6.150 Problems 14901 to 15000

Table 6.299: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

14901

\[ {} [2 x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right )-y \left (t \right ) = 1, x^{\prime }\left (t \right )+y^{\prime }\left (t \right )+2 x \left (t \right )-y \left (t \right ) = t] \]

14902

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )] \]

14903

\[ {} [x^{\prime }\left (t \right ) = 5 x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )+y \left (t \right )] \]

14904

\[ {} [x^{\prime }\left (t \right ) = 5 x \left (t \right )+2 y \left (t \right )+5 t, y^{\prime }\left (t \right ) = 3 x \left (t \right )+4 y \left (t \right )+17 t] \]

14905

\[ {} [x^{\prime }\left (t \right ) = 5 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )-y \left (t \right )] \]

14906

\[ {} [x^{\prime }\left (t \right ) = 5 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right )] \]

14907

\[ {} [x^{\prime }\left (t \right ) = -2 x \left (t \right )+7 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+2 y \left (t \right )] \]

14908

\[ {} [x^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = 7 x \left (t \right )+4 y \left (t \right )] \]

14923

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-z \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+3 y \left (t \right )-4 z \left (t \right ), z^{\prime }\left (t \right ) = 4 x \left (t \right )+y \left (t \right )-4 z \left (t \right )] \]

14924

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )-z \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right )+z \left (t \right ), z^{\prime }\left (t \right ) = -3 x \left (t \right )-6 y \left (t \right )+6 z \left (t \right )] \]

14925

\[ {} -y+y^{\prime } = {\mathrm e}^{3 t} \]

14926

\[ {} y+y^{\prime } = 2 \sin \left (t \right ) \]

14927

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

14928

\[ {} y^{\prime \prime }+y^{\prime }-12 y = 0 \]

14929

\[ {} y^{\prime \prime }+4 y = 8 \]

14930

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

14931

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 18 \,{\mathrm e}^{-t} \sin \left (3 t \right ) \]

14932

\[ {} y^{\prime \prime }+2 y^{\prime }+y = t \,{\mathrm e}^{-2 t} \]

14933

\[ {} y^{\prime \prime }+7 y^{\prime }+10 y = 4 t \,{\mathrm e}^{-3 t} \]

14934

\[ {} y^{\prime \prime }-8 y^{\prime }+15 y = 9 t \,{\mathrm e}^{2 t} \]

14935

\[ {} y^{\prime \prime \prime }-5 y^{\prime \prime }+7 y^{\prime }-3 y = 20 \sin \left (t \right ) \]

14936

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 36 t \,{\mathrm e}^{4 t} \]

14937

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = \left \{\begin {array}{cc} 2 & 0<t <4 \\ 0 & 4<t \end {array}\right . \]

14938

\[ {} y^{\prime \prime }+5 y^{\prime }+6 y = \left \{\begin {array}{cc} 6 & 0<t <2 \\ 0 & 2<t \end {array}\right . \]

14939

\[ {} y^{\prime \prime }+4 y^{\prime }+5 y = \left \{\begin {array}{cc} 1 & 0<t <\frac {\pi }{2} \\ 0 & \frac {\pi }{2}<t \end {array}\right . \]

14940

\[ {} y^{\prime \prime }+6 y^{\prime }+8 y = \left \{\begin {array}{cc} 3 & 0<t <2 \pi \\ 0 & 2 \pi <t \end {array}\right . \]

14941

\[ {} y^{\prime \prime }+4 y = \left \{\begin {array}{cc} -4 t +8 \pi & 0<t <2 \pi \\ 0 & 2<t \end {array}\right . \]

14942

\[ {} y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0<t <\pi \\ \pi & \pi <t \end {array}\right . \]

14943

\[ {} t x^{\prime \prime }-2 x^{\prime }+9 t^{5} x = 0 \]

14944

\[ {} t^{3} x^{\prime \prime \prime }-3 t^{2} x^{\prime \prime }+6 t x^{\prime }-6 x = 0 \]

14945

\[ {} \left (t^{3}-2 t^{2}\right ) x^{\prime \prime }-\left (t^{3}+2 t^{2}-6 t \right ) x^{\prime }+\left (3 t^{2}-6\right ) x = 0 \]

14946

\[ {} t^{3} x^{\prime \prime \prime }-\left (3+t \right ) t^{2} x^{\prime \prime }+2 t \left (3+t \right ) x^{\prime }-2 \left (3+t \right ) x = 0 \]

14947

\[ {} t^{2} x^{\prime \prime }+3 t x^{\prime }+3 x = 0 \]

14948

\[ {} \left (2 t +1\right ) x^{\prime \prime }+t^{3} x^{\prime }+x = 0 \]

14949

\[ {} t^{2} x^{\prime \prime }+\left (2 t^{3}+7 t \right ) x^{\prime }+\left (8 t^{2}+8\right ) x = 0 \]

14950

\[ {} t^{3} x^{\prime \prime }-\left (t^{3}+2 t^{2}-t \right ) x^{\prime }+\left (t^{2}+t -1\right ) x = 0 \]

14951

\[ {} t^{3} x^{\prime \prime }+3 t^{2} x^{\prime }+x = 0 \]

14952

\[ {} \sin \left (t \right ) x^{\prime \prime }+\cos \left (t \right ) x^{\prime }+2 x = 0 \]

14953

\[ {} \frac {\left (t +1\right ) x^{\prime \prime }}{t}-\frac {x^{\prime }}{t^{2}}+\frac {x}{t^{3}} = 0 \]

