| # |
ODE |
CAS classification |
Solved |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
x^{\prime \prime }&=50 \\
x \left (0\right ) &= 20 \\
x^{\prime }\left (0\right ) &= 10 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.829 |
|
| \begin{align*}
x^{\prime \prime }&=-20 \\
x \left (0\right ) &= 5 \\
x^{\prime }\left (0\right ) &= -15 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.741 |
|
| \begin{align*}
x^{\prime \prime }&=3 t \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.813 |
|
| \begin{align*}
x^{\prime \prime }&=2 t +1 \\
x \left (0\right ) &= 4 \\
x^{\prime }\left (0\right ) &= -7 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.832 |
|
| \begin{align*}
x^{\prime \prime }&=4 \left (t +3\right )^{2} \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.827 |
|
| \begin{align*}
x^{\prime \prime }&=\frac {1}{\sqrt {t +4}} \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
2.925 |
|
| \begin{align*}
x^{\prime \prime }&=\frac {1}{\left (t +1\right )^{3}} \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.909 |
|
| \begin{align*}
x^{\prime \prime }&=50 \sin \left (5 t \right ) \\
x \left (0\right ) &= 8 \\
x^{\prime }\left (0\right ) &= -10 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.953 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.126 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.089 |
|
| \begin{align*}
y^{\prime \prime }-9 y&=0 \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 15 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.214 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 8 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.186 |
|
| \begin{align*}
y^{\prime \prime }+25 y&=0 \\
y \left (0\right ) &= 10 \\
y^{\prime }\left (0\right ) &= -10 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.839 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.285 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-6 y&=0 \\
y \left (0\right ) &= 7 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.276 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=0 \\
y \left (0\right ) &= -2 \\
y^{\prime }\left (0\right ) &= 8 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.883 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }&=0 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.901 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 1.352 |
|
| \begin{align*}
y^{\prime \prime }-10 y^{\prime }+25 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 13 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.366 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+13 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.385 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.162 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-15 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.191 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.700 |
|
| \begin{align*}
2 y^{\prime \prime }+3 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.723 |
|
| \begin{align*}
2 y^{\prime \prime }-y^{\prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.176 |
|
| \begin{align*}
4 y^{\prime \prime }+8 y^{\prime }+3 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.174 |
|
| \begin{align*}
4 y^{\prime \prime }+4 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.236 |
|
| \begin{align*}
9 y^{\prime \prime }-12 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.259 |
|
| \begin{align*}
6 y^{\prime \prime }-7 y^{\prime }-20 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.184 |
|
| \begin{align*}
35 y^{\prime \prime }-y^{\prime }-12 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.186 |
|
| \begin{align*}
y^{\prime \prime }+y&=3 x \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.425 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=12 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 10 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.279 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&=6 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 11 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.343 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&=2 x \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 8 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.446 |
|
| \begin{align*}
y^{\prime \prime }+2 y&=6 x +4 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-5 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.317 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.987 |
|
| \begin{align*}
2 y^{\prime \prime }-3 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.658 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-10 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.189 |
|
| \begin{align*}
2 y^{\prime \prime }-7 y^{\prime }+3 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.157 |
|
| \begin{align*}
9 y+6 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.195 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+5 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.186 |
|
| \begin{align*}
4 y^{\prime \prime }-12 y^{\prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.202 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+13 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.209 |
|
| \begin{align*}
y^{\prime \prime }+8 y^{\prime }+25 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=0 \\
y \left (0\right ) &= 7 \\
y^{\prime }\left (0\right ) &= 11 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.256 |
|
| \begin{align*}
9 y^{\prime \prime }+6 y^{\prime }+4 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.368 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+25 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.339 |
|
| \begin{align*}
y^{\prime \prime }+2 i y^{\prime }+3 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.192 |
|
| \begin{align*}
y^{\prime \prime }-i y^{\prime }+6 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.191 |
|
| \begin{align*}
y^{\prime \prime }+16 y&={\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.351 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }+2 y&=3 x +4 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-6 y&=2 \sin \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.306 |
|
| \begin{align*}
4 y^{\prime \prime }+4 y^{\prime }+y&=3 x \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.345 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=\sin \left (x \right )^{2} \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.427 |
|
| \begin{align*}
2 y^{\prime \prime }+4 y^{\prime }+7 y&=x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=\sinh \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.464 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=\cosh \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.518 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-3 y&=1+x \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.377 |
|
| \begin{align*}
2 y^{\prime \prime }+9 y&=2 \cos \left (3 x \right )+3 \sin \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.542 |
|
| \begin{align*}
5 y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.345 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=2 x^{2} {\mathrm e}^{3 x}+5 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.399 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right )+\cos \left (x \right ) x \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.539 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&={\mathrm e}^{x} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=3 x \cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.497 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=x \left ({\mathrm e}^{-x}-{\mathrm e}^{-2 x}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.486 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+13 y&=x \,{\mathrm e}^{3 x} \sin \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.418 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=2 x \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.379 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=\sin \left (2 x \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.467 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cos \left (x \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.435 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&=x +1 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=\sin \left (3 x \right ) \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.546 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=\sin \left (x \right ) \sin \left (3 x \right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.473 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=\sin \left (x \right )^{4} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.585 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cos \left (x \right )^{3} x \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.708 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=4 \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-8 y&=3 \,{\mathrm e}^{-2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.282 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=2 \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=\sinh \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.507 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=\cos \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.316 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=\sin \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.323 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=2 \sec \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.549 |
|
| \begin{align*}
y^{\prime \prime }+y&=\csc \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.404 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=\sin \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.392 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=x \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.279 |
|
| \begin{align*}
y^{\prime \prime }+y&=2 \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.369 |
|
| \begin{align*}
x^{\prime \prime }+9 x&=10 \cos \left (2 t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.539 |
|
| \begin{align*}
x^{\prime \prime }+4 x&=5 \sin \left (3 t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.533 |
|
| \begin{align*}
x^{\prime \prime }+100 x&=225 \cos \left (5 t \right )+300 \sin \left (5 t \right ) \\
x \left (0\right ) &= 375 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.659 |
|
| \begin{align*}
x^{\prime \prime }+25 x&=90 \cos \left (4 t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 90 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.545 |
|
| \begin{align*}
m x^{\prime \prime }+k x&=F_{0} \cos \left (\omega t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.681 |
|
| \begin{align*}
x^{\prime \prime }+4 x^{\prime }+4 x&=10 \cos \left (3 t \right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.430 |
|
| \begin{align*}
x^{\prime \prime }+3 x^{\prime }+5 x&=-4 \cos \left (5 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| \begin{align*}
2 x^{\prime \prime }+2 x^{\prime }+x&=3 \sin \left (10 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| \begin{align*}
x^{\prime \prime }+3 x^{\prime }+3 x&=8 \cos \left (10 t \right )+6 \sin \left (10 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.450 |
|
| \begin{align*}
x^{\prime \prime }+4 x^{\prime }+5 x&=10 \cos \left (3 t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.560 |
|
| \begin{align*}
x^{\prime \prime }+6 x^{\prime }+13 x&=10 \sin \left (5 t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.553 |
|
| \begin{align*}
x^{\prime \prime }+2 x^{\prime }+26 x&=600 \cos \left (10 t \right ) \\
x \left (0\right ) &= 10 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.582 |
|
| \begin{align*}
x^{\prime \prime }+8 x^{\prime }+25 x&=200 \cos \left (t \right )+520 \sin \left (t \right ) \\
x \left (0\right ) &= -30 \\
x^{\prime }\left (0\right ) &= -10 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.536 |
|
| \begin{align*}
x^{\prime \prime }+2 x^{\prime }+2 x&=2 \cos \left (\omega t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.392 |
|
| \begin{align*}
x^{\prime \prime }+4 x^{\prime }+5 x&=10 \cos \left (\omega t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.315 |
|
| \begin{align*}
x^{\prime \prime }+6 x^{\prime }+45 x&=50 \cos \left (\omega t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.372 |
|
| \begin{align*}
x^{\prime \prime }+10 x^{\prime }+650 x&=100 \cos \left (\omega t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.374 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.087 |
|
| \begin{align*}
y^{\prime \prime }-9 y&=0 \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 15 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.112 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 8 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.139 |
|
| \begin{align*}
y^{\prime \prime }+25 y&=0 \\
y \left (0\right ) &= 10 \\
