4.25.7 Problems 601 to 700

Table 4.1475: Second order, Linear, Homogeneous and constant coefficients

#

ODE

Mathematica

Maple

Sympy

15314

\[ {} 2 y^{\prime \prime }+3 y^{\prime }+y = 0 \]

15315

\[ {} 3 y^{\prime \prime }+8 y^{\prime }-3 y = 0 \]

15316

\[ {} 2 y^{\prime \prime }+20 y^{\prime }+51 y = 0 \]

15317

\[ {} 4 y^{\prime \prime }+40 y^{\prime }+101 y = 0 \]

15318

\[ {} y^{\prime \prime }+6 y^{\prime }+34 y = 0 \]

15430

\[ {} y^{\prime \prime }+\alpha ^{2} y = 0 \]

15431

\[ {} y^{\prime \prime }-\alpha ^{2} y = 0 \]

15432

\[ {} y^{\prime \prime }+\beta y^{\prime }+\gamma y = 0 \]

15515

\[ {} y^{\prime \prime } = a^{2} y \]

15524

\[ {} y^{\prime \prime } = 9 y \]

15525

\[ {} y^{\prime \prime }+y = 0 \]

15526

\[ {} -y+y^{\prime \prime } = 0 \]

15527

\[ {} y^{\prime \prime }+12 y = 7 y^{\prime } \]

15528

\[ {} 4 y-4 y^{\prime }+y^{\prime \prime } = 0 \]

15529

\[ {} y^{\prime \prime }+2 y^{\prime }+10 y = 0 \]

15530

\[ {} y^{\prime \prime }+3 y^{\prime }-2 y = 0 \]

15531

\[ {} 4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

15532

\[ {} y^{\prime \prime }+y^{\prime }+y = 0 \]

15554

\[ {} y^{\prime \prime }+2 h y^{\prime }+n^{2} y = 0 \]

15600

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

15610

\[ {} y^{\prime \prime }-3 y^{\prime }-10 y = 0 \]

15611

\[ {} y+2 y^{\prime }+y^{\prime \prime } = 0 \]

15622

\[ {} y^{\prime \prime }-y^{\prime }-6 y = 0 \]

15624

\[ {} -y+y^{\prime \prime } = 0 \]

15627

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 0 \]

15628

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 0 \]

15629

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 0 \]

15630

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 0 \]

15773

\[ {} -y+y^{\prime \prime } = 0 \]

15774

\[ {} y^{\prime \prime }+y = 0 \]

15777

\[ {} -y+y^{\prime \prime } = 0 \]

15783

\[ {} 4 y^{\prime \prime }+4 y^{\prime }-3 y = 0 \]

15793

\[ {} y^{\prime \prime }+\alpha y = 0 \]

15809

\[ {} y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

15826

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 0 \]

16149

\[ {} y^{\prime \prime }-6 y^{\prime }-7 y = 0 \]

16150

\[ {} y^{\prime \prime }-y^{\prime }-12 y = 0 \]

16180

\[ {} y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

16181

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

16182

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 0 \]

16183

\[ {} y^{\prime \prime }+2 y = 0 \]

16262

\[ {} y^{\prime \prime }+16 y = 0 \]

16264

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 0 \]

16498

\[ {} y^{\prime \prime } = y^{\prime } \]

16518

\[ {} y^{\prime \prime } = y^{\prime } \]

16532

\[ {} y^{\prime \prime } = y^{\prime } \]

16559

\[ {} 6 y-5 y^{\prime }+y^{\prime \prime } = 0 \]

16560

\[ {} y^{\prime \prime }-10 y^{\prime }+25 y = 0 \]

16567

\[ {} y^{\prime \prime }+y = 0 \]

16583

\[ {} y^{\prime \prime }+4 y = 0 \]

16584

\[ {} y^{\prime \prime }-4 y = 0 \]

16585

\[ {} y^{\prime \prime }+y^{\prime }-6 y = 0 \]

16586

\[ {} 4 y-4 y^{\prime }+y^{\prime \prime } = 0 \]

16596

\[ {} y^{\prime \prime }-4 y = 0 \]

16597

\[ {} y^{\prime \prime }+2 y^{\prime }-3 y = 0 \]

16598

\[ {} y^{\prime \prime }-10 y^{\prime }+9 y = 0 \]

16599

\[ {} y^{\prime \prime }+5 y^{\prime } = 0 \]

16602

\[ {} y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

16603

\[ {} y^{\prime \prime }+2 y^{\prime }-24 y = 0 \]

16604

\[ {} y^{\prime \prime }-25 y = 0 \]

16605

\[ {} y^{\prime \prime }+3 y^{\prime } = 0 \]

16606

\[ {} 4 y^{\prime \prime }-y = 0 \]

16607

\[ {} 3 y^{\prime \prime }+7 y^{\prime }-6 y = 0 \]

16608

\[ {} y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]

16609

\[ {} y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]

16610

\[ {} y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]

16611

\[ {} y^{\prime \prime }-9 y = 0 \]

16612

\[ {} y^{\prime \prime }-9 y = 0 \]

16613

\[ {} y^{\prime \prime }-9 y = 0 \]

16614

\[ {} y^{\prime \prime }-10 y^{\prime }+25 y = 0 \]

16615

\[ {} y+2 y^{\prime }+y^{\prime \prime } = 0 \]

16616

\[ {} 4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

16617

\[ {} 25 y^{\prime \prime }-10 y^{\prime }+y = 0 \]

16618

\[ {} 16 y^{\prime \prime }-24 y^{\prime }+9 y = 0 \]

16619

\[ {} 9 y^{\prime \prime }+12 y^{\prime }+4 y = 0 \]

16620

\[ {} y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]

16621

\[ {} y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]

16622

\[ {} y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]

16623

\[ {} 4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

16624

\[ {} 4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

16625

\[ {} 4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

16626

\[ {} y^{\prime \prime }+25 y = 0 \]

16627

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

16628

\[ {} y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

16629

\[ {} y^{\prime \prime }-4 y^{\prime }+29 y = 0 \]

16630

\[ {} 9 y^{\prime \prime }+18 y^{\prime }+10 y = 0 \]

16631

\[ {} 4 y^{\prime \prime }+y = 0 \]

16632

\[ {} y^{\prime \prime }+16 y = 0 \]

16633

\[ {} y^{\prime \prime }+16 y = 0 \]

16634

\[ {} y^{\prime \prime }+16 y = 0 \]

16635

\[ {} y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

16636

\[ {} y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

16637

\[ {} y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

16638

\[ {} y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y = 0 \]

16639

\[ {} y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y = 0 \]

16822

\[ {} y^{\prime \prime }+36 y = 0 \]

16823

\[ {} y^{\prime \prime }-12 y^{\prime }+36 y = 0 \]

16825

\[ {} y^{\prime \prime }-36 y = 0 \]

16826

\[ {} y^{\prime \prime }-9 y^{\prime }+14 y = 0 \]

16830

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]