4.10.10 Problems 901 to 1000

Table 4.1035: System of differential equations

#

ODE

Mathematica

Maple

Sympy

15386

\[ {} [x^{\prime }\left (t \right )+y^{\prime }\left (t \right ) = y \left (t \right ), x^{\prime }\left (t \right )-y^{\prime }\left (t \right ) = x \left (t \right )] \]

15387

\[ {} [x^{\prime }\left (t \right )+2 y^{\prime }\left (t \right ) = t, x^{\prime }\left (t \right )-y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

15388

\[ {} [x^{\prime }\left (t \right )-y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-t, 2 x^{\prime }\left (t \right )+3 y^{\prime }\left (t \right ) = 2 x \left (t \right )+6] \]

15389

\[ {} [2 x^{\prime }\left (t \right )-y^{\prime }\left (t \right ) = t, 3 x^{\prime }\left (t \right )+2 y^{\prime }\left (t \right ) = y \left (t \right )] \]

15390

\[ {} [5 x^{\prime }\left (t \right )-3 y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), 3 x^{\prime }\left (t \right )-y^{\prime }\left (t \right ) = t] \]

15391

\[ {} [x^{\prime }\left (t \right )-4 y^{\prime }\left (t \right ) = 0, 2 x^{\prime }\left (t \right )-3 y^{\prime }\left (t \right ) = y \left (t \right )+t] \]

15392

\[ {} [3 x^{\prime }\left (t \right )+2 y^{\prime }\left (t \right ) = \sin \left (t \right ), x^{\prime }\left (t \right )-2 y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )+t] \]

15393

\[ {} [x^{\prime }\left (t \right ) = -4 x \left (t \right )+9 y \left (t \right )+12 \,{\mathrm e}^{-t}, y^{\prime }\left (t \right ) = -5 x \left (t \right )+2 y \left (t \right )] \]

15394

\[ {} [x^{\prime }\left (t \right ) = -7 x \left (t \right )+6 y \left (t \right )+6 \,{\mathrm e}^{-t}, y^{\prime }\left (t \right ) = -12 x \left (t \right )+5 y \left (t \right )+37] \]

15395

\[ {} [x^{\prime }\left (t \right ) = -7 x \left (t \right )+10 y \left (t \right )+18 \,{\mathrm e}^{t}, y^{\prime }\left (t \right ) = -10 x \left (t \right )+9 y \left (t \right )+37] \]

15396

\[ {} [x^{\prime }\left (t \right ) = -14 x \left (t \right )+39 y \left (t \right )+78 \sinh \left (t \right ), y^{\prime }\left (t \right ) = -6 x \left (t \right )+16 y \left (t \right )+6 \cosh \left (t \right )] \]

15397

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+4 y \left (t \right )-2 z \left (t \right )-2 \sinh \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )+2 y \left (t \right )-2 z \left (t \right )+10 \cosh \left (t \right ), z^{\prime }\left (t \right ) = -x \left (t \right )+3 y \left (t \right )+z \left (t \right )+5] \]

15398

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+6 y \left (t \right )-2 z \left (t \right )+50 \,{\mathrm e}^{t}, y^{\prime }\left (t \right ) = 6 x \left (t \right )+2 y \left (t \right )-2 z \left (t \right )+21 \,{\mathrm e}^{-t}, z^{\prime }\left (t \right ) = -x \left (t \right )+6 y \left (t \right )+z \left (t \right )+9] \]

15399

\[ {} [x^{\prime }\left (t \right ) = -2 x \left (t \right )-2 y \left (t \right )+4 z \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )+2 z \left (t \right ), z^{\prime }\left (t \right ) = -4 x \left (t \right )-2 y \left (t \right )+6 z \left (t \right )+{\mathrm e}^{2 t}] \]

15400

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right )+3 z \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )+2 z \left (t \right )+2 \,{\mathrm e}^{-t}, z^{\prime }\left (t \right ) = -2 x \left (t \right )+2 y \left (t \right )-2 z \left (t \right )] \]

15401

\[ {} [x^{\prime }\left (t \right ) = 7 x \left (t \right )+y \left (t \right )-1-6 \,{\mathrm e}^{t}, y^{\prime }\left (t \right ) = -4 x \left (t \right )+3 y \left (t \right )+4 \,{\mathrm e}^{t}-3] \]