y^{\prime }\left (0\right ) &= -10 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.680 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.305 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-6 y&=0 \\
y \left (0\right ) &= 7 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.300 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=0 \\
y \left (0\right ) &= -2 \\
y^{\prime }\left (0\right ) &= 8 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.874 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }&=0 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.907 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.380 |
|
| \begin{align*}
y^{\prime \prime }-10 y^{\prime }+25 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 13 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.381 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.380 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+13 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.406 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.175 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-15 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.184 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.694 |
|
| \begin{align*}
2 y^{\prime \prime }+3 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.705 |
|
| \begin{align*}
2 y^{\prime \prime }-y^{\prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.187 |
|
| \begin{align*}
4 y^{\prime \prime }+8 y^{\prime }+3 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.182 |
|
| \begin{align*}
4 y^{\prime \prime }+4 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| \begin{align*}
9 y^{\prime \prime }-12 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.246 |
|
| \begin{align*}
6 y^{\prime \prime }-7 y^{\prime }-20 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.194 |
|
| \begin{align*}
35 y^{\prime \prime }-y^{\prime }-12 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.194 |
|
| \begin{align*}
y^{\prime \prime }+y&=3 x \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.463 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=12 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 10 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.191 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&=6 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 11 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&=2 x \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 8 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.461 |
|
| \begin{align*}
y^{\prime \prime }+2 y&=4 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.934 |
|
| \begin{align*}
y^{\prime \prime }+2 y&=6 x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.337 |
|
| \begin{align*}
y^{\prime \prime }+2 y&=6 x +4 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.724 |
|
| \begin{align*}
2 y^{\prime \prime }-3 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.705 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }-10 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.184 |
|
| \begin{align*}
2 y^{\prime \prime }-7 y^{\prime }+3 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.190 |
|
| \begin{align*}
9 y+6 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.233 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+5 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.228 |
|
| \begin{align*}
4 y^{\prime \prime }-12 y^{\prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.247 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+13 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.223 |
|
| \begin{align*}
y^{\prime \prime }+8 y^{\prime }+25 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=0 \\
y \left (0\right ) &= 7 \\
y^{\prime }\left (0\right ) &= 11 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.302 |
|
| \begin{align*}
9 y^{\prime \prime }+6 y^{\prime }+4 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.430 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+25 y&=0 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.395 |
|
| \begin{align*}
y^{\prime \prime }-2 i y^{\prime }+3 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| \begin{align*}
y^{\prime \prime }-i y^{\prime }+6 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.227 |
|
| \begin{align*}
\frac {x^{\prime \prime }}{2}+3 x^{\prime }+4 x&=0 \\
x \left (0\right ) &= 2 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.325 |
|
| \begin{align*}
3 x^{\prime \prime }+30 x^{\prime }+63 x&=0 \\
x \left (0\right ) &= 2 \\
x^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.312 |
|
| \begin{align*}
x^{\prime \prime }+8 x^{\prime }+16 x&=0 \\
x \left (0\right ) &= 5 \\
x^{\prime }\left (0\right ) &= -10 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.412 |
|
| \begin{align*}
2 x^{\prime \prime }+12 x^{\prime }+50 x&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= -8 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.372 |
|
| \begin{align*}
4 x^{\prime \prime }+20 x^{\prime }+169 x&=0 \\
x \left (0\right ) &= 4 \\
x^{\prime }\left (0\right ) &= 16 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.421 |
|
| \begin{align*}
2 x^{\prime \prime }+16 x^{\prime }+40 x&=0 \\
x \left (0\right ) &= 5 \\
x^{\prime }\left (0\right ) &= 4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.379 |
|
| \begin{align*}
x^{\prime \prime }+10 x^{\prime }+125 x&=0 \\
x \left (0\right ) &= 6 \\
x^{\prime }\left (0\right ) &= 50 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.420 |
|
| \begin{align*}
y^{\prime \prime }+16 y&={\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=3 x +4 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-6 y&=2 \sin \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.372 |
|
| \begin{align*}
4 y^{\prime \prime }+4 y^{\prime }+y&=3 x \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.409 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=\sin \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.484 |
|
| \begin{align*}
2 y^{\prime \prime }+4 y^{\prime }+7 y&=x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.429 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=\sinh \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.523 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=\cosh \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.598 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-3 y&=1+x \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.454 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=2 \cos \left (3 x \right )+3 \sin \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.540 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=2 x^{2} {\mathrm e}^{3 x}+5 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&={\mathrm e}^{x} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.345 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=3 x \cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.494 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=x \left ({\mathrm e}^{-x}-{\mathrm e}^{-2 x}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.507 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+13 y&=x \,{\mathrm e}^{3 x} \sin \left (2 x \right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.492 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=2 x \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.483 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.447 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=\sin \left (2 x \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.537 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cos \left (x \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.519 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&=x +1 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.460 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=\sin \left (x \right ) \sin \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.522 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=\sin \left (x \right )^{4} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.660 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cos \left (x \right )^{3} x \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.819 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=4 \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.323 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-8 y&=3 \,{\mathrm e}^{-2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.333 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=2 \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=\sinh \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.602 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=\cos \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.372 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=\sin \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.384 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=2 \sec \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.638 |
|
| \begin{align*}
y^{\prime \prime }+y&=\csc \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.478 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=\sin \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.450 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=x \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.342 |
|
| \begin{align*}
x^{\prime \prime }+9 x&=10 \cos \left (2 t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.539 |
|
| \begin{align*}
x^{\prime \prime }+4 x&=5 \sin \left (3 t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.556 |
|
| \begin{align*}
x^{\prime \prime }+100 x&=225 \cos \left (5 t \right )+300 \sin \left (5 t \right ) \\
x \left (0\right ) &= 375 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.773 |
|
| \begin{align*}
x^{\prime \prime }+25 x&=90 \cos \left (4 t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 90 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.553 |
|
| \begin{align*}
m x^{\prime \prime }+k x&=F_{0} \cos \left (\omega t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.595 |
|
| \begin{align*}
x^{\prime \prime }+4 x^{\prime }+4 x&=10 \cos \left (3 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.503 |
|
| \begin{align*}
x^{\prime \prime }+3 x^{\prime }+5 x&=-4 \cos \left (5 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.494 |
|
| \begin{align*}
2 x^{\prime \prime }+2 x^{\prime }+x&=3 \sin \left (10 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.447 |
|
| \begin{align*}
x^{\prime \prime }+3 x^{\prime }+3 x&=8 \cos \left (10 t \right )+6 \sin \left (10 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.514 |
|
| \begin{align*}
x^{\prime \prime }+4 x^{\prime }+5 x&=10 \cos \left (3 t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.678 |
|
| \begin{align*}
x^{\prime \prime }+6 x^{\prime }+13 x&=10 \sin \left (5 t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.604 |
|
| \begin{align*}
x^{\prime \prime }+6 x^{\prime }+13 x&=10 \sin \left (5 t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.510 |
|
| \begin{align*}
x^{\prime \prime }+2 x^{\prime }+26 x&=600 \cos \left (10 t \right ) \\
x \left (0\right ) &= 10 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.678 |
|
| \begin{align*}
x^{\prime \prime }+8 x^{\prime }+25 x&=200 \cos \left (t \right )+520 \sin \left (t \right ) \\
x \left (0\right ) &= -30 \\
x^{\prime }\left (0\right ) &= -10 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.601 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-3 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.195 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.194 |
|
| \begin{align*}
6 y^{\prime \prime }-y^{\prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.202 |
|
| \begin{align*}
2 y^{\prime \prime }-3 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.194 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.819 |
|
| \begin{align*}
4 y^{\prime \prime }-9 y&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.988 |
|
| \begin{align*}
y^{\prime \prime }-9 y^{\prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.237 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.228 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.309 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+3 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.343 |
|
| \begin{align*}
6 y^{\prime \prime }-5 y^{\prime }+y&=0 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.322 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }&=0 \\
y \left (0\right ) &= -2 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.996 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+3 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.402 |
|
| \begin{align*}
2 y^{\prime \prime }+y^{\prime }-4 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.373 |
|
| \begin{align*}
y^{\prime \prime }+8 y^{\prime }-9 y&=0 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| \begin{align*}
4 y^{\prime \prime }-y&=0 \\
y \left (-2\right ) &= 1 \\
y^{\prime }\left (-2\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.177 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (0\right ) &= {\frac {5}{4}} \\
