Internal
problem
ID
[14935]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
9,
The
Laplace
transform.
Section
9.3,
Exercises
page
452
Problem
number
:
11
Date
solved
:
Thursday, October 02, 2025 at 09:56:42 AM
CAS
classification
:
[[_3rd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(diff(y(t),t),t),t)-5*diff(diff(y(t),t),t)+7*diff(y(t),t)-3*y(t) = 20*sin(t); ic:=[y(0) = 0, D(y)(0) = 0, (D@@2)(y)(0) = -2]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=D[y[t],{t,3}]-5*D[y[t],{t,2}]+7*D[y[t],t]-3*y[t]==20*Sin[t]; ic={y[0]==0,Derivative[1][y][0]==0,Derivative[2][y][0]==-2}; DSolve[{ode,ic},{y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-3*y(t) - 20*sin(t) + 7*Derivative(y(t), t) - 5*Derivative(y(t), (t, 2)) + Derivative(y(t), (t, 3)),0) ics = {y(0): 0, Subs(Derivative(y(t), t), t, 0): 0, Subs(Derivative(y(t), (t, 2)), t, 0): -2} dsolve(ode,func=y(t),ics=ics)