4.4.5 Problems 401 to 500

Table 4.553: Second ODE homogeneous ODE

#

ODE

Mathematica

Maple

Sympy

3100

\[ {} y^{\prime \prime }-2 y^{\prime }+3 y = 0 \]

3221

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+y = 0 \]

3222

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+16 y = 0 \]

3223

\[ {} 4 x^{2} y^{\prime \prime }-16 x y^{\prime }+25 y = 0 \]

3224

\[ {} x^{2} y^{\prime \prime }+5 x y^{\prime }+10 y = 0 \]

3245

\[ {} y^{\prime \prime } = k^{2} y \]

3246

\[ {} x^{\prime \prime }+k^{2} x = 0 \]

3248

\[ {} x^{\prime \prime } = \frac {k^{2}}{x^{2}} \]

3250

\[ {} \left (1-x \right ) y^{\prime \prime } = y^{\prime } \]

3251

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+2 \left (1+y^{\prime }\right ) x = 0 \]

3252

\[ {} y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime } \]

3258

\[ {} y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

3259

\[ {} y^{\prime \prime } = {y^{\prime }}^{2}+y^{\prime } \]

3260

\[ {} y^{\prime \prime } = y y^{\prime } \]

3262

\[ {} y^{\prime \prime }+y y^{\prime } = 0 \]

3263

\[ {} y^{\prime \prime }+2 {y^{\prime }}^{2} = 0 \]

3264

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

3266

\[ {} y^{\prime \prime } = y \]

3267

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = y y^{\prime } \]

3268

\[ {} 2 y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

3270

\[ {} y^{\prime \prime }+y^{\prime } = {y^{\prime }}^{3} \]

3271

\[ {} \left (1+y\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2} \]

3273

\[ {} 2 y^{\prime \prime } = {\mathrm e}^{y} \]

3274

\[ {} y^{\prime \prime } = y^{3} \]

3275

\[ {} y^{\prime \prime } = {y^{\prime }}^{2} \cos \left (x \right ) \]

3276

\[ {} y y^{\prime \prime }-y^{2} y^{\prime } = {y^{\prime }}^{2} \]

3278

\[ {} y y^{\prime \prime } = y^{3}+{y^{\prime }}^{2} \]

3279

\[ {} \left (1+{y^{\prime }}^{2}\right )^{2} = y^{2} y^{\prime \prime } \]

3280

\[ {} y^{\prime \prime } = {y^{\prime }}^{2} \sin \left (x \right ) \]

3281

\[ {} 2 y y^{\prime \prime } = y^{3}+2 {y^{\prime }}^{2} \]

3282

\[ {} x^{\prime \prime }-k^{2} x = 0 \]

3283

\[ {} y y^{\prime \prime } = 2 {y^{\prime }}^{2}+y^{2} \]

3284

\[ {} \left (-{\mathrm e}^{x}+1\right ) y^{\prime \prime } = {\mathrm e}^{x} y^{\prime } \]

3483

\[ {} y^{\prime \prime }+{y^{\prime }}^{2}+y^{\prime } = 0 \]

3485

\[ {} f^{\prime \prime }+2 f^{\prime }+5 f = 0 \]

3495

\[ {} \left (x -2\right ) y^{\prime \prime }+3 y^{\prime }+\frac {4 y}{x^{2}} = 0 \]

3558

\[ {} y^{\prime \prime }-25 y = 0 \]

3559

\[ {} y^{\prime \prime }+4 y = 0 \]

3560

\[ {} y^{\prime \prime }+y^{\prime }-2 y = 0 \]

3563

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

3564

\[ {} y^{\prime \prime }-9 y = 0 \]

3565

\[ {} x^{2} y^{\prime \prime }+5 x y^{\prime }+3 y = 0 \]

3566

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

3567

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+13 y = 0 \]

3570

\[ {} y^{\prime \prime }-\left (a +b \right ) y^{\prime }+b y a = 0 \]

3571

\[ {} y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0 \]

3572

\[ {} y^{\prime \prime }-2 a y^{\prime }+\left (a^{2}+b^{2}\right ) y = 0 \]

3573

\[ {} y^{\prime \prime }-y^{\prime }-6 y = 0 \]

3574

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

3575

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

3576

\[ {} x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 0 \]

3590

\[ {} y^{\prime \prime }+y^{\prime }-6 y = 0 \]

3591

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }-8 y = 0 \]

3696

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

3697

\[ {} y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]

3698

\[ {} y^{\prime \prime }-36 y = 0 \]

3699

\[ {} y^{\prime \prime }+4 y^{\prime } = 0 \]

3707

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }-8 y = 0 \]

3708

\[ {} 2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \]

3781

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+5 y = 0 \]

3782

\[ {} t^{2} y^{\prime \prime }+t y^{\prime }+25 y = 0 \]

3783

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

3784

\[ {} x y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y = 0 \]

3785

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

3786

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

3787

\[ {} y^{\prime \prime }-\frac {y^{\prime }}{x}+4 x^{2} y = 0 \]

3788

\[ {} 4 x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}-1\right ) y = 0 \]

3935

\[ {} y^{\prime \prime }+y^{\prime }-2 y = 0 \]

3936

\[ {} y^{\prime \prime }+4 y = 0 \]

3955

\[ {} y^{\prime \prime }-y = 0 \]

4118

\[ {} y^{\prime \prime }+8 y^{\prime }+15 y = 0 \]

4119

\[ {} y^{\prime \prime }+2 y^{\prime }-15 y = 0 \]

4120

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

4121

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

4122

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

4123

\[ {} y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

4124

\[ {} 2 y^{\prime \prime }+3 y^{\prime } = 0 \]

4125

\[ {} y^{\prime \prime }+25 y = 0 \]

4126

\[ {} 4 y^{\prime \prime }+y^{\prime }+y = 0 \]

4127

\[ {} y^{\prime \prime } = 0 \]

4128

\[ {} y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]

4139

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

4161

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

4163

\[ {} 25 y^{\prime \prime }-30 y^{\prime }+9 y = 0 \]

4407

\[ {} y y^{\prime \prime }-y y^{\prime } = {y^{\prime }}^{2} \]

4432

\[ {} y y^{\prime \prime }-y^{2} y^{\prime }-{y^{\prime }}^{2} = 0 \]

4436

\[ {} \left (1+y^{2}\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime } = 0 \]

5715

\[ {} y^{\prime \prime } = 0 \]

5720

\[ {} y^{\prime \prime }+y = 0 \]

5721

\[ {} -y+y^{\prime \prime } = 0 \]

5735

\[ {} -2 y+y^{\prime \prime } = 0 \]

5737

\[ {} y^{\prime \prime }+4 y = 0 \]

5747

\[ {} y^{\prime \prime }+x y = 0 \]

5748

\[ {} \left (b x +a \right ) y+y^{\prime \prime } = 0 \]

5749

\[ {} \left (x^{2}+a \right ) y+y^{\prime \prime } = 0 \]

5750

\[ {} \left (-x^{2}+a \right ) y+y^{\prime \prime } = 0 \]

5751

\[ {} y^{\prime \prime } = \left (x^{2}+a \right ) y \]

5752

\[ {} \left (b^{2} x^{2}+a \right ) y+y^{\prime \prime } = 0 \]

5753

\[ {} \left (c \,x^{2}+b x +a \right ) y+y^{\prime \prime } = 0 \]

5754

\[ {} \left (x^{4}+\operatorname {a1} \,x^{2}+\operatorname {a0} \right ) y+y^{\prime \prime } = 0 \]