15402

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right )+24 \sin \left (t \right ), y^{\prime }\left (t \right ) = 9 x \left (t \right )-3 y \left (t \right )+12 \cos \left (t \right )] \]

15403

\[ {} [x^{\prime }\left (t \right ) = 7 x \left (t \right )-4 y \left (t \right )+10 \,{\mathrm e}^{t}, y^{\prime }\left (t \right ) = 3 x \left (t \right )+14 y \left (t \right )+6 \,{\mathrm e}^{2 t}] \]

15404

\[ {} [x^{\prime }\left (t \right ) = -7 x \left (t \right )+4 y \left (t \right )+6 \,{\mathrm e}^{3 t}, y^{\prime }\left (t \right ) = -5 x \left (t \right )+2 y \left (t \right )+6 \,{\mathrm e}^{2 t}] \]

15405

\[ {} [x^{\prime }\left (t \right ) = -3 x \left (t \right )-3 y \left (t \right )+z \left (t \right ), y^{\prime }\left (t \right ) = 2 y \left (t \right )+2 z \left (t \right )+29 \,{\mathrm e}^{-t}, z^{\prime }\left (t \right ) = 5 x \left (t \right )+y \left (t \right )+z \left (t \right )+39 \,{\mathrm e}^{t}] \]

15406

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )-z \left (t \right )+5 \sin \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )+z \left (t \right )-10 \cos \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )+z \left (t \right )+2] \]

15407

\[ {} [x^{\prime }\left (t \right ) = -3 x \left (t \right )+3 y \left (t \right )+z \left (t \right )+5 \sin \left (2 t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-5 y \left (t \right )-3 z \left (t \right )+5 \cos \left (2 t \right ), z^{\prime }\left (t \right ) = -3 x \left (t \right )+7 y \left (t \right )+3 z \left (t \right )+23 \,{\mathrm e}^{t}] \]

15408

\[ {} [x^{\prime }\left (t \right ) = -3 x \left (t \right )+y \left (t \right )-3 z \left (t \right )+2 \,{\mathrm e}^{t}, y^{\prime }\left (t \right ) = 4 x \left (t \right )-y \left (t \right )+2 z \left (t \right )+4 \,{\mathrm e}^{t}, z^{\prime }\left (t \right ) = 4 x \left (t \right )-2 y \left (t \right )+3 z \left (t \right )+4 \,{\mathrm e}^{t}] \]

15409

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+5 y \left (t \right )+10 \sinh \left (t \right ), y^{\prime }\left (t \right ) = 19 x \left (t \right )-13 y \left (t \right )+24 \sinh \left (t \right )] \]

15410

\[ {} [x^{\prime }\left (t \right ) = 9 x \left (t \right )-3 y \left (t \right )-6 t, y^{\prime }\left (t \right ) = -x \left (t \right )+11 y \left (t \right )+10 t] \]

15438

\[ {} [x^{\prime }\left (t \right )+y^{\prime }\left (t \right )+x \left (t \right ) = 0, x^{\prime }\left (t \right )-x \left (t \right )+2 y^{\prime }\left (t \right ) = {\mathrm e}^{-t}] \]

15559

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right )+1, y^{\prime }\left (t \right ) = 1+x \left (t \right )] \]

15560

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )] \]

15561

\[ {} [4 x^{\prime }\left (t \right )-y^{\prime }\left (t \right )+3 x \left (t \right ) = \sin \left (t \right ), x^{\prime }\left (t \right )+y \left (t \right ) = \cos \left (t \right )] \]

15572

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-3 y \left (t \right ), y^{\prime }\left (t \right ) = 5 x \left (t \right )+6 y \left (t \right )] \]

15573

\[ {} [x^{\prime }\left (t \right ) = -4 x \left (t \right )-10 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )] \]

15574

\[ {} [x^{\prime }\left (t \right ) = 12 x \left (t \right )+18 y \left (t \right ), y^{\prime }\left (t \right ) = -8 x \left (t \right )-12 y \left (t \right )] \]

15577

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-3 y \left (t \right )] \]

15578

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )] \]

15579

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )] \]

