59.1.3 problem 5.1 (iii)

Internal problem ID [14987]
Book : AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C. ROBINSON. Cambridge University Press 2004
Section : Chapter 5, Trivial differential equations. Exercises page 33
Problem number : 5.1 (iii)
Date solved : Thursday, October 02, 2025 at 09:58:06 AM
CAS classification : [_quadrature]

\begin{align*} u^{\prime }&=4 t \ln \left (t \right ) \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 18
ode:=diff(u(t),t) = 4*t*ln(t); 
dsolve(ode,u(t), singsol=all);
 
\[ u = 2 t^{2} \ln \left (t \right )-t^{2}+c_1 \]
Mathematica. Time used: 0.003 (sec). Leaf size: 20
ode=D[u[t],t]==4*t*Log[t]; 
ic={}; 
DSolve[{ode,ic},u[t],t,IncludeSingularSolutions->True]
 
\begin{align*} u(t)&\to -t^2+2 t^2 \log (t)+c_1 \end{align*}
Sympy. Time used: 0.088 (sec). Leaf size: 15
from sympy import * 
t = symbols("t") 
u = Function("u") 
ode = Eq(-4*t*log(t) + Derivative(u(t), t),0) 
ics = {} 
dsolve(ode,func=u(t),ics=ics)
 
\[ u{\left (t \right )} = C_{1} + 2 t^{2} \log {\left (t \right )} - t^{2} \]