4.4.6 Problems 501 to 600

Table 4.555: Second ODE homogeneous ODE

#

ODE

Mathematica

Maple

Sympy

5755

\[ {} a \,x^{k} y+y^{\prime \prime } = 0 \]

5756

\[ {} \left (a +b \cos \left (2 x \right )\right ) y+y^{\prime \prime } = 0 \]

5757

\[ {} \left (a +b \cos \left (2 x \right )+k \cos \left (4 x \right )\right ) y+y^{\prime \prime } = 0 \]

5758

\[ {} y^{\prime \prime } = 2 \csc \left (x \right )^{2} y \]

5759

\[ {} a \csc \left (x \right )^{2} y+y^{\prime \prime } = 0 \]

5760

\[ {} \left (\operatorname {a0} +\operatorname {a1} \cos \left (x \right )^{2}+\operatorname {a2} \csc \left (x \right )^{2}\right ) y+y^{\prime \prime } = 0 \]

5761

\[ {} y^{\prime \prime } = \left (a^{2}+\left (-1+p \right ) p \csc \left (x \right )^{2}+\left (-1+q \right ) q \sec \left (x \right )^{2}\right ) y \]

5762

\[ {} \left (a +b \sin \left (x \right )^{2}\right ) y+y^{\prime \prime } = 0 \]

5763

\[ {} y^{\prime \prime } = \left (1+2 \tan \left (x \right )^{2}\right ) y \]

5764

\[ {} -\left (a^{2}-b \,{\mathrm e}^{x}\right ) y+y^{\prime \prime } = 0 \]

5765

\[ {} -\left (a^{2}-{\mathrm e}^{2 x}\right ) y+y^{\prime \prime } = 0 \]

5766

\[ {} \left (a +b \,{\mathrm e}^{x}+c \,{\mathrm e}^{2 x}\right ) y+y^{\prime \prime } = 0 \]

5767

\[ {} a \,{\mathrm e}^{b x} y+y^{\prime \prime } = 0 \]

5768

\[ {} \left (a +b \cosh \left (x \right )^{2}\right ) y+y^{\prime \prime } = 0 \]

5769

\[ {} \left (a +b \sinh \left (x \right )^{2}\right ) y+y^{\prime \prime } = 0 \]

5770

\[ {} \left (a +b \sin \left (x \right )^{2}\right ) y+y^{\prime \prime } = 0 \]

5771

\[ {} \frac {\left (a +b \right ) y}{x^{2}}+y^{\prime \prime } = 0 \]

5772

\[ {} x y-y^{\prime }+y^{\prime \prime } = 0 \]

5773

\[ {} y+2 y^{\prime }+y^{\prime \prime } = 0 \]

5781

\[ {} 3 y+2 y^{\prime }+y^{\prime \prime } = 0 \]

5783

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

5785

\[ {} \csc \left (a \right )^{2} y-2 \tan \left (a \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5787

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

5792

\[ {} -4 y-3 y^{\prime }+y^{\prime \prime } = 0 \]

5794

\[ {} 4 y-4 y^{\prime }+y^{\prime \prime } = 0 \]

5796

\[ {} 5 y+4 y^{\prime }+y^{\prime \prime } = 0 \]

5798

\[ {} y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

5799

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

5802

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

5804

\[ {} 12 y-7 y^{\prime }+y^{\prime \prime } = 0 \]

5806

\[ {} 16 y+8 y^{\prime }+y^{\prime \prime } = 0 \]

5808

\[ {} 20 y-9 y^{\prime }+y^{\prime \prime } = 0 \]

5810

\[ {} y b^{2}+2 a y^{\prime }+y^{\prime \prime } = 0 \]

5813

\[ {} \left (a^{2}+b^{2}\right )^{2} y-4 a b y^{\prime }+y^{\prime \prime } = 0 \]

5814

\[ {} b y+a y^{\prime }+y^{\prime \prime } = 0 \]

5816

\[ {} \left (c x +b \right ) y+a y^{\prime }+y^{\prime \prime } = 0 \]

5817

\[ {} \left (c \,x^{2}+b \right ) y+a y^{\prime }+y^{\prime \prime } = 0 \]

5818

\[ {} \left (b +{\mathrm e}^{x} c \right ) y+a y^{\prime }+y^{\prime \prime } = 0 \]

5819

\[ {} b \,{\mathrm e}^{2 a x} y+a y^{\prime }+y^{\prime \prime } = 0 \]

5820

\[ {} b \,{\mathrm e}^{k x} y+a y^{\prime }+y^{\prime \prime } = 0 \]

5821

\[ {} y+x y^{\prime }+y^{\prime \prime } = 0 \]

5822

\[ {} -y+x y^{\prime }+y^{\prime \prime } = 0 \]

5823

\[ {} 2 y-x y^{\prime }+y^{\prime \prime } = 0 \]

5824

\[ {} n y-x y^{\prime }+y^{\prime \prime } = 0 \]

5825

\[ {} -a y-x y^{\prime }+y^{\prime \prime } = 0 \]

5826

\[ {} -\left (1-x \right ) y-x y^{\prime }+y^{\prime \prime } = 0 \]

5827

\[ {} 6 y-2 x y^{\prime }+y^{\prime \prime } = 0 \]

5828

\[ {} -8 y+2 x y^{\prime }+y^{\prime \prime } = 0 \]

5829

\[ {} 2 n y-2 x y^{\prime }+y^{\prime \prime } = 0 \]

5830

\[ {} -\left (-x^{2}-x +1\right ) y-\left (2 x +1\right ) y^{\prime }+y^{\prime \prime } = 0 \]

