Internal
problem
ID
[15577]
Book
:
DIFFERENTIAL
and
INTEGRAL
CALCULUS.
VOL
I.
by
N.
PISKUNOV.
MIR
PUBLISHERS,
Moscow
1969.
Section
:
Chapter
8.
Differential
equations.
Exercises
page
595
Problem
number
:
196
Date
solved
:
Thursday, October 02, 2025 at 10:20:22 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = y(t)-x(t), diff(y(t),t) = -x(t)-3*y(t)]; ic:=[x(1) = 0, y(1) = 1]; dsolve([ode,op(ic)]);
ode={D[x[t],t]==y[t]-x[t],D[y[t],t]==-x[t]-3*y[t]}; ic={x[1]==0,y[1]==1}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(x(t) - y(t) + Derivative(x(t), t),0),Eq(x(t) + 3*y(t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)