4.25.8 Problems 701 to 800

Table 4.1477: Second order, Linear, Homogeneous and constant coefficients

#

ODE

Mathematica

Maple

Sympy

16831

\[ {} y^{\prime \prime }+3 y = 0 \]

16836

\[ {} y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

16839

\[ {} y^{\prime \prime }-8 y^{\prime }+25 y = 0 \]

16841

\[ {} y^{\prime \prime }+y^{\prime }-30 y = 0 \]

16842

\[ {} 16 y^{\prime \prime }-8 y^{\prime }+y = 0 \]

16849

\[ {} y^{\prime \prime }+20 y^{\prime }+100 y = 0 \]

16851

\[ {} y^{\prime \prime }-5 y^{\prime } = 0 \]

16886

\[ {} y^{\prime \prime }-9 y = 0 \]

16889

\[ {} y^{\prime \prime }-8 y^{\prime }+17 y = 0 \]

16891

\[ {} y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]

16892

\[ {} y^{\prime \prime }+8 y^{\prime }+17 y = 0 \]

17080

\[ {} y^{\prime \prime }-y^{\prime }-12 y = 0 \]

17081

\[ {} y^{\prime \prime }+9 y^{\prime } = 0 \]

17082

\[ {} x^{\prime \prime }+2 x^{\prime }-10 x = 0 \]

17084

\[ {} y^{\prime \prime }-12 y^{\prime }+40 y = 0 \]

17109

\[ {} y^{\prime \prime }-y^{\prime }-12 y = 0 \]

17110

\[ {} y^{\prime \prime }+9 y^{\prime } = 0 \]

17122

\[ {} 16 y^{\prime \prime }+24 y^{\prime }+153 y = 0 \]

17131

\[ {} y^{\prime \prime }+4 y^{\prime }-5 y = 0 \]

17132

\[ {} y^{\prime \prime }-6 y^{\prime }+45 y = 0 \]

17464

\[ {} y^{\prime \prime }-y = 0 \]

17465

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 0 \]

17467

\[ {} y^{\prime \prime }+9 y = 0 \]

17468

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 0 \]

17469

\[ {} y^{\prime \prime }+9 y = 0 \]

17473

\[ {} y^{\prime \prime }+10 y^{\prime }+24 y = 0 \]

17474

\[ {} y^{\prime \prime }+16 y = 0 \]

17475

\[ {} y^{\prime \prime }+6 y^{\prime }+18 y = 0 \]

17477

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

17478

\[ {} y^{\prime \prime }+6 y^{\prime }+8 y = 0 \]

17479

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

17480

\[ {} y^{\prime \prime }+10 y^{\prime }+25 y = 0 \]

17481

\[ {} y^{\prime \prime }+9 y = 0 \]

17482

\[ {} y^{\prime \prime }+49 y = 0 \]

17487

\[ {} a y^{\prime \prime }+b y^{\prime }+c y = 0 \]

17492

\[ {} y^{\prime \prime }+b y^{\prime }+c y = 0 \]

17493

\[ {} y^{\prime \prime } = 0 \]

17494

\[ {} y^{\prime \prime }-4 y^{\prime }-12 y = 0 \]

17495

\[ {} y^{\prime \prime }+y^{\prime } = 0 \]

17496

\[ {} y^{\prime \prime }+3 y^{\prime }-4 y = 0 \]

17497

\[ {} y^{\prime \prime }+8 y^{\prime }+12 y = 0 \]

17498

\[ {} y^{\prime \prime }+5 y^{\prime }+y = 0 \]

17499

\[ {} 8 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

17500

\[ {} 4 y^{\prime \prime }+9 y = 0 \]

17501

\[ {} y^{\prime \prime }+16 y = 0 \]

17502

\[ {} y^{\prime \prime }+8 y = 0 \]

17503

\[ {} y^{\prime \prime }+7 y = 0 \]

17504

\[ {} 4 y^{\prime \prime }+21 y^{\prime }+5 y = 0 \]

17505

\[ {} 7 y^{\prime \prime }+4 y^{\prime }-3 y = 0 \]

17506

\[ {} 4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

17507

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

17508

\[ {} y^{\prime \prime }-y^{\prime } = 0 \]

17509

\[ {} 3 y^{\prime \prime }-y^{\prime } = 0 \]

17510

\[ {} y^{\prime \prime }+y^{\prime }-12 y = 0 \]

17511

\[ {} y^{\prime \prime }-7 y^{\prime }+12 y = 0 \]

17512

\[ {} 2 y^{\prime \prime }-7 y^{\prime }-4 y = 0 \]

17513

\[ {} y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

17514

\[ {} y^{\prime \prime }+36 y = 0 \]

17515

\[ {} y^{\prime \prime }+100 y = 0 \]

17516

\[ {} y^{\prime \prime }-2 y^{\prime }+y = 0 \]

17517

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

17518

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

17519

\[ {} y^{\prime \prime }+4 y^{\prime }+20 y = 0 \]

17520

\[ {} y^{\prime \prime }+y^{\prime }-y = 0 \]

17521

\[ {} y^{\prime \prime }+y^{\prime }+y = 0 \]

17522

\[ {} y^{\prime \prime }-y^{\prime }+y = 0 \]

17523

\[ {} y^{\prime \prime }-y^{\prime }-y = 0 \]

17524

\[ {} 6 y^{\prime \prime }+5 y^{\prime }+y = 0 \]

17525

\[ {} 9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

17526

\[ {} y^{\prime \prime }+4 y^{\prime }+20 y = 0 \]

17529

\[ {} a y^{\prime \prime }+2 b y^{\prime }+c y = 0 \]

17530

\[ {} y^{\prime \prime }+6 y^{\prime }+2 y = 0 \]

17531

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

17532

\[ {} y^{\prime \prime }-6 y^{\prime }-16 y = 0 \]

17533

\[ {} y^{\prime \prime }-16 y = 0 \]

17534

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

17537

\[ {} y^{\prime \prime }+4 y^{\prime }+3 y = 0 \]

17845

\[ {} y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

17846

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 0 \]

17847

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

17850

\[ {} y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]

17851

\[ {} 6 y^{\prime \prime }+5 y^{\prime }-4 y = 0 \]

17852

\[ {} y+2 y^{\prime }+y^{\prime \prime } = 0 \]

17853

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

17854

\[ {} y^{\prime \prime }-10 y^{\prime }+34 y = 0 \]

17855

\[ {} 2 y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

17856

\[ {} 15 y^{\prime \prime }-11 y^{\prime }+2 y = 0 \]

17857

\[ {} 20 y^{\prime \prime }+y^{\prime }-y = 0 \]

17858

\[ {} 12 y^{\prime \prime }+8 y^{\prime }+y = 0 \]

17876

\[ {} y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

17877

\[ {} y^{\prime \prime }+10 y^{\prime }+16 y = 0 \]

17878

\[ {} y^{\prime \prime }+16 y = 0 \]

17879

\[ {} y^{\prime \prime }+25 y = 0 \]

17891

\[ {} y^{\prime \prime }+3 y^{\prime }-4 y = 0 \]

17892

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

17910

\[ {} 4 x^{\prime \prime }+9 x = 0 \]

17911

\[ {} 9 x^{\prime \prime }+4 x = 0 \]

17912

\[ {} x^{\prime \prime }+64 x = 0 \]

17913

\[ {} x^{\prime \prime }+100 x = 0 \]

17914

\[ {} x^{\prime \prime }+x = 0 \]