15580

\[ {} [x^{\prime }\left (t \right ) = -4 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right )] \]

15581

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+2 y \left (t \right )] \]

15582

\[ {} [x^{\prime }\left (t \right ) = 4 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-y \left (t \right )] \]

15583

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )] \]

15584

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

15585

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-2 y \left (t \right )] \]

15586

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-3 y \left (t \right )] \]

15587

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right )] \]

15588

\[ {} [x^{\prime }\left (t \right ) = -y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-4 y \left (t \right )] \]

15589

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )] \]

15590

\[ {} [x^{\prime }\left (t \right ) = 0, y^{\prime }\left (t \right ) = x \left (t \right )] \]

15596

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )] \]

15844

\[ {} [y_{1}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right )-3 y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{1} \left (x \right )-2 y_{2} \left (x \right )] \]

15845

\[ {} [y_{1}^{\prime }\left (x \right ) = y_{1} \left (x \right )-2 y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{1} \left (x \right )+3 y_{2} \left (x \right )] \]

15846

\[ {} [y_{1}^{\prime }\left (x \right ) = y_{1} \left (x \right )+2 y_{2} \left (x \right )+x -1, y_{2}^{\prime }\left (x \right ) = 3 y_{1} \left (x \right )+2 y_{2} \left (x \right )-5 x -2] \]

15847

\[ {} \left [y_{1}^{\prime }\left (x \right ) = \frac {2 y_{1} \left (x \right )}{x}-\frac {y_{2} \left (x \right )}{x^{2}}-3+\frac {1}{x}-\frac {1}{x^{2}}, y_{2}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right )+1-6 x\right ] \]

15848

\[ {} \left [y_{1}^{\prime }\left (x \right ) = \frac {5 y_{1} \left (x \right )}{x}+\frac {4 y_{2} \left (x \right )}{x}-2 x, y_{2}^{\prime }\left (x \right ) = -\frac {6 y_{1} \left (x \right )}{x}-\frac {5 y_{2} \left (x \right )}{x}+5 x\right ] \]

15849

\[ {} [y_{1}^{\prime }\left (x \right ) = 3 y_{1} \left (x \right )-2 y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{2} \left (x \right )-y_{1} \left (x \right )] \]

15850

\[ {} \left [y_{1}^{\prime }\left (x \right ) = \sin \left (x \right ) y_{1} \left (x \right )+\sqrt {x}\, y_{2} \left (x \right )+\ln \left (x \right ), y_{2}^{\prime }\left (x \right ) = \tan \left (x \right ) y_{1} \left (x \right )-{\mathrm e}^{x} y_{2} \left (x \right )+1\right ] \]

15851

\[ {} \left [y_{1}^{\prime }\left (x \right ) = \sin \left (x \right ) y_{1} \left (x \right )+\sqrt {x}\, y_{2} \left (x \right )+\ln \left (x \right ), y_{2}^{\prime }\left (x \right ) = \tan \left (x \right ) y_{1} \left (x \right )-{\mathrm e}^{x} y_{2} \left (x \right )+1\right ] \]

15852

\[ {} \left [y_{1}^{\prime }\left (x \right ) = {\mathrm e}^{-x} y_{1} \left (x \right )-\sqrt {1+x}\, y_{2} \left (x \right )+x^{2}, y_{2}^{\prime }\left (x \right ) = \frac {y_{1} \left (x \right )}{\left (x -2\right )^{2}}\right ] \]

15853

\[ {} \left [y_{1}^{\prime }\left (x \right ) = {\mathrm e}^{-x} y_{1} \left (x \right )-\sqrt {1+x}\, y_{2} \left (x \right )+x^{2}, y_{2}^{\prime }\left (x \right ) = \frac {y_{1} \left (x \right )}{\left (x -2\right )^{2}}\right ] \]

15862

\[ {} [y_{1}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right )-3 y_{2} \left (x \right )+5 \,{\mathrm e}^{x}, y_{2}^{\prime }\left (x \right ) = y_{1} \left (x \right )+4 y_{2} \left (x \right )-2 \,{\mathrm e}^{-x}] \]

