Internal
problem
ID
[15559]
Book
:
DIFFERENTIAL
and
INTEGRAL
CALCULUS.
VOL
I.
by
N.
PISKUNOV.
MIR
PUBLISHERS,
Moscow
1969.
Section
:
Chapter
8.
Differential
equations.
Exercises
page
595
Problem
number
:
170
Date
solved
:
Thursday, October 02, 2025 at 10:19:54 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = y(t)+1, diff(y(t),t) = x(t)+1]; ic:=[x(0) = -2, y(0) = 0]; dsolve([ode,op(ic)]);
ode={D[x[t],t]==y[t]+1,D[y[t],t]==x[t]+1}; ic={x[0]==-2,y[0]==0}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-y(t) + Derivative(x(t), t) - 1,0),Eq(-x(t) + Derivative(y(t), t) - 1,0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)