y^{\prime }\left (0\right ) &= -{\frac {3}{4}} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.099 |
|
| \begin{align*}
2 y^{\prime \prime }-3 y^{\prime }+y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.309 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=0 \\
y \left (0\right ) &= \alpha \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.290 |
|
| \begin{align*}
4 y^{\prime \prime }-y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= \beta \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✗ |
0.750 |
|
| \begin{align*}
y^{\prime \prime }-\left (2 \alpha -1\right ) y^{\prime }+\alpha \left (\alpha -1\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.233 |
|
| \begin{align*}
y^{\prime \prime }+\left (3-\alpha \right ) y^{\prime }-2 \left (\alpha -1\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.292 |
|
| \begin{align*}
2 y^{\prime \prime }+3 y^{\prime }-2 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -\beta \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✗ |
0.277 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= \beta \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✗ |
0.286 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.292 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+6 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.298 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-8 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.224 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.301 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+13 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| \begin{align*}
4 y^{\prime \prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.036 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+\frac {5 y}{4}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.246 |
|
| \begin{align*}
9 y^{\prime \prime }+9 y^{\prime }-4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+\frac {5 y}{4}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.239 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+\frac {25 y}{4}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.259 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.690 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.475 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&=0 \\
y \left (\frac {\pi }{2}\right ) &= 0 \\
y^{\prime }\left (\frac {\pi }{2}\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.372 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (\frac {\pi }{3}\right ) &= 2 \\
y^{\prime }\left (\frac {\pi }{3}\right ) &= -4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.309 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+\frac {5 y}{4}&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.354 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=0 \\
y \left (\frac {\pi }{4}\right ) &= 2 \\
y^{\prime }\left (\frac {\pi }{4}\right ) &= -2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.379 |
|
| \begin{align*}
u^{\prime \prime }-u^{\prime }+2 u&=0 \\
u \left (0\right ) &= 2 \\
u^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.461 |
|
| \begin{align*}
5 u^{\prime \prime }+2 u^{\prime }+7 u&=0 \\
u \left (0\right ) &= 2 \\
u^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.458 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+6 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= \alpha \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.384 |
|
| \begin{align*}
y^{\prime \prime }+2 a y^{\prime }+\left (a^{2}+1\right ) y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.509 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.249 |
|
| \begin{align*}
9 y^{\prime \prime }+6 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.257 |
|
| \begin{align*}
4 y^{\prime \prime }-4 y^{\prime }-3 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.194 |
|
| \begin{align*}
4 y^{\prime \prime }+12 y^{\prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.252 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+10 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.255 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.250 |
|
| \begin{align*}
4 y^{\prime \prime }+17 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.200 |
|
| \begin{align*}
16 y^{\prime \prime }+24 y^{\prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| \begin{align*}
25 y^{\prime \prime }-20 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.249 |
|
| \begin{align*}
2 y^{\prime \prime }+2 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.237 |
|
| \begin{align*}
9 y^{\prime \prime }-12 y^{\prime }+4 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.404 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.427 |
|
| \begin{align*}
9 y^{\prime \prime }+6 y^{\prime }+82 y&=0 \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.415 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\
y \left (-1\right ) &= 2 \\
y^{\prime }\left (-1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.413 |
|
| \begin{align*}
4 y^{\prime \prime }+12 y^{\prime }+9 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.393 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }+\frac {y}{4}&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= b \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.330 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }+6 y&=2 \,{\mathrm e}^{t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.330 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=2 \,{\mathrm e}^{-t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.349 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&=3 \,{\mathrm e}^{-t} \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.413 |
|
| \begin{align*}
4 y^{\prime \prime }-4 y^{\prime }+y&=16 \,{\mathrm e}^{\frac {t}{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.418 |
|
| \begin{align*}
y^{\prime \prime }+y&=\tan \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.455 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=9 \sec \left (3 t \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.049 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{-2 t}}{t^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.515 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=3 \csc \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.643 |
|
| \begin{align*}
y^{\prime \prime }+y&=2 \sec \left (\frac {t}{2}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.526 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+y&=\frac {{\mathrm e}^{t}}{t^{2}+1} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.491 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }+6 y&=g \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.514 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=g \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.509 |
|
| \begin{align*}
u^{\prime \prime }+2 u&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.243 |
|
| \begin{align*}
u^{\prime \prime }+\frac {u^{\prime }}{4}+2 u&=0 \\
u \left (0\right ) &= 0 \\
u^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.421 |
|
| \begin{align*}
u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u&=3 \cos \left (\frac {t}{4}\right ) \\
u \left (0\right ) &= 2 \\
u^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.636 |
|
| \begin{align*}
u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u&=3 \cos \left (2 t \right ) \\
u \left (0\right ) &= 2 \\
u^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.576 |
|
| \begin{align*}
u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u&=3 \cos \left (6 t \right ) \\
u \left (0\right ) &= 2 \\
u^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.615 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=f \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.710 |
|
| \begin{align*}
y^{\prime \prime }-7 y^{\prime }+10 y&=0 \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.325 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.368 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\
y \left (0\right ) &= k_{0} \\
y^{\prime }\left (0\right ) &= k_{1} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.290 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 7 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.394 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=0 \\
y \left (0\right ) &= k_{0} \\
y^{\prime }\left (0\right ) &= k_{1} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.349 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.192 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.252 |
|
| \begin{align*}
y^{\prime \prime }-2 a y^{\prime }+a^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.230 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=\tan \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.763 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=\sin \left (2 x \right ) \sec \left (2 x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.876 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=\frac {4}{1+{\mathrm e}^{-x}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.456 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&=3 \,{\mathrm e}^{x} \sec \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.485 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=14 x^{{3}/{2}} {\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.546 |
|
| \begin{align*}
y^{\prime \prime }-y&=\frac {4 \,{\mathrm e}^{-x}}{1-{\mathrm e}^{-2 x}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.521 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.357 |
|
| \begin{align*}
6 y^{\prime \prime }-7 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.214 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.251 |
|
| \begin{align*}
3 y^{\prime \prime }+6 y^{\prime }+3 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.257 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }-4 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.316 |
|
| \begin{align*}
2 y^{\prime \prime }+y^{\prime }-10 y&=0 \\
y \left (1\right ) &= 5 \\
y^{\prime }\left (1\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.358 |
|
| \begin{align*}
5 y^{\prime \prime }+5 y^{\prime }-y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.402 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+y&=0 \\
y \left (2\right ) &= 1 \\
y^{\prime }\left (2\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.458 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= v \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.295 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+4 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.468 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.293 |
|
| \begin{align*}
2 y^{\prime \prime }+3 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.304 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+3 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.299 |
|
| \begin{align*}
4 y^{\prime \prime }-y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.312 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+2 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.470 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+5 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.378 |
|
| \begin{align*}
2 y^{\prime \prime }-y^{\prime }+3 y&=0 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.626 |
|
| \begin{align*}
3 y^{\prime \prime }-2 y^{\prime }+4 y&=0 \\
y \left (2\right ) &= 1 \\
y^{\prime }\left (2\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.654 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.257 |
|
| \begin{align*}
4 y^{\prime \prime }-12 y^{\prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| \begin{align*}
9 y^{\prime \prime }+6 y^{\prime }+y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.392 |
|
| \begin{align*}
4 y^{\prime \prime }-4 y^{\prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.408 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&=0 \\
y \left (2\right ) &= 1 \\
y^{\prime }\left (2\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.381 |
|
| \begin{align*}
9 y^{\prime \prime }-12 y^{\prime }+4 y&=0 \\
y \left (\pi \right ) &= 0 \\
y^{\prime }\left (\pi \right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.445 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.422 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 t} t \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.454 |
|
| \begin{align*}
2 y^{\prime \prime }-3 y^{\prime }+y&=\left (t^{2}+1\right ) {\mathrm e}^{t} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.468 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }+2 y&=t \,{\mathrm e}^{3 t}+1 \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.381 |
|
| \begin{align*}
3 y^{\prime \prime }+4 y^{\prime }+y&=\sin \left (t \right ) {\mathrm e}^{-t} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.575 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=t^{{5}/{2}} {\mathrm e}^{-2 t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.786 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }+2 y&=\sqrt {t +1} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.773 |
