66.15.13 problem 24

Internal problem ID [16181]
Book : DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section : Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376
Problem number : 24
Date solved : Thursday, October 02, 2025 at 10:43:17 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=3 \\ y^{\prime }\left (0\right )&=-1 \\ \end{align*}
Maple. Time used: 0.056 (sec). Leaf size: 20
ode:=diff(diff(y(t),t),t)+2*diff(y(t),t)+5*y(t) = 0; 
ic:=[y(0) = 3, D(y)(0) = -1]; 
dsolve([ode,op(ic)],y(t), singsol=all);
 
\[ y = {\mathrm e}^{-t} \left (\sin \left (2 t \right )+3 \cos \left (2 t \right )\right ) \]
Mathematica. Time used: 0.014 (sec). Leaf size: 22
ode=D[y[t],{t,2}]+2*D[y[t],t]+5*y[t]==0; 
ic={y[0]==3,Derivative[1][y][0] ==-1}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to e^{-t} (\sin (2 t)+3 \cos (2 t)) \end{align*}
Sympy. Time used: 0.101 (sec). Leaf size: 17
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(5*y(t) + 2*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) 
ics = {y(0): 3, Subs(Derivative(y(t), t), t, 0): -1} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \left (\sin {\left (2 t \right )} + 3 \cos {\left (2 t \right )}\right ) e^{- t} \]