5831

\[ {} 2 \left (2 x^{2}+1\right ) y+4 x y^{\prime }+y^{\prime \prime } = 0 \]

5832

\[ {} -\left (-4 x^{2}+3\right ) y-4 x y^{\prime }+y^{\prime \prime } = 0 \]

5834

\[ {} a^{2} x^{2} y-2 a x y^{\prime }+y^{\prime \prime } = 0 \]

5835

\[ {} b y+a x y^{\prime }+y^{\prime \prime } = 0 \]

5836

\[ {} c y+\left (b x +a \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5837

\[ {} \left (\operatorname {b1} x +\operatorname {a1} \right ) y+\left (\operatorname {b0} x +\operatorname {a0} \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5838

\[ {} \left (\operatorname {c1} \,x^{2}+\operatorname {b1} x +\operatorname {a1} \right ) y+\left (\operatorname {b0} x +\operatorname {a0} \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5839

\[ {} -2 a \left (-2 x^{2} a +1\right ) y-4 a x y^{\prime }+y^{\prime \prime } = 0 \]

5840

\[ {} x y-x^{2} y^{\prime }+y^{\prime \prime } = 0 \]

5842

\[ {} -4 x y+x^{2} y^{\prime }+y^{\prime \prime } = 0 \]

5843

\[ {} -x^{3} y+x^{4} y^{\prime }+y^{\prime \prime } = 0 \]

5844

\[ {} a \left (1+k \right ) x^{k -1} y+a \,x^{k} y^{\prime }+y^{\prime \prime } = 0 \]

5845

\[ {} a k \,x^{k -1} y+a \,x^{k} y^{\prime }+y^{\prime \prime } = 0 \]

5846

\[ {} -a \,x^{k -1} y+a \,x^{k} y^{\prime }+y^{\prime \prime } = 0 \]

5847

\[ {} b \,x^{k -1} y+a \,x^{k} y^{\prime }+y^{\prime \prime } = 0 \]

5848

\[ {} 2 y-\cot \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5849

\[ {} k \left (1+k \right ) y+\cot \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5850

\[ {} -\csc \left (x \right )^{2} y+\cot \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5851

\[ {} \left (p \left (p +1\right )-k^{2} \csc \left (x \right )^{2}\right ) y+\cot \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5852

\[ {} \left (\operatorname {a0} -\operatorname {a2} \csc \left (x \right )^{2}+4 \operatorname {a1} \sin \left (x \right )^{2}\right ) y+\cot \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5853

\[ {} 3 y+2 \cot \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5855

\[ {} \left (b +k^{2} \cos \left (x \right )^{2}\right ) y+a \cot \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5856

\[ {} \left (a \cot \left (x \right )^{2}+b \cot \left (x \right ) \csc \left (x \right )+c \csc \left (x \right )^{2}\right ) y+k \cot \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5857

\[ {} 2 y-\cot \left (2 x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5858

\[ {} a \tan \left (x \right )^{2} y-2 \cot \left (2 x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5859

\[ {} c y+a \cot \left (b x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5860

\[ {} \left (-a^{2}+b^{2}\right ) y+2 a \cot \left (a x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5861

\[ {} a \tan \left (\frac {x}{2}\right )^{2} y-\csc \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5863

\[ {} \csc \left (x \right )^{2} \left (2+\sin \left (x \right )^{2}\right ) y-\csc \left (2 x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5864

\[ {} a \csc \left (x \right )^{2} y+\left (2+\cos \left (x \right )\right ) \csc \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5865

\[ {} -2 \left (\cos \left (x \right )+1\right ) \sec \left (x \right ) y-\left (2+3 \cos \left (x \right )\right ) \csc \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5866

\[ {} \sin \left (x \right )^{2} y-\left (\cot \left (x \right )-\sin \left (x \right )\right ) y^{\prime }+y^{\prime \prime } = 0 \]

5868

\[ {} b \tan \left (x \right )^{2} y-2 \csc \left (2 x \right ) \left (1-a \sin \left (x \right )^{2}\right ) y^{\prime }+y^{\prime \prime } = 0 \]

5869

\[ {} a \cos \left (x \right )^{2} y+\tan \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5870

\[ {} a \cot \left (x \right )^{2} y+\tan \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5871

\[ {} -a \left (a +1\right ) \csc \left (x \right )^{2} y-\tan \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5872

\[ {} \left (a \cos \left (x \right )^{2}-\sec \left (x \right )^{2}\right ) y-\tan \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5873

\[ {} -y+2 \tan \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5875

\[ {} 3 y+2 \tan \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5876

\[ {} b y-2 \tan \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5877

\[ {} -\left (a^{2}+1\right ) y-2 \tan \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5879

\[ {} b y+a \tan \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5880

\[ {} y \,{\mathrm e}^{2 x}-\left (1+2 \,{\mathrm e}^{x}\right ) y^{\prime }+y^{\prime \prime } = 0 \]

5881

\[ {} \left (\operatorname {a0} -\operatorname {a2} \operatorname {csch}\left (x \right )^{2}+4 \operatorname {a1} \sinh \left (x \right )^{2}\right ) y+\coth \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5882

\[ {} \left (\operatorname {a0} +4 \operatorname {a1} \cosh \left (x \right )^{2}-\operatorname {a2} \operatorname {sech}\left (x \right )^{2}\right ) y+\tanh \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5883

\[ {} b y+2 \tanh \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5884

\[ {} b y+a \tanh \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5885

\[ {} f \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

5886

\[ {} a k \,x^{k -1} y+2 a \,x^{k} y^{\prime }+2 y^{\prime \prime } = 0 \]

5887

\[ {} 3 y-10 y^{\prime }+3 y^{\prime \prime } = 0 \]