|
| \begin{align*}
y^{\prime \prime }-y&=f \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.636 |
|
| \begin{align*}
m y^{\prime \prime }+c y^{\prime }+k y&=F_{0} \cos \left (\omega t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.930 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.108 |
|
| \begin{align*}
6 y^{\prime \prime }-7 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.190 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.226 |
|
| \begin{align*}
3 y^{\prime \prime }+6 y^{\prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.230 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }-4 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.302 |
|
| \begin{align*}
2 y^{\prime \prime }+y^{\prime }-10 y&=0 \\
y \left (1\right ) &= 5 \\
y^{\prime }\left (1\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.345 |
|
| \begin{align*}
5 y^{\prime \prime }+5 y^{\prime }-y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.372 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+y&=0 \\
y \left (2\right ) &= 1 \\
y^{\prime }\left (2\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.407 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= v \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.269 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.278 |
|
| \begin{align*}
2 y^{\prime \prime }+3 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.286 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+3 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.281 |
|
| \begin{align*}
4 y^{\prime \prime }-y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.286 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+2 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.441 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+5 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.369 |
|
| \begin{align*}
2 y^{\prime \prime }-y^{\prime }+3 y&=0 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.569 |
|
| \begin{align*}
3 y^{\prime \prime }-2 y^{\prime }+4 y&=0 \\
y \left (2\right ) &= 1 \\
y^{\prime }\left (2\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.588 |
|
| \begin{align*}
y^{\prime \prime }+w^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.032 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.255 |
|
| \begin{align*}
4 y^{\prime \prime }-12 y^{\prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.253 |
|
| \begin{align*}
9 y^{\prime \prime }+6 y^{\prime }+y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.374 |
|
| \begin{align*}
4 y^{\prime \prime }-4 y^{\prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.381 |
|
| \begin{align*}
6 y^{\prime \prime }+2 y^{\prime }+y&=0 \\
y \left (2\right ) &= 1 \\
y^{\prime }\left (2\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.619 |
|
| \begin{align*}
9 y^{\prime \prime }-12 y^{\prime }+4 y&=0 \\
y \left (\pi \right ) &= 0 \\
y^{\prime }\left (\pi \right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.411 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.471 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 t} t \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| \begin{align*}
2 y^{\prime \prime }-3 y^{\prime }+y&=\left (t^{2}+1\right ) {\mathrm e}^{t} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.451 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }+2 y&=t \,{\mathrm e}^{3 t}+1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| \begin{align*}
3 y^{\prime \prime }+4 y^{\prime }+y&=\sin \left (t \right ) {\mathrm e}^{-t} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.540 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=t^{{5}/{2}} {\mathrm e}^{-2 t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.701 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }+2 y&=\sqrt {t +1} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.712 |
|
| \begin{align*}
y^{\prime \prime }-y&=f \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.567 |
|
| \begin{align*}
y^{\prime \prime }+3 y&=t^{3}-1 \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.384 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=t \,{\mathrm e}^{\alpha t} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.451 |
|
| \begin{align*}
y^{\prime \prime }-y&={\mathrm e}^{t} t^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.399 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=t^{2}+t +1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.365 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{-t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+4 y&=t^{2} {\mathrm e}^{7 t} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.365 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=t \sin \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.516 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=\left (3 t^{7}-5 t^{4}\right ) {\mathrm e}^{3 t} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.708 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&=2 \cos \left (t \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.444 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&=2 \cos \left (t \right )^{2} {\mathrm e}^{t} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.429 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-6 y&=\sin \left (t \right )+{\mathrm e}^{2 t} t \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.691 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+4 y&=t^{2}+\left (2 t +3\right ) \left (1+\cos \left (t \right )\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.492 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }+2 y&={\mathrm e}^{t}+{\mathrm e}^{2 t} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.382 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }&=1+t^{2}+{\mathrm e}^{-2 t} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.008 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cos \left (t \right ) \cos \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.703 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cos \left (t \right ) \cos \left (2 t \right ) \cos \left (3 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.108 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=t^{{3}/{2}} {\mathrm e}^{3 t} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.504 |
|
| \begin{align*}
y^{\prime \prime }+\lambda y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (L \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.546 |
|
| \begin{align*}
y^{\prime \prime }+\lambda y&=0 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime }\left (L \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.108 |
|
| \begin{align*}
y^{\prime \prime }-\lambda y&=0 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime }\left (L \right ) &= 0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 2.056 |
|
| \begin{align*}
y^{\prime \prime }+\lambda y&=0 \\
y^{\prime }\left (0\right ) &= 0 \\
y \left (L \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.945 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+\left (1+\lambda \right ) y&=0 \\
y \left (0\right ) &= 0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.354 |
|
| \begin{align*}
y^{\prime \prime }+\lambda y&=0 \\
y \left (0\right ) &= 0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.967 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.068 |
|
| \begin{align*}
y^{\prime \prime }+7 y^{\prime }+12 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.209 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.206 |
|
| \begin{align*}
y^{\prime \prime }-7 y^{\prime }+6 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.217 |
|
| \begin{align*}
2 y^{\prime \prime }+3 y^{\prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.209 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.239 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.234 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.257 |
|
| \begin{align*}
2 y^{\prime \prime }+2 y^{\prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.289 |
|
| \begin{align*}
y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.796 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+3 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.333 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=3 \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.442 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.430 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.420 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{-2 x} \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.356 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.493 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=x \,{\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.371 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=x +{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.480 |
|
| \begin{align*}
y^{\prime \prime }-9 y&={\mathrm e}^{3 x}+\sin \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.812 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-6 y&=x^{3} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.374 |
|
| \begin{align*}
-2 y^{\prime \prime }+3 y&=x \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.404 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=x \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.569 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&={\mathrm e}^{x} \sin \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.460 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=x^{3} {\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.503 |
|
| \begin{align*}
y^{\prime \prime }+2 n y^{\prime }+n^{2} y&=5 \cos \left (6 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.685 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=\left (1+\sin \left (3 x \right )\right ) \cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.552 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=2 x -{\mathrm e}^{-4 x}+\sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.768 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=8 \sin \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.569 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }-6 y&={\mathrm e}^{3 x} \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.484 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=12 \cos \left (x \right )^{2} \\
y \left (\frac {\pi }{2}\right ) &= 0 \\
y^{\prime }\left (\frac {\pi }{2}\right ) &= \frac {\pi }{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.765 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=x \,{\mathrm e}^{-x} \\
y \left (0\right ) &= {\frac {1}{9}} \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.503 |
|
| \begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{x} \sin \left (x \right ) \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.658 |
|
| \begin{align*}
2 y^{\prime \prime }+y^{\prime }&=8 \sin \left (2 x \right )+{\mathrm e}^{-x} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} | [[_2nd_order, _missing_y]] | ✓ | ✓ | ✓ | ✓ | 1.811 |
|
| \begin{align*}
y^{\prime \prime }+y&=3 x \sin \left (x \right ) \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.701 |
|
| \begin{align*}
2 y^{\prime \prime }+5 y^{\prime }-3 y&=\sin \left (x \right )-8 x \\
y \left (0\right ) &= {\frac {1}{2}} \\
y^{\prime }\left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.775 |
|
| \begin{align*}
8 y^{\prime \prime }-y&=x \,{\mathrm e}^{-\frac {x}{2}} \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.605 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.416 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.369 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.405 |
|
| \begin{align*}
y^{\prime \prime }+y&=4 \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.405 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=2 x -2 \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.617 |
|
| \begin{align*}
y^{\prime \prime }-y&=3 x +5 \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.474 |
|
| \begin{align*}
y^{\prime \prime }+9 y&={\mathrm e}^{x}+\sin \left (4 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.659 |
|
| \begin{align*}
y^{\prime \prime }+y&=\tan \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.462 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{\left (1-x \right )^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.447 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=\sin \left ({\mathrm e}^{-x}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.552 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=\sec \left (x \right ) \tan \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.616 |
|
| \begin{align*}
-2 y+y^{\prime \prime }&=\sin \left (2 x \right ) {\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.635 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=\sec \left (x \right ) \csc \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.817 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=\csc \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.737 |
