23.3.100 problem 102

Internal problem ID [5814]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 3. THE DIFFERENTIAL EQUATION IS LINEAR AND OF SECOND ORDER, page 311
Problem number : 102
Date solved : Tuesday, September 30, 2025 at 02:03:38 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} b y+a y^{\prime }+y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 36
ode:=b*y(x)+a*diff(y(x),x)+diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_1 \,{\mathrm e}^{x \sqrt {a^{2}-4 b}}+c_2 \right ) {\mathrm e}^{-\frac {\left (a +\sqrt {a^{2}-4 b}\right ) x}{2}} \]
Mathematica. Time used: 0.016 (sec). Leaf size: 47
ode=b*y[x] + a*D[y[x],x] + D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{-\frac {1}{2} x \left (\sqrt {a^2-4 b}+a\right )} \left (c_2 e^{x \sqrt {a^2-4 b}}+c_1\right ) \end{align*}
Sympy. Time used: 0.153 (sec). Leaf size: 39
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(a*Derivative(y(x), x) + b*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{\frac {x \left (- a + \sqrt {a^{2} - 4 b}\right )}{2}} + C_{2} e^{- \frac {x \left (a + \sqrt {a^{2} - 4 b}\right )}{2}} \]