Internal
problem
ID
[15396]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
8.3
Systems
of
Linear
Differential
Equations
(Variation
of
Parameters).
Problems
page
514
Problem
number
:
Problem
3(d)
Date
solved
:
Thursday, October 02, 2025 at 10:12:35 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = -14*x(t)+39*y(t)+78*sinh(t), diff(y(t),t) = -6*x(t)+16*y(t)+6*cosh(t)]; dsolve(ode);
ode={D[x[t],t]==-14*x[t]+39*y[t]+78*Sinh[t],D[y[t],t]==-6*x[t]+16*y[t]+6*Cosh[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
Too large to display
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(14*x(t) - 39*y(t) - 78*sinh(t) + Derivative(x(t), t),0),Eq(6*x(t) - 16*y(t) - 6*cosh(t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)