Internal
problem
ID
[22037]
Book
:
Differential
Equations
By
Kaj
L.
Nielsen.
Second
edition
1966.
Barnes
and
nobel.
66-28306
Section
:
Chapter
XV.
The
Laplace
Transform.
Ex.
XXIII
at
page
251
Problem
number
:
5
(a)
Date
solved
:
Thursday, October 02, 2025 at 08:21:52 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=diff(diff(y(x),x),x)+4*y(x) = x*sin(x); ic:=[y(0) = 7/9, y(1/2*Pi) = 1/6*Pi-1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,2}]+4*y[x]==x*Sin[x]; ic={y[0]==7/9,y[Pi/2]==Pi/6-1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*sin(x) + 4*y(x) + Derivative(y(x), (x, 2)),0) ics = {y(0): 7/9, y(pi/2): -1 + pi/6} dsolve(ode,func=y(x),ics=ics)