15863

\[ {} [y_{1}^{\prime }\left (x \right ) = y_{2} \left (x \right )-2 y_{1} \left (x \right )+\sin \left (2 x \right ), y_{2}^{\prime }\left (x \right ) = -3 y_{1} \left (x \right )+y_{2} \left (x \right )-2 \cos \left (3 x \right )] \]

15864

\[ {} [y_{1}^{\prime }\left (x \right ) = 2 y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = 3 y_{1} \left (x \right ), y_{3}^{\prime }\left (x \right ) = 2 y_{3} \left (x \right )-y_{1} \left (x \right )] \]

15865

\[ {} [y_{1}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right ) x -x^{2} y_{2} \left (x \right )+4 x, y_{2}^{\prime }\left (x \right ) = {\mathrm e}^{x} y_{1} \left (x \right )+3 \,{\mathrm e}^{-x} y_{2} \left (x \right )-\cos \left (3 x \right )] \]

15866

\[ {} [y_{1}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right )-3 y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{1} \left (x \right )-2 y_{2} \left (x \right )] \]

15867

\[ {} [y_{1}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right )-3 y_{2} \left (x \right )+4 x -2, y_{2}^{\prime }\left (x \right ) = y_{1} \left (x \right )-2 y_{2} \left (x \right )+3 x] \]

15868

\[ {} \left [y_{1}^{\prime }\left (x \right ) = \frac {5 y_{1} \left (x \right )}{x}+\frac {4 y_{2} \left (x \right )}{x}, y_{2}^{\prime }\left (x \right ) = -\frac {6 y_{1} \left (x \right )}{x}-\frac {5 y_{2} \left (x \right )}{x}\right ] \]

15869

\[ {} \left [y_{1}^{\prime }\left (x \right ) = \frac {5 y_{1} \left (x \right )}{x}+\frac {4 y_{2} \left (x \right )}{x}-2 x, y_{2}^{\prime }\left (x \right ) = -\frac {6 y_{1} \left (x \right )}{x}-\frac {5 y_{2} \left (x \right )}{x}+5 x\right ] \]

15870

\[ {} [y_{1}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right )+y_{2} \left (x \right )-2 y_{3} \left (x \right ), y_{2}^{\prime }\left (x \right ) = 3 y_{2} \left (x \right )-2 y_{3} \left (x \right ), y_{3}^{\prime }\left (x \right ) = 3 y_{1} \left (x \right )+y_{2} \left (x \right )-3 y_{3} \left (x \right )] \]

15871

\[ {} [y_{1}^{\prime }\left (x \right ) = 5 y_{1} \left (x \right )-5 y_{2} \left (x \right )-5 y_{3} \left (x \right ), y_{2}^{\prime }\left (x \right ) = -y_{1} \left (x \right )+4 y_{2} \left (x \right )+2 y_{3} \left (x \right ), y_{3}^{\prime }\left (x \right ) = 3 y_{1} \left (x \right )-5 y_{2} \left (x \right )-3 y_{3} \left (x \right )] \]

15872

\[ {} [y_{1}^{\prime }\left (x \right ) = 4 y_{1} \left (x \right )+6 y_{2} \left (x \right )+6 y_{3} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{1} \left (x \right )+3 y_{2} \left (x \right )+2 y_{3} \left (x \right ), y_{3}^{\prime }\left (x \right ) = -y_{1} \left (x \right )-4 y_{2} \left (x \right )-3 y_{3} \left (x \right )] \]

15873

\[ {} [y_{1}^{\prime }\left (x \right ) = y_{1} \left (x \right )+2 y_{2} \left (x \right )-3 y_{3} \left (x \right ), y_{2}^{\prime }\left (x \right ) = -3 y_{1} \left (x \right )+4 y_{2} \left (x \right )-2 y_{3} \left (x \right ), y_{3}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right )+y_{3} \left (x \right )] \]

15874

\[ {} [y_{1}^{\prime }\left (x \right ) = -2 y_{1} \left (x \right )-y_{2} \left (x \right )+y_{3} \left (x \right ), y_{2}^{\prime }\left (x \right ) = -y_{1} \left (x \right )-2 y_{2} \left (x \right )-y_{3} \left (x \right ), y_{3}^{\prime }\left (x \right ) = y_{1} \left (x \right )-y_{2} \left (x \right )-2 y_{3} \left (x \right )] \]

