84.5.13 problem 3.4 (b)

Internal problem ID [22100]
Book : Schaums outline series. Differential Equations By Richard Bronson. 1973. McGraw-Hill Inc. ISBN 0-07-008009-7
Section : Chapter 3. Classification of first-order differential equations. Solved problems. Page 11
Problem number : 3.4 (b)
Date solved : Thursday, October 02, 2025 at 08:24:51 PM
CAS classification : [_separable]

\begin{align*} y x +y^{2} y^{\prime }&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 31
ode:=x*y(x)+y(x)^2*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= 0 \\ y &= \sqrt {-x^{2}+c_1} \\ y &= -\sqrt {-x^{2}+c_1} \\ \end{align*}
Mathematica. Time used: 0.055 (sec). Leaf size: 49
ode=x*y[x]+y[x]^2*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to 0\\ y(x)&\to -\sqrt {-x^2+2 c_1}\\ y(x)&\to \sqrt {-x^2+2 c_1}\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 0.340 (sec). Leaf size: 26
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*y(x) + y(x)**2*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \sqrt {C_{1} - x^{2}}, \ y{\left (x \right )} = \sqrt {C_{1} - x^{2}}, \ y{\left (x \right )} = 0\right ] \]