Internal
problem
ID
[15401]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
8.3
Systems
of
Linear
Differential
Equations
(Variation
of
Parameters).
Problems
page
514
Problem
number
:
Problem
5(a)
Date
solved
:
Thursday, October 02, 2025 at 10:12:41 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = 7*x(t)+y(t)-1-6*exp(t), diff(y(t),t) = -4*x(t)+3*y(t)+4*exp(t)-3]; ic:=[x(0) = 1, y(0) = -1]; dsolve([ode,op(ic)]);
ode={D[x[t],t]==7*x[t]+y[t]-1-Exp[t],D[y[t],t]==-4*x[t]+3*y[t]+4*Exp[t]-3}; ic={x[0]==1,y[0]==-1}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-7*x(t) - y(t) + 6*exp(t) + Derivative(x(t), t) + 1,0),Eq(4*x(t) - 3*y(t) - 4*exp(t) + Derivative(y(t), t) + 3,0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)