15875

\[ {} [y_{1}^{\prime }\left (x \right ) = y_{1} \left (x \right )+y_{2} \left (x \right )+2 y_{3} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{1} \left (x \right )+y_{2} \left (x \right )+2 y_{3} \left (x \right ), y_{3}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right )+2 y_{2} \left (x \right )+4 y_{3} \left (x \right )] \]

15876

\[ {} [y_{1}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right )+y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = -y_{1} \left (x \right )+2 y_{2} \left (x \right ), y_{3}^{\prime }\left (x \right ) = 3 y_{3} \left (x \right )-4 y_{4} \left (x \right ), y_{4}^{\prime }\left (x \right ) = 4 y_{3} \left (x \right )+3 y_{4} \left (x \right )] \]

15877

\[ {} [y_{1}^{\prime }\left (x \right ) = y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = -3 y_{1} \left (x \right )+2 y_{3} \left (x \right ), y_{3}^{\prime }\left (x \right ) = y_{4} \left (x \right ), y_{4}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right )-5 y_{3} \left (x \right )] \]

15878

\[ {} [y_{1}^{\prime }\left (x \right ) = 3 y_{1} \left (x \right )+2 y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = 3 y_{2} \left (x \right )-2 y_{1} \left (x \right ), y_{3}^{\prime }\left (x \right ) = y_{3} \left (x \right ), y_{4}^{\prime }\left (x \right ) = 2 y_{4} \left (x \right )] \]

15879

\[ {} [y_{1}^{\prime }\left (x \right ) = y_{2} \left (x \right )+y_{4} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{1} \left (x \right )-y_{3} \left (x \right ), y_{3}^{\prime }\left (x \right ) = y_{4} \left (x \right ), y_{4}^{\prime }\left (x \right ) = y_{3} \left (x \right )] \]

15880

\[ {} [x^{\prime }\left (t \right ) = -2 x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right )] \]

15881

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+3 y \left (t \right )] \]

15882

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-3 y \left (t \right )] \]

15883

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 5 x \left (t \right )+y \left (t \right )] \]

15884

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )-y \left (t \right )] \]

15885

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )] \]

15886

\[ {} [x^{\prime }\left (t \right ) = -5 x \left (t \right )-y \left (t \right )+2, y^{\prime }\left (t \right ) = 3 x \left (t \right )-y \left (t \right )-3] \]

15887

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right )-6, y^{\prime }\left (t \right ) = 4 x \left (t \right )-y \left (t \right )+2] \]

16084

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )] \]

16085

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 0] \]

16086

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )] \]

16087

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right )] \]

16088

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

16089

\[ {} \left [x^{\prime }\left (t \right ) = 3 y \left (t \right ), y^{\prime }\left (t \right ) = 3 \pi y \left (t \right )-\frac {x \left (t \right )}{3}\right ] \]

16090

\[ {} \left [p^{\prime }\left (t \right ) = 3 p \left (t \right )-2 q \left (t \right )-7 r \left (t \right ), q^{\prime }\left (t \right ) = -2 p \left (t \right )+6 r \left (t \right ), r^{\prime }\left (t \right ) = \frac {73 q \left (t \right )}{100}+2 r \left (t \right )\right ] \]

16091

\[ {} [x^{\prime }\left (t \right ) = -3 x \left (t \right )+2 \pi y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )-y \left (t \right )] \]

16092

\[ {} [x^{\prime }\left (t \right ) = \beta y \left (t \right ), y^{\prime }\left (t \right ) = \gamma x \left (t \right )-y \left (t \right )] \]

16093

\[ {} [x^{\prime }\left (t \right ) = 2 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

16094

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right )] \]

16095

\[ {} [x^{\prime }\left (t \right ) = -2 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-5 y \left (t \right )] \]

16096

\[ {} [x^{\prime }\left (t \right ) = -2 x \left (t \right )-3 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right )] \]

16097

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )] \]

16098

\[ {} [x^{\prime }\left (t \right ) = 1, y^{\prime }\left (t \right ) = x \left (t \right )] \]

16099

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right ), y^{\prime }\left (t \right ) = -2 y \left (t \right )] \]

16100

\[ {} [x^{\prime }\left (t \right ) = -4 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-3 y \left (t \right )] \]