|
| \begin{align*}
y^{\prime \prime }+y&=\tan \left (\frac {x}{3}\right )^{2} \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.908 |
|
| \begin{align*}
4 y^{\prime \prime }-4 y^{\prime }+y&={\mathrm e}^{\frac {x}{2}} \ln \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.579 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.439 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.359 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=2 \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| \begin{align*}
y^{\prime \prime }+3 y&=3 \,{\mathrm e}^{-4 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.471 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{x}}{2}+\frac {{\mathrm e}^{-x}}{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.866 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&={\mathrm e}^{-2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.358 |
|
| \begin{align*}
y^{\prime \prime }+2 y&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.464 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{3 x}}{2}-\frac {{\mathrm e}^{-3 x}}{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.678 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }-2 y&=\sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.445 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{x} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.396 |
|
| \begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{3 x} \left (1+\sin \left (2 x \right )\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.735 |
|
| \begin{align*}
y^{\prime \prime }+2 n^{2} y^{\prime }+n^{4} y&=\sin \left (k x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.637 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{2}+\frac {{\mathrm e}^{-x}}{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.565 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=x \,{\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.352 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=x \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.397 |
|
| \begin{align*}
y^{\prime \prime }+2 y&=x^{2} {\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.439 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=x^{2}-8 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=x \sin \left (x \right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.464 |
|
| \begin{align*}
y^{\prime \prime }+y&=x^{2} \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.770 |
|
| \begin{align*}
y^{\prime \prime }-y&=x^{2} \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.651 |
|
| \begin{align*}
2 y^{\prime \prime }+3 y^{\prime }-2 y&={\mathrm e}^{x} x^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.384 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=x^{2} \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.653 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=x^{2} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.661 |
|
| \begin{align*}
y^{\prime \prime }-y&=\sin \left (2 x \right ) x \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.578 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }&=x^{3} \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.812 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }&={\mathrm e}^{2 x} \sin \left (x \right ) x \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.589 |
|
| \begin{align*}
y^{\prime \prime }-4 y&={\mathrm e}^{2 x} \cos \left (x \right ) x \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.700 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }&=x^{2} {\mathrm e}^{-x} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.851 |
|
| \begin{align*}
y^{\prime \prime }&=\cos \left (t \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.019 |
|
| \begin{align*}
y^{\prime \prime }&=k^{2} y \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.597 |
|
| \begin{align*}
x^{\prime \prime }+k^{2} x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.885 |
|
| \begin{align*}
y^{\prime \prime }&=y \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.273 |
|
| \begin{align*}
y^{\prime \prime }&=\sec \left (x \right ) \tan \left (x \right ) \\
y \left (0\right ) &= \frac {\pi }{4} \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
2.006 |
|
| \begin{align*}
x^{\prime \prime }-k^{2} x&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= v_{0} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.207 |
|
| \begin{align*}
x^{\prime \prime }+\omega _{0}^{2} x&=a \cos \left (\omega t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.370 |
|
| \begin{align*}
f^{\prime \prime }+2 f^{\prime }+5 f&=0 \\
f \left (0\right ) &= 1 \\
f^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.512 |
|
| \begin{align*}
f^{\prime \prime }+2 f^{\prime }+5 f&={\mathrm e}^{-t} \cos \left (3 t \right ) \\
f \left (0\right ) &= 0 \\
f^{\prime }\left (0\right ) &= 0 \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.615 |
|
| \begin{align*}
f^{\prime \prime }+6 f^{\prime }+9 f&={\mathrm e}^{-t} \\
f \left (0\right ) &= 0 \\
f^{\prime }\left (0\right ) &= \lambda \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.605 |
|
| \begin{align*}
f^{\prime \prime }+8 f^{\prime }+12 f&=12 \,{\mathrm e}^{-4 t} \\
f \left (0\right ) &= 0 \\
f^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.570 |
|
| \begin{align*}
f^{\prime \prime }+8 f^{\prime }+12 f&=12 \,{\mathrm e}^{-4 t} \\
f \left (0\right ) &= 0 \\
f^{\prime }\left (0\right ) &= -2 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.575 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.506 |
|
| \begin{align*}
y^{\prime \prime }-y&=x^{n} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.652 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=2 x \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.500 |
|
| \begin{align*}
y^{\prime \prime }-25 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.157 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.827 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.158 |
|
| \begin{align*}
5 y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.213 |
|
| \begin{align*}
y^{\prime \prime }-9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.699 |
|
| \begin{align*}
y^{\prime \prime }-\left (a +b \right ) y^{\prime }+a b y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.256 |
|
| \begin{align*}
y^{\prime \prime }-2 a y^{\prime }+a^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.181 |
|
| \begin{align*}
y^{\prime \prime }-2 a y^{\prime }+\left (a^{2}+b^{2}\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.263 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-6 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.160 |
|
| \begin{align*}
9 y+6 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.200 |
|
| \begin{align*}
y^{\prime \prime }&=x \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.573 |
|
| \begin{align*}
y^{\prime \prime }&=x^{n} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.640 |
|
| \begin{align*}
y^{\prime \prime }&=\cos \left (x \right ) \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} | [[_2nd_order, _quadrature]] | ✓ | ✓ | ✓ | ✓ | 2.842 |
|
| \begin{align*}
y^{\prime \prime }&=x \,{\mathrm e}^{x} \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.817 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-6 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.147 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.153 |
|
| \begin{align*}
y^{\prime \prime }+7 y^{\prime }+10 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.155 |
|
| \begin{align*}
y^{\prime \prime }-36 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.026 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.642 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-6 y&=18 \,{\mathrm e}^{5 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.276 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=4 x^{2}+5 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.269 |
|
| \begin{align*}
y^{\prime \prime }+y&=6 \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.333 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=5 \,{\mathrm e}^{-2 x} x \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.358 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=8 \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.341 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=5 \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.343 |
|
| \begin{align*}
5 y+2 y^{\prime }+y^{\prime \prime }&=3 \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=5 \cos \left (2 x \right ) \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.477 |
|
| \begin{align*}
y^{\prime \prime }-y&=9 x \,{\mathrm e}^{2 x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 7 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.414 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=-10 \sin \left (x \right ) \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.408 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=4 \cos \left (x \right )-2 \sin \left (x \right ) \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.421 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+6 y&=7 \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.376 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-3 y&=\sin \left (x \right )^{2} \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.346 |
|
| \begin{align*}
y^{\prime \prime }+6 y&=\cos \left (x \right )^{2} \sin \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.546 |
|
| \begin{align*}
y^{\prime \prime }-16 y&=20 \cos \left (4 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.359 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=50 \sin \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.415 |
|
| \begin{align*}
y^{\prime \prime }-y&=10 \,{\mathrm e}^{2 x} \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.434 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=169 \sin \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.409 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=40 \sin \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.342 |
|
| \begin{align*}
y^{\prime \prime }+y&=3 \,{\mathrm e}^{x} \cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.411 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=2 \,{\mathrm e}^{-x} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.346 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=100 \,{\mathrm e}^{x} \sin \left (x \right ) x \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.460 |
|
| \begin{align*}
5 y+2 y^{\prime }+y^{\prime \prime }&=4 \cos \left (2 x \right ) {\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.341 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+10 y&=24 \,{\mathrm e}^{x} \cos \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.392 |
|
| \begin{align*}
y^{\prime \prime }+16 y&=34 \,{\mathrm e}^{x}+16 \cos \left (4 x \right )-8 \sin \left (4 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.728 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=4 \,{\mathrm e}^{3 x} \ln \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.447 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{-2 x}}{x^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.400 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=18 \sec \left (3 x \right )^{3} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.603 |
|
| \begin{align*}
9 y+6 y^{\prime }+y^{\prime \prime }&=\frac {2 \,{\mathrm e}^{-3 x}}{x^{2}+1} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.435 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=\frac {8}{{\mathrm e}^{2 x}+1} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+5 y&={\mathrm e}^{2 x} \tan \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.435 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=\frac {36}{4-\cos \left (3 x \right )^{2}} \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.664 |
|
| \begin{align*}
y^{\prime \prime }-10 y^{\prime }+25 y&=\frac {2 \,{\mathrm e}^{5 x}}{x^{2}+4} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.441 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+13 y&=4 \,{\mathrm e}^{3 x} \sec \left (2 x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.508 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right )+4 \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.458 |
|
| \begin{align*}
y^{\prime \prime }+y&=\csc \left (x \right )+2 x^{2}+5 x +1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.467 |
|
| \begin{align*}
y^{\prime \prime }-y&=2 \tanh \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.430 |
|
| \begin{align*}
