\frac {\partial f}{\partial y}f\right ) f\\ & =\frac {\partial }{\partial x}\left ( \frac {df}{dx}\right ) +\frac {\partial }{\partial y}\left ( \frac {df}{dx}\right ) f \end{align*}
Which is (2) and so on. Therefore (4,5) can be used from now on along with
\begin{equation} y\left ( x\right ) =y_{0}+\sum _{n=0}^{\infty }\frac {x^{n+1}}{\left ( n+1\right ) !}\left . F_{n}\right \vert _{x_{0},y_{0}} \tag {6}\end{equation}
Hence
\begin{align*} F_0 &= {\mathrm e}^{x}+\cos \left (y\right ) x\\ F_1 &= \frac {d F_0}{dx} \\ &= \frac {\partial F_0}{\partial x}+ \frac {\partial F_0}{\partial y} F_0 \\ &= \left (-x^{2} \cos \left (y\right )-x \,{\mathrm e}^{x}\right ) \sin \left (y\right )+\cos \left (y\right )+{\mathrm e}^{x}\\ F_2 &= \frac {d F_1}{dx} \\ &= \frac {\partial F_1}{\partial x}+ \frac {\partial F_1}{\partial y} F_1 \\ &= -\cos \left (y\right )^{3} x^{3}-2 \,{\mathrm e}^{x} \cos \left (y\right )^{2} x^{2}+x \left (x^{2} \sin \left (y\right )^{2}-{\mathrm e}^{2 x}-3 \sin \left (y\right )\right ) \cos \left (y\right )+\left (1+x^{2} \sin \left (y\right )^{2}+\left (-x -2\right ) \sin \left (y\right )\right ) {\mathrm e}^{x}\\ F_3 &= \frac {d F_2}{dx} \\ &= \frac {\partial F_2}{\partial x}+ \frac {\partial F_2}{\partial y} F_2 \\ &= \left (\left (\sin \left (y\right ) x^{2}-2 x -1\right ) \cos \left (y\right )+{\mathrm e}^{x} \sin \left (y\right ) x \right ) {\mathrm e}^{2 x}+6 \left (x^{4} \sin \left (y\right )-2 x^{2}\right ) \cos \left (y\right )^{3}+12 \left (\sin \left (y\right ) x^{2}-\frac {x}{3}-\frac {7}{6}\right ) {\mathrm e}^{x} x \cos \left (y\right )^{2}+\left (\left (-x^{4}+6 x^{2} {\mathrm e}^{2 x}-3\right ) \sin \left (y\right )+\left (-x -2\right ) {\mathrm e}^{2 x}+6 x^{2}\right ) \cos \left (y\right )-\left (\left (x^{3}+x +3\right ) \sin \left (y\right )-x^{2}-5 x -1\right ) {\mathrm e}^{x}\\ F_4 &= \frac {d F_3}{dx} \\ &= \frac {\partial F_3}{\partial x}+ \frac {\partial F_3}{\partial y} F_3 \\ &= \left (14 \cos \left (y\right )^{3} x^{3}+14 \,{\mathrm e}^{x} \cos \left (y\right )^{2} x^{2}+\left (-9+17 \left (x^{2}+x \right ) \sin \left (y\right )-7 x^{3}-6 x \right ) \cos \left (y\right )-7 \left (-\frac {3 \left (x +1\right ) \sin \left (y\right )}{7}+x^{2}\right ) {\mathrm e}^{x}\right ) {\mathrm e}^{2 x}+\left (x^{2} \cos \left (y\right )^{2}+x \,{\mathrm e}^{x} \cos \left (y\right )+\sin \left (y\right ) \left (3 x +1\right )\right ) {\mathrm e}^{3 x}+24 \cos \left (y\right )^{5} x^{5}+60 \,{\mathrm e}^{x} \cos \left (y\right )^{4} x^{4}+2 \left (-10 x^{5}+18 \,{\mathrm e}^{2 x} x^{3}+30 x^{3} \sin \left (y\right )-15 x \right ) \cos \left (y\right )^{3}-45 \,{\mathrm e}^{x} \left (-\frac {4 x^{2} \left (x +5\right ) \sin \left (y\right )}{9}+x^{4}+\frac {x^{2}}{9}+\frac {5 x}{9}+\frac {4}{9}\right ) \cos \left (y\right )^{2}+\left (2 \left (2 \left (2 x^{2}+7 x \right ) {\mathrm e}^{2 x}-5 x^{3}\right ) \sin \left (y\right )+\left (-25 x^{3}-x -3\right ) {\mathrm e}^{2 x}+x^{5}+15 x \right ) \cos \left (y\right )+\left (\left (-x^{3}-9 x^{2}-x -4\right ) \sin \left (y\right )+x^{4}+x^{2}+7 x +9\right ) {\mathrm e}^{x} \end{align*}
And so on. Evaluating all the above at initial conditions \(x \left (0\right ) = 0\) and \(y \left (0\right ) = 0\) gives
\begin{align*} F_0 &= 1\\ F_1 &= 2\\ F_2 &= 1\\ F_3 &= -2\\ F_4 &= -23 \end{align*}
Substituting all the above in (6) and simplifying gives the solution as
\[
y = x^{2}+x +\frac {x^{3}}{6}-\frac {x^{4}}{12}-\frac {23 x^{5}}{120}+O\left (x^{6}\right )
\]
|
|
|
| Solution plot | Slope field \(y^{\prime } = {\mathrm e}^{x}+\cos \left (y\right ) x\) |
✓ Maple. Time used: 0.003 (sec). Leaf size: 18
Order:=6;
ode:=diff(y(x),x) = exp(x)+x*cos(y(x));
ic:=[y(0) = 0];
dsolve([ode,op(ic)],y(x),type='series',x=0);
\[
y = x +x^{2}+\frac {1}{6} x^{3}-\frac {1}{12} x^{4}-\frac {23}{120} x^{5}+\operatorname {O}\left (x^{6}\right )
\]
Maple trace
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
-> Computing symmetries using: way = 3
-> Computing symmetries using: way = 4
-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type
✓ Mathematica. Time used: 0.081 (sec). Leaf size: 29
ode=D[y[x],x]==Exp[x]+x*Cos[y[x]];
ic={y[0]==0};
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
\[
y(x)\to -\frac {23 x^5}{120}-\frac {x^4}{12}+\frac {x^3}{6}+x^2+x
\]
✓ Sympy. Time used: 0.399 (sec). Leaf size: 27
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(-x*cos(y(x)) - exp(x) + Derivative(y(x), x),0)
ics = {y(0): 0}
dsolve(ode,func=y(x),ics=ics,hint="1st_power_series",x0=0,n=6)
\[
y{\left (x \right )} = x + x^{2} + \frac {x^{3}}{6} - \frac {x^{4}}{12} - \frac {23 x^{5}}{120} + O\left (x^{6}\right )
\]