| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y^{\prime \prime }-y^{\prime } = 6 x^{5} {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y-4 y^{\prime }+y^{\prime \prime } = x \,{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+y^{\prime \prime } = 4 \cos \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-6 y^{\prime \prime }+9 y^{\prime } = x^{3}+{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 a y^{\prime }+a^{2} y = x^{2} {\mathrm e}^{-a x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime } = x \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+6 y^{\prime }+9 y = 2 \,{\mathrm e}^{-x} \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 y^{\prime \prime }+y^{\prime \prime \prime } = {\mathrm e}^{-x} \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right )+x \left (t \right )+y^{\prime }\left (t \right )+y \left (t \right ) = 0, x^{\prime }\left (t \right )-y^{\prime }\left (t \right )-y \left (t \right ) = t]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [y^{\prime }\left (t \right )-3 z \left (t \right ) = 5, y \left (t \right )-z^{\prime }\left (t \right )-x \left (t \right ) = 3-2 t, z \left (t \right )+x^{\prime }\left (t \right ) = -1]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime \prime }\left (t \right )-x \left (t \right )+y \left (t \right ) = {\mathrm e}^{t}, x^{\prime }\left (t \right )+x \left (t \right )-y^{\prime }\left (t \right )-y \left (t \right ) = 3 \,{\mathrm e}^{t}]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right )-2 x \left (t \right )+y^{\prime }\left (t \right )-2 y \left (t \right ) = 1, y^{\prime }\left (t \right )+z^{\prime }\left (t \right )+z \left (t \right ) = 2, 3 x \left (t \right )+z^{\prime }\left (t \right )+z \left (t \right ) = 3]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right )+3 x \left (t \right )-y \left (t \right ) = 0, y^{\prime }\left (t \right )+y \left (t \right )-3 x \left (t \right ) = 0]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right )-x \left (t \right )-2 y \left (t \right ) = 0, y^{\prime }\left (t \right )-2 y \left (t \right )-3 x \left (t \right ) = 0]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [y^{\prime }\left (t \right )+y \left (t \right )-x^{\prime \prime }\left (t \right )+x \left (t \right ) = {\mathrm e}^{t}, y^{\prime }\left (t \right )-x^{\prime }\left (t \right )+x \left (t \right ) = {\mathrm e}^{-t}]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime \prime \prime }+x y^{\prime \prime }+2 y^{\prime }+x y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (2 x -1\right ) y^{\prime \prime }-3 y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (2 x^{2}+1\right ) y^{\prime \prime }+3 x y^{\prime }-6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}-2 x \right ) y^{\prime \prime }+\left (3 x +1\right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+\left (x^{2}-3 x \right ) y^{\prime }+\left (x +4\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x^{2} y^{\prime }-\left (x +2\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-y^{2}-x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+3 x y^{\prime }-3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\left (-n^{2}+x^{2}\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+5 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+n^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }-3 y = 2 \,{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+9 y = 5 \cos \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \sin \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-4 y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }-2 y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y = t \sin \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+y^{\prime \prime } = x \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }-3 y+8 \,{\mathrm e}^{-x}+3 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-y \left (t \right ) = 0, y^{\prime }\left (t \right )+2 y \left (t \right )+z^{\prime }\left (t \right )+2 z \left (t \right ) = 2, x \left (t \right )+z^{\prime }\left (t \right )-z \left (t \right ) = 0]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime \prime }\left (t \right ) = 1, x^{\prime }\left (t \right )+x \left (t \right )+y^{\prime \prime }\left (t \right )-9 y \left (t \right )+z^{\prime }\left (t \right )+z \left (t \right ) = 0, 5 x \left (t \right )+z^{\prime \prime }\left (t \right )-4 z \left (t \right ) = 2]
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime }+y^{2} = x^{2} y y^{\prime }-x y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x +\frac {1}{y}+\left (\frac {1}{y}-\frac {x}{y^{2}}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime }+y^{2} = y y^{\prime } x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{3}+3\right ) y^{\prime }+2 x y+5 x^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{2} = y-x y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+6 y^{\prime }+9 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} k^{2} y^{\prime \prime }+2 k y^{\prime }+\left (k^{2}+1\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{-2 x}}{x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime } = \sin \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+2 x^{\prime }+2 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+y^{\prime } = 16 x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-7 y^{\prime \prime }+12 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }+13 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime \prime } = 3 x +x \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [y^{\prime }\left (t \right )-3 z \left (t \right ) = 5, y \left (t \right )-z^{\prime }\left (t \right )-x \left (t \right ) = 3-2 t, z \left (t \right )+x^{\prime }\left (t \right ) = -1]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = \frac {{\mathrm e}^{x}}{x^{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+x y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime \prime }-8 x y^{\prime }+20 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [y^{\prime }\left (t \right )+y \left (t \right )-x^{\prime }\left (t \right )+x \left (t \right ) = t, x^{\prime }\left (t \right )+y^{\prime }\left (t \right )+x \left (t \right )-y \left (t \right ) = 0]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y = 2 t -8
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+5 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 2 \cos \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime \prime }-6 y^{\prime } = 6
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-5 x y^{\prime } = {\mathrm e}^{x}+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t y^{\prime \prime }+t^{2} y^{\prime }-\sin \left (t \right ) \sqrt {t} = t^{2}-t +1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} s^{2} t^{\prime \prime }+s t t^{\prime } = s
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 5 {b^{\prime \prime \prime \prime }}^{5}+7 {b^{\prime }}^{10}+b^{7}-b^{5} = p
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime \prime } = 1+y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime \prime }}^{2}-3 y y^{\prime }+x y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{4} y^{\prime \prime \prime \prime }+x y^{\prime \prime \prime } = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} t^{2} s^{\prime \prime }-t s^{\prime } = 1-\sin \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+x y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-x y^{\prime }+\sin \left (y\right ) = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} {r^{\prime \prime }}^{2}+r^{\prime \prime }+y r^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} {y^{\prime \prime }}^{{3}/{2}}+y = x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} b^{\left (7\right )} = 3 p
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {b^{\prime }}^{7} = 3 p
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y+2 y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime }+y^{\prime \prime } = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 x y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} -y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y-4 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sin \left (x \right ) y+{\mathrm e}^{x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = x \sin \left (y\right )+{\mathrm e}^{x}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = 5
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x +y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {x +y}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {y^{2}}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {2 x y \,{\mathrm e}^{\frac {y}{x}}}{x^{2}+y^{2} \sin \left (\frac {x}{y}\right )}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {y+x^{2}}{x^{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sin \left (x \right )+y^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{2}-x^{2} y^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 1+x y+y y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 x^{2} y+\left (x^{3}+y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y+y^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|