y^{\prime \prime }-2 m y^{\prime }+m^{2} y&=\frac {{\mathrm e}^{m x}}{x^{2}+1} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.442 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\frac {4 \,{\mathrm e}^{x} \ln \left (x \right )}{x^{3}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.436 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{-x}}{\sqrt {-x^{2}+4}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.455 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+17 y&=\frac {64 \,{\mathrm e}^{-x}}{3+\sin \left (4 x \right )^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.571 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {4 \,{\mathrm e}^{-2 x}}{x^{2}+1}+2 x^{2}-1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.499 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=15 \,{\mathrm e}^{-2 x} \ln \left (x \right )+25 \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.572 |
|
| \begin{align*}
y^{\prime \prime }-9 y&=F \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.412 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+4 y&=F \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.439 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=F \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.418 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }-12 y&=F \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.453 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=5 x \,{\mathrm e}^{2 x} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.514 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.559 |
|
| \begin{align*}
9 y+6 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{-3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.344 |
|
| \begin{align*}
9 y+6 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{-2 x} \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.327 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=5 \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.274 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=2 x \,{\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.354 |
|
| \begin{align*}
y^{\prime \prime }-y&=4 \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.316 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=\ln \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.498 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-3 y&=5 \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.335 |
|
| \begin{align*}
y^{\prime \prime }+y&=\tan \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.367 |
|
| \begin{align*}
y^{\prime \prime }+y&=4 \cos \left (2 x \right )+3 \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.470 |
|
| \begin{align*}
y^{\prime \prime }+8 y^{\prime }+15 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.158 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-15 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.155 |
|
| \begin{align*}
9 y+6 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.195 |
|
| \begin{align*}
9 y+6 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.195 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.155 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+13 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.208 |
|
| \begin{align*}
2 y^{\prime \prime }+3 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.721 |
|
| \begin{align*}
y^{\prime \prime }+25 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.805 |
|
| \begin{align*}
4 y^{\prime \prime }+y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.270 |
|
| \begin{align*}
y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.545 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+5 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 7 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=1 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.240 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=-2 x^{2}+2 x +2 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.273 |
|
| \begin{align*}
y^{\prime \prime }+y&=x^{3}+x \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.271 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.308 |
|
| \begin{align*}
y^{\prime \prime }+2 y&=x +{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.358 |
|
| \begin{align*}
y^{\prime \prime }+2 y&={\mathrm e}^{x}+2 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.320 |
|
| \begin{align*}
y^{\prime \prime }-y&=2 \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.324 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.324 |
|
| \begin{align*}
y^{\prime \prime }-y&=4 x \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.338 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+3 y&=x^{3}+\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.534 |
|
| \begin{align*}
y^{\prime \prime }+2 n y^{\prime }+n^{2} y&=A \cos \left (p x \right ) \\
y \left (0\right ) &= 9 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.691 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.327 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-2 y&=x^{2}+1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.309 |
|
| \begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{2}+\frac {y}{8}&=\frac {\sin \left (x \right )}{8}-\frac {\cos \left (x \right )}{4} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.380 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{x}-2 \,{\mathrm e}^{2 x}+\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=x^{3} {\mathrm e}^{2 x}+x \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.410 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=\sin \left (2 x \right ) x \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.421 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{x} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.404 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.261 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=8 \sin \left (x \right ) \\
y \left (\frac {\pi }{2}\right ) &= -1 \\
y^{\prime }\left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.503 |
|
| \begin{align*}
25 y^{\prime \prime }-30 y^{\prime }+9 y&=0 \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.352 |
|
| \begin{align*}
9 y^{\prime \prime }-6 y^{\prime }+y&=\left (4 x^{2}+24 x +18\right ) {\mathrm e}^{x} \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.547 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+10 y&=3 x \,{\mathrm e}^{-3 x}-2 \,{\mathrm e}^{3 x} \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.725 |
|
| \begin{align*}
y^{\prime \prime }-8 y^{\prime }+17 y&={\mathrm e}^{4 x} \left (x^{2}-3 x \sin \left (x \right )\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.665 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&=\left (x +{\mathrm e}^{x}\right ) \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.019 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=\sinh \left (x \right ) \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.792 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=\cosh \left (x \right ) \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.560 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=36 x \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+5 y&=5 \sin \left (2 x \right ) {\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.509 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=8 \sin \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.478 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{x} \left (x +1\right )+2 \,{\mathrm e}^{2 x}+3 \,{\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.638 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&=4 \,{\mathrm e}^{x} \cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.418 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=4 \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.373 |
|
| \begin{align*}
y^{\prime \prime }-y&=12 \,{\mathrm e}^{x} x^{2}+3 \,{\mathrm e}^{2 x}+10 \cos \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.688 |
|
| \begin{align*}
y^{\prime \prime }+y&=2 \sin \left (x \right )-3 \cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.674 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }&={\mathrm e}^{x} \left (x^{2}+10\right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.869 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=96 x^{2} {\mathrm e}^{2 x}+4 \,{\mathrm e}^{-2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.585 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=5 \cos \left (x \right )+10 \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.499 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&=4 x -2+2 \,{\mathrm e}^{x} \sin \left (x \right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.655 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=4 x \,{\mathrm e}^{2 x} \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.561 |
|
| \begin{align*}
y^{\prime \prime }-y&=\frac {1}{x}-\frac {2}{x^{3}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.417 |
|
| \begin{align*}
y^{\prime \prime }-y&=\frac {1}{\sinh \left (x \right )} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.427 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=\sin \left ({\mathrm e}^{x}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.461 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=\sin \left ({\mathrm e}^{-x}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.473 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right )^{3} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.583 |
|
| \begin{align*}
y^{\prime \prime }-y&=\frac {1}{\sqrt {1-{\mathrm e}^{2 x}}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.417 |
|
| \begin{align*}
y^{\prime \prime }-y&={\mathrm e}^{-2 x} \sin \left ({\mathrm e}^{-x}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.734 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=15 \,{\mathrm e}^{-x} \sqrt {x +1} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.481 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=2 \tan \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.421 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{2 x}}{\left ({\mathrm e}^{x}+1\right )^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.415 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=\frac {1}{{\mathrm e}^{x}+1} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✗ |
0.895 |
|
| \begin{align*}
y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.551 |
|
| \begin{align*}
y^{\prime \prime }&=x +\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.803 |
|
| \begin{align*}
y^{\prime \prime }&=\operatorname {c1} \cos \left (a x \right )+\operatorname {c2} \sin \left (b x \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.023 |
|
| \begin{align*}
y^{\prime \prime }&=x \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.737 |
|
| \begin{align*}
y^{\prime \prime }&=\operatorname {c1} \,{\mathrm e}^{a x}+\operatorname {c2} \,{\mathrm e}^{-b x} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.948 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 1.102 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.223 |
|
| \begin{align*}
y^{\prime \prime }+y&=a x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.299 |
|
| \begin{align*}
y^{\prime \prime }+y&=a \cos \left (b x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.404 |
|
| \begin{align*}
y^{\prime \prime }+y&=8 \cos \left (x \right ) \cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.580 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.395 |
|
| \begin{align*}
y^{\prime \prime }+y&=a \sin \left (b x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.389 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (a x \right ) \sin \left (b x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.704 |
|
| \begin{align*}
y^{\prime \prime }+y&=4 x \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.444 |
|
| \begin{align*}
y^{\prime \prime }+y&=x \left (\cos \left (x \right )-x \sin \left (x \right )\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.577 |
|
| \begin{align*}
y^{\prime \prime }+y&=\tan \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.570 |
|
| \begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.309 |
|
| \begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{x} \left (x^{2}-1\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| \begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{x} \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.446 |
|
| \begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{2 x} \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.483 |
|
| \begin{align*}
-2 y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.283 |
|
| \begin{align*}
-2 y+y^{\prime \prime }&=4 x^{2} {\mathrm e}^{x^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.339 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.989 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=x \sin \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.665 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=2 \tan \left (x \right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.503 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=2 \tan \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.402 |
|
| \begin{align*}
y^{\prime \prime }-a^{2} y&=x +1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.322 |
|
| \begin{align*}
y^{\prime \prime }&=a x +b y \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.413 |
|
| \begin{align*}
