Internal
problem
ID
[5858]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
3.
THE
DIFFERENTIAL
EQUATION
IS
LINEAR
AND
OF
SECOND
ORDER,
page
311
Problem
number
:
146
Date
solved
:
Friday, October 03, 2025 at 01:44:28 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=a*tan(x)^2*y(x)-2*cot(2*x)*diff(y(x),x)+diff(diff(y(x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=a*Tan[x]^2*y[x] - 2*Cot[2*x]*D[y[x],x] + D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(a*y(x)*tan(x)**2 + Derivative(y(x), (x, 2)) - 2*Derivative(y(x), x)/tan(2*x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -(a*y(x)*tan(x)**2 + Derivative(y(x), (x, 2)))*tan(2*x)/2 + Deri