Internal
problem
ID
[22034]
Book
:
Differential
Equations
By
Kaj
L.
Nielsen.
Second
edition
1966.
Barnes
and
nobel.
66-28306
Section
:
Chapter
XV.
The
Laplace
Transform.
Ex.
XXIII
at
page
251
Problem
number
:
4
(j)
Date
solved
:
Thursday, October 02, 2025 at 08:21:51 PM
CAS
classification
:
[[_high_order, _missing_x]]
Using Laplace method With initial conditions
ode:=diff(diff(diff(diff(y(t),t),t),t),t)-2*diff(diff(diff(y(t),t),t),t)-2*diff(y(t),t)+y(t) = 0; ic:=[y(0) = 3, D(y)(0) = 1, (D@@2)(y)(0) = -3, (D@@3)(y)(0) = -5]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=D[y[t],{t,4}]-2*D[y[t],{t,3}]-2*D[y[t],t]+y[t]==0; ic={y[0]==3,Derivative[1][y][0] ==1,Derivative[2][y][0] ==-3,Derivative[3][y][0] ==-5}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
Too large to display
from sympy import * t = symbols("t") y = Function("y") ode = Eq(y(t) - 2*Derivative(y(t), t) - 2*Derivative(y(t), (t, 3)) + Derivative(y(t), (t, 4)),0) ics = {y(0): 3, Subs(Derivative(y(t), t), t, 0): 1, Subs(Derivative(y(t), (t, 2)), t, 0): -3, Subs(Derivative(y(t), (t, 3)), t, 0): -5} dsolve(ode,func=y(t),ics=ics)