y^{\prime \prime }+a^{2} y&=x^{2}+x +1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.501 |
|
| \begin{align*}
y^{\prime \prime }+a^{2} y&=\cos \left (b x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.539 |
|
| \begin{align*}
y^{\prime \prime }+a^{2} y&=\sin \left (b x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.530 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.223 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\left (x -6\right ) x^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.367 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.351 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \left (3 x^{2}+2 x +1\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.462 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.372 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=3 \,{\mathrm e}^{2 x}+x^{2}-\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.647 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=8 x^{2} {\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.393 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=50 \cos \left (x \right ) \cosh \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.589 |
|
| \begin{align*}
3 y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.304 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.407 |
|
| \begin{align*}
5 y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| \begin{align*}
5 y+2 y^{\prime }+y^{\prime \prime }&=8 \sinh \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.587 |
|
| \begin{align*}
\csc \left (a \right )^{2} y-2 \tan \left (a \right ) y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 10.135 |
|
| \begin{align*}
\csc \left (a \right )^{2} y-2 \tan \left (a \right ) y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x \tan \left (a \right )} x^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
8.352 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.190 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=\cos \left (a x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.350 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{x}+\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.408 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{-x}+x^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.503 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{a x} x \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.330 |
|
| \begin{align*}
-4 y-3 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.174 |
|
| \begin{align*}
-4 y-3 y^{\prime }+y^{\prime \prime }&=10 \cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.349 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.221 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 x} \cos \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.494 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.352 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+13 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.172 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{x} x^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.324 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{a x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.296 |
|
| \begin{align*}
9 y+6 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.221 |
|
| \begin{align*}
9 y+6 y^{\prime }+y^{\prime \prime }&=\cosh \left (x \right ) {\mathrm e}^{-3 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.483 |
|
| \begin{align*}
12 y-7 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.171 |
|
| \begin{align*}
12 y-7 y^{\prime }+y^{\prime \prime }&=x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.279 |
|
| \begin{align*}
16 y+8 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.226 |
|
| \begin{align*}
16 y+8 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{x}-{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.457 |
|
| \begin{align*}
20 y-9 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.173 |
|
| \begin{align*}
20 y-9 y^{\prime }+y^{\prime \prime }&=x^{2} {\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.321 |
|
| \begin{align*}
b^{2} y+2 a y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.444 |
|
| \begin{align*}
b^{2} y+2 a y^{\prime }+y^{\prime \prime }&=c \sin \left (k x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.590 |
|
| \begin{align*}
y^{\prime \prime }-2 a y^{\prime }+a^{2} y&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.349 |
|
| \begin{align*}
\left (a^{2}+b^{2}\right )^{2} y-4 a b y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.331 |
|
| \begin{align*}
b y+a y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.423 |
|
| \begin{align*}
b y+a y^{\prime }+y^{\prime \prime }&=f \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.023 |
|
| \begin{align*}
3 y-10 y^{\prime }+3 y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.184 |
|
| \begin{align*}
3 y-8 y^{\prime }+4 y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.181 |
|
| \begin{align*}
y+2 y^{\prime }+4 y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| \begin{align*}
-y-2 y^{\prime }+4 y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.228 |
|
| \begin{align*}
y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.690 |
|
| \begin{align*}
y^{\prime \prime }&=a y \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.932 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.849 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.171 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.534 |
|
| \begin{align*}
6 y^{\prime \prime }-11 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.181 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.211 |
|
| \begin{align*}
y^{\prime \prime }-2 k y^{\prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.258 |
|
| \begin{align*}
y^{\prime \prime }+4 k y^{\prime }-12 k^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.256 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.226 |
|
| \begin{align*}
y^{\prime \prime }-2 a y^{\prime }+a^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.225 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.257 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.284 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+20 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.251 |
|
| \begin{align*}
y^{\prime \prime }&=0 \\
y \left (1\right ) &= 2 \\
y^{\prime }\left (1\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.846 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.368 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+20 y&=0 \\
y \left (\frac {\pi }{2}\right ) &= 1 \\
y^{\prime }\left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.384 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.266 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=12 \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.301 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{i x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.346 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.316 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=\cos \left (x \right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.320 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=8+6 \,{\mathrm e}^{x}+2 \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.470 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.407 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-8 y&=9 x \,{\mathrm e}^{x}+10 \,{\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }&=2 \,{\mathrm e}^{2 x} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.187 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=x^{2}+2 x \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.776 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=x +\sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.167 |
|
| \begin{align*}
y^{\prime \prime }+y&=4 x \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.489 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=\sin \left (2 x \right ) x \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.539 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=x^{2} {\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.408 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{-2 x}+x^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.346 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=x \,{\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.321 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-6 y&=x +{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.423 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right )+{\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.582 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.457 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (2 x \right ) \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.883 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }-6 y&={\mathrm e}^{3 x} \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.425 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=5 \sin \left (x \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.462 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=8 \cos \left (x \right ) \\
y \left (\frac {\pi }{2}\right ) &= -1 \\
y^{\prime }\left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.572 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \left (2 x -3\right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.438 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.411 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.399 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cot \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.454 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.447 |
|
| \begin{align*}
y^{\prime \prime }-y&=\sin \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.454 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.367 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=12 \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.299 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=x^{2} {\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.396 |
|
| \begin{align*}
y^{\prime \prime }+y&=4 x \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \ln \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.481 |
|
| \begin{align*}
y^{\prime \prime }+y&=\csc \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.399 |
|
| \begin{align*}
y^{\prime \prime }+y&=\tan \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.589 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{-x}}{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.442 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \csc \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.602 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \ln \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.442 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=\cos \left ({\mathrm e}^{-x}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.474 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.163 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.217 |
|
| \begin{align*}
y^{\prime \prime }+9 y^{\prime }&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.859 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.204 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+6 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.283 |
|
| \begin{align*}
y^{\prime \prime }+16 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.501 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.161 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.820 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+13 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.240 |
|
| \begin{align*}
2 y^{\prime \prime }+y^{\prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.168 |
|
| \begin{align*}
y^{\prime \prime }+\left (1+2 i\right ) y^{\prime }+\left (-1+i\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.170 |
|
| \begin{align*}
y^{\prime \prime }+\left (1+2 i\right ) y^{\prime }+\left (-1+i\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.154 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }&=10 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.923 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=16 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.316 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&={\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.268 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&=24 \,{\mathrm e}^{-3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.290 |
|
| \begin{align*}
y^{\prime \prime }+y&=2 \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.302 |
|
| \begin{align*}
9 y+6 y^{\prime }+y^{\prime \prime }&=12 \,{\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.374 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=3 \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.345 |
|
| \begin{align*}
