63.1.87 problem 132

Internal problem ID [15527]
Book : DIFFERENTIAL and INTEGRAL CALCULUS. VOL I. by N. PISKUNOV. MIR PUBLISHERS, Moscow 1969.
Section : Chapter 8. Differential equations. Exercises page 595
Problem number : 132
Date solved : Thursday, October 02, 2025 at 10:19:36 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+12 y&=7 y^{\prime } \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 15
ode:=diff(diff(y(x),x),x)+12*y(x) = 7*diff(y(x),x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_1 +c_2 \,{\mathrm e}^{x}\right ) {\mathrm e}^{3 x} \]
Mathematica. Time used: 0.009 (sec). Leaf size: 20
ode=D[y[x],{x,2}]+12*y[x]==7*D[y[x],x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{3 x} \left (c_2 e^x+c_1\right ) \end{align*}
Sympy. Time used: 0.089 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(12*y(x) - 7*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + C_{2} e^{x}\right ) e^{3 x} \]