14954

\[ {} t^{2} x^{\prime \prime }+t x^{\prime }+x = 0 \]

14955

\[ {} \left (t^{4}+t^{2}\right ) x^{\prime \prime }+2 t^{3} x^{\prime }+3 x = 0 \]

14956

\[ {} x^{\prime \prime }-\tan \left (t \right ) x^{\prime }+x = 0 \]

14957

\[ {} f \left (t \right ) x^{\prime \prime }+x g \left (t \right ) = 0 \]

14958

\[ {} x^{\prime \prime }+\left (t +1\right ) x = 0 \]

14959

\[ {} y^{\prime \prime }+\lambda y = 0 \]

14960

\[ {} y^{\prime \prime }+\lambda y = 0 \]

14961

\[ {} y^{\prime \prime }+\lambda y = 0 \]

14962

\[ {} y^{\prime \prime }+\lambda y = 0 \]

14963

\[ {} y^{\prime }+x y^{\prime \prime }+\frac {\lambda y}{x} = 0 \]

14964

\[ {} y^{\prime }+x y^{\prime \prime }+\frac {\lambda y}{x} = 0 \]

14965

\[ {} 2 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime }+\frac {\lambda y}{x^{2}+1} = 0 \]

14966

\[ {} -\frac {6 y^{\prime } x}{\left (3 x^{2}+1\right )^{2}}+\frac {y^{\prime \prime }}{3 x^{2}+1}+\lambda \left (3 x^{2}+1\right ) y = 0 \]

14967

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right )] \]

14968

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )] \]

14969

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+2 y \left (t \right )] \]

14970

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+5 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )] \]

14971

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-4 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-2 y \left (t \right )] \]

14972

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )+5 y \left (t \right )] \]

14973

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+5 y \left (t \right )] \]

14974

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+7 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+5 y \left (t \right )] \]

14975

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-y \left (t \right )] \]

14976

\[ {} [x^{\prime }\left (t \right ) = a x \left (t \right )+b y \left (t \right ), y^{\prime }\left (t \right ) = c x \left (t \right )+d y \left (t \right )] \]

14977

\[ {} [x^{\prime }\left (t \right ) = 4 x \left (t \right )-4 y \left (t \right )-x \left (t \right ) \left (x \left (t \right )^{2}+y \left (t \right )^{2}\right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )+4 y \left (t \right )-y \left (t \right ) \left (x \left (t \right )^{2}+y \left (t \right )^{2}\right )] \]

14978

\[ {} \left [x^{\prime }\left (t \right ) = y \left (t \right )+\frac {x \left (t \right ) \left (1-x \left (t \right )^{2}-y \left (t \right )^{2}\right )}{\sqrt {x \left (t \right )^{2}+y \left (t \right )^{2}}}, y^{\prime }\left (t \right ) = -x \left (t \right )+\frac {y \left (t \right ) \left (1-x \left (t \right )^{2}-y \left (t \right )^{2}\right )}{\sqrt {x \left (t \right )^{2}+y \left (t \right )^{2}}}\right ] \]

14979

\[ {} x^{\prime \prime }+x^{4} x^{\prime }-x^{\prime }+x = 0 \]

14980

\[ {} x^{\prime \prime }+x^{\prime }+{x^{\prime }}^{3}+x = 0 \]

14981

\[ {} x^{\prime \prime }+\left (x^{4}+x^{2}\right ) x^{\prime }+x^{3}+x = 0 \]

14982

\[ {} x^{\prime \prime }+\left (5 x^{4}-6 x^{2}\right ) x^{\prime }+x^{3} = 0 \]

14983

\[ {} x^{\prime \prime }+\left (1+x^{2}\right ) x^{\prime }+x^{3} = 0 \]

14984

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-x \left (t \right )^{2}, y^{\prime }\left (t \right ) = 2 y \left (t \right )-y \left (t \right )^{2}] \]

14985

\[ {} x^{\prime } = \sin \left (t \right )+\cos \left (t \right ) \]

14986

\[ {} y^{\prime } = \frac {1}{x^{2}-1} \]

14987

\[ {} u^{\prime } = 4 t \ln \left (t \right ) \]

14988

\[ {} z^{\prime } = x \,{\mathrm e}^{-2 x} \]

14989

\[ {} T^{\prime } = {\mathrm e}^{-t} \sin \left (2 t \right ) \]

14990

\[ {} x^{\prime } = \sec \left (t \right )^{2} \]

14991

\[ {} y^{\prime } = x -\frac {1}{3} x^{3} \]

14992

\[ {} x^{\prime } = 2 \sin \left (t \right )^{2} \]

14993

\[ {} x V^{\prime } = x^{2}+1 \]

14994

\[ {} x^{\prime } {\mathrm e}^{3 t}+3 x \,{\mathrm e}^{3 t} = {\mathrm e}^{-t} \]

14995

\[ {} x^{\prime } = 1-x \]

14996

\[ {} x^{\prime } = x \left (2-x\right ) \]

14997

\[ {} x^{\prime } = \left (1+x\right ) \left (2-x\right ) \sin \left (x\right ) \]

14998

\[ {} x^{\prime } = -x \left (1-x\right ) \left (2-x\right ) \]

14999

\[ {} x^{\prime } = x^{2}-x^{4} \]

15000

\[ {} x^{\prime } = t^{3} \left (1-x\right ) \]