58.24.2 problem 2

Internal problem ID [14968]
Book : Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.
Section : Chapter 13, Nonlinear differential equations. Section 13.2, Exercises page 656
Problem number : 2
Date solved : Thursday, October 02, 2025 at 09:57:11 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=3 x \left (t \right )+2 y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=x \left (t \right )+2 y \left (t \right ) \end{align*}
Maple. Time used: 0.104 (sec). Leaf size: 31
ode:=[diff(x(t),t) = 3*x(t)+2*y(t), diff(y(t),t) = x(t)+2*y(t)]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= c_1 \,{\mathrm e}^{4 t}+c_2 \,{\mathrm e}^{t} \\ y \left (t \right ) &= \frac {c_1 \,{\mathrm e}^{4 t}}{2}-c_2 \,{\mathrm e}^{t} \\ \end{align*}
Mathematica. Time used: 0.002 (sec). Leaf size: 67
ode={D[x[t],t]==3*x[t]+2*y[t],D[y[t],t]==x[t]+2*y[t]}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to \frac {1}{3} e^t \left (c_1 \left (2 e^{3 t}+1\right )+2 c_2 \left (e^{3 t}-1\right )\right )\\ y(t)&\to \frac {1}{3} e^t \left (c_1 \left (e^{3 t}-1\right )+c_2 \left (e^{3 t}+2\right )\right ) \end{align*}
Sympy. Time used: 0.046 (sec). Leaf size: 29
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(-3*x(t) - 2*y(t) + Derivative(x(t), t),0),Eq(-x(t) - 2*y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = - C_{1} e^{t} + 2 C_{2} e^{4 t}, \ y{\left (t \right )} = C_{1} e^{t} + C_{2} e^{4 t}\right ] \]