Internal
problem
ID
[22030]
Book
:
Differential
Equations
By
Kaj
L.
Nielsen.
Second
edition
1966.
Barnes
and
nobel.
66-28306
Section
:
Chapter
XV.
The
Laplace
Transform.
Ex.
XXIII
at
page
251
Problem
number
:
4
(f)
Date
solved
:
Thursday, October 02, 2025 at 08:21:49 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)-2*diff(y(t),t)-3*y(t) = 2*exp(-t); ic:=[y(0) = 3/2, D(y)(0) = 2]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=D[y[t],{t,2}]-2*D[y[t],t]-3*y[t]==2*Exp[-t]; ic={y[0]==3/2,Derivative[1][y][0] ==2}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-3*y(t) - 2*Derivative(y(t), t) + Derivative(y(t), (t, 2)) - 2*exp(-t),0) ics = {y(0): 3/2, Subs(Derivative(y(t), t), t, 0): 2} dsolve(ode,func=y(t),ics=ics)