65.10.11 problem 11

Internal problem ID [15793]
Book : Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section : Chapter 4. N-th Order Linear Differential Equations. Exercises 4.3, page 210
Problem number : 11
Date solved : Thursday, October 02, 2025 at 10:28:04 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+\alpha y&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 21
ode:=diff(diff(y(x),x),x)+alpha*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \sin \left (\sqrt {\alpha }\, x \right )+c_2 \cos \left (\sqrt {\alpha }\, x \right ) \]
Mathematica. Time used: 0.011 (sec). Leaf size: 28
ode=D[y[x],{x,2}]+a*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 \cos \left (\sqrt {a} x\right )+c_2 \sin \left (\sqrt {a} x\right ) \end{align*}
Sympy. Time used: 0.044 (sec). Leaf size: 26
from sympy import * 
x = symbols("x") 
Alpha = symbols("Alpha") 
y = Function("y") 
ode = Eq(Alpha*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- x \sqrt {- \mathrm {A}}} + C_{2} e^{x \sqrt {- \mathrm {A}}} \]