23.3.90 problem 92

Internal problem ID [5804]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 3. THE DIFFERENTIAL EQUATION IS LINEAR AND OF SECOND ORDER, page 311
Problem number : 92
Date solved : Tuesday, September 30, 2025 at 02:03:32 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} 12 y-7 y^{\prime }+y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 15
ode:=12*y(x)-7*diff(y(x),x)+diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_1 \,{\mathrm e}^{x}+c_2 \right ) {\mathrm e}^{3 x} \]
Mathematica. Time used: 0.007 (sec). Leaf size: 20
ode=12*y[x] - 7*D[y[x],x] + D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{3 x} \left (c_2 e^x+c_1\right ) \end{align*}
Sympy. Time used: 0.100 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(12*y(x) - 7*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + C_{2} e^{x}\right ) e^{3 x} \]