59.3.1 problem 8.1 (i)

Internal problem ID [15000]
Book : AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C. ROBINSON. Cambridge University Press 2004
Section : Chapter 8, Separable equations. Exercises page 72
Problem number : 8.1 (i)
Date solved : Thursday, October 02, 2025 at 09:58:17 AM
CAS classification : [_separable]

\begin{align*} x^{\prime }&=t^{3} \left (1-x\right ) \end{align*}

With initial conditions

\begin{align*} x \left (0\right )&=3 \\ \end{align*}
Maple. Time used: 0.020 (sec). Leaf size: 14
ode:=diff(x(t),t) = t^3*(-x(t)+1); 
ic:=[x(0) = 3]; 
dsolve([ode,op(ic)],x(t), singsol=all);
 
\[ x = 1+2 \,{\mathrm e}^{-\frac {t^{4}}{4}} \]
Mathematica. Time used: 0.035 (sec). Leaf size: 18
ode=D[x[t],t]==t^3*(1-x[t]); 
ic={x[0]==3}; 
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to 2 e^{-\frac {t^4}{4}}+1 \end{align*}
Sympy. Time used: 0.192 (sec). Leaf size: 12
from sympy import * 
t = symbols("t") 
x = Function("x") 
ode = Eq(-t**3*(1 - x(t)) + Derivative(x(t), t),0) 
ics = {x(0): 3} 
dsolve(ode,func=x(t),ics=ics)
 
\[ x{\left (t \right )} = 1 + 2 e^{- \frac {t^{4}}{4}} \]