y^{\prime \prime }-16 y&=40 \,{\mathrm e}^{4 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.368 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.358 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=6 \,{\mathrm e}^{3 x} \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.372 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+10 y&=100 \cos \left (4 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.403 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+12 y&=80 \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.453 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=2 \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.387 |
|
| \begin{align*}
y^{\prime \prime }+8 y^{\prime }+25 y&=120 \sin \left (5 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| \begin{align*}
5 y^{\prime \prime }+12 y^{\prime }+20 y&=120 \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.405 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=30 \sin \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.382 |
|
| \begin{align*}
y^{\prime \prime }+16 y&=16 \cos \left (4 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.379 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+17 y&=60 \,{\mathrm e}^{-4 x} \sin \left (5 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.427 |
|
| \begin{align*}
4 y^{\prime \prime }+4 y^{\prime }+5 y&=40 \,{\mathrm e}^{-\frac {3 x}{2}} \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.427 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+8 y&=30 \,{\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {5 x}{2}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.418 |
|
| \begin{align*}
5 y^{\prime \prime }+6 y^{\prime }+2 y&=x^{2}+6 x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.379 |
|
| \begin{align*}
2 y^{\prime \prime }+y^{\prime }&=2 x \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.925 |
|
| \begin{align*}
y^{\prime \prime }+y&=2 x \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.325 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=12 x \,{\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&=16 x^{2} {\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.321 |
|
| \begin{align*}
y^{\prime \prime }+y&=8 x \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.448 |
|
| \begin{align*}
y^{\prime \prime }+y&=x^{3}-1+2 \cos \left (x \right )+\left (2-4 x \right ) {\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.708 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{x}+6 x -5 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.313 |
|
| \begin{align*}
y^{\prime \prime }-y&=\sinh \left (x \right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.444 |
|
| \begin{align*}
y^{\prime \prime }+y&=2 \sin \left (x \right )+4 \cos \left (x \right ) x \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.569 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{x}+\left (1-x \right ) \left ({\mathrm e}^{2 x}-1\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.606 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }&=9 x \,{\mathrm e}^{-x}-6 x^{2}+4 \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.187 |
|
| \begin{align*}
r^{\prime \prime }-6 r^{\prime }+9 r&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=10 \,{\mathrm e}^{x}+6 \,{\mathrm e}^{-x} \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.513 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=26 \,{\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.335 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=2 \cos \left (x \right ) {\mathrm e}^{-2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.352 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=6 \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.280 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&=5 x +4 \,{\mathrm e}^{x} \left (1+\sin \left (2 x \right )\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.480 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-6 y&=6 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.367 |
|
| \begin{align*}
y^{\prime \prime }&=-4 y \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.178 |
|
| \begin{align*}
y^{\prime \prime }&=y \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.026 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.210 |
|
| \begin{align*}
m y^{\prime \prime }+k y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.179 |
|
| \begin{align*}
m y^{\prime \prime }+b y^{\prime }+k y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.822 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| \begin{align*}
2 y^{\prime \prime }+18 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.905 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+12 y&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.319 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=2 \cos \left (2 t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.550 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+4 y&=5 \sin \left (3 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.463 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+5 y&=-50 \sin \left (5 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.452 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+4 y&=6 \cos \left (2 t \right )+8 \sin \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.414 |
|
| \begin{align*}
m y^{\prime \prime }+b y^{\prime }+k y&=\cos \left (\omega t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.936 |
|
| \begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{10}+25 y&=\cos \left (\omega t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.520 |
|
| \begin{align*}
y^{\prime \prime }+25 y&=\cos \left (\omega t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.422 |
|
| \begin{align*}
2 y^{\prime \prime }+7 y^{\prime }-4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.195 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.233 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.184 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.178 |
|
| \begin{align*}
y^{\prime \prime }+8 y^{\prime }+16 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.234 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }+6 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.180 |
|
| \begin{align*}
6 y^{\prime \prime }+y^{\prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.185 |
|
| \begin{align*}
z^{\prime \prime }+z^{\prime }-z&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.217 |
|
| \begin{align*}
4 y^{\prime \prime }-4 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.239 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-11 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.223 |
|
| \begin{align*}
4 w^{\prime \prime }+20 w^{\prime }+25 w&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.245 |
|
| \begin{align*}
3 y^{\prime \prime }+11 y^{\prime }-7 y&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.241 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-8 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= -12 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.290 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.188 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= {\frac {1}{3}} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.304 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }-5 y&=0 \\
y \left (-1\right ) &= 3 \\
y^{\prime }\left (-1\right ) &= 9 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= {\frac {25}{3}} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.379 |
|
| \begin{align*}
z^{\prime \prime }-2 z^{\prime }-2 z&=0 \\
z \left (0\right ) &= 0 \\
z^{\prime }\left (0\right ) &= -3 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.366 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -3 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.365 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.417 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= 2 \\
y \left (\frac {\pi }{2}\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.255 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= 2 \\
y \left (\pi \right ) &= -2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.048 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.073 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.576 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-6 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -{\frac {17}{2}} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.305 |
|
| \begin{align*}
x^{\prime \prime }-\omega ^{2} x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.651 |
|
| \begin{align*}
x^{\prime \prime }+42 x^{\prime }+x&=0 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.447 |
|
| \begin{align*}
x^{\prime \prime }+2 \gamma x^{\prime }+\omega _{0} x&=F \cos \left (\omega t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.851 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{2 x} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.511 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=2 \cos \left (x \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.560 |
|
| \begin{align*}
y^{\prime \prime }+16 y&=16 \cos \left (4 x \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.527 |
|
| \begin{align*}
y^{\prime \prime }-y&=\cosh \left (x \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.579 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=8 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.273 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=10 \,{\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.331 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.387 |
|
| \begin{align*}
y^{\prime \prime }+25 y&=5 x^{2}+x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=4 \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.439 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{-2 x} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.500 |
|
| \begin{align*}
3 y^{\prime \prime }-2 y^{\prime }-y&=2 x -3 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.309 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+8 y&=8 \,{\mathrm e}^{4 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.399 |
|
| \begin{align*}
2 y^{\prime \prime }-7 y^{\prime }-4 y&={\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.313 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=54 x +18 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=100 \sin \left (4 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.359 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=4 \sinh \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.526 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=2 \cosh \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.497 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }+10 y&=20-{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.477 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=2 \cos \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.559 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=x +{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.330 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+3 y&=x^{2}-1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.457 |
|
| \begin{align*}
y^{\prime \prime }-9 y&={\mathrm e}^{3 x}+\sin \left (x \right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.710 |
|
| \begin{align*}
x^{\prime \prime }+4 x^{\prime }+3 x&={\mathrm e}^{-3 t} \\
x \left (0\right ) &= {\frac {1}{2}} \\
x^{\prime }\left (0\right ) &= -2 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.517 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+5 y&=6 \sin \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.377 |
|
| \begin{align*}
x^{\prime \prime }-3 x^{\prime }+2 x&=\sin \left (t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.478 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=3 \sin \left (x \right ) \\
y \left (0\right ) &= -{\frac {9}{10}} \\
y^{\prime }\left (0\right ) &= -{\frac {7}{10}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.483 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+10 y&=50 x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.361 |
|
| \begin{align*}
x^{\prime \prime }+2 x^{\prime }+2 x&=85 \sin \left (3 t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= -20 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.609 |
|
| \begin{align*}
y^{\prime \prime }&=3 \sin \left (x \right )-4 y \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.490 |
|
| \begin{align*}
\frac {x^{\prime \prime }}{2}&=-48 x \\
x \left (0\right ) &= {\frac {1}{6}} \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.414 |
|
| \begin{align*}
x^{\prime \prime }+5 x^{\prime }+6 x&=\cos \left (t \right ) \\
x \left (0\right ) &= {\frac {1}{10}} \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.488 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=4 x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.305 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.293 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=\sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.348 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+25 y&=2 \sin \left (\frac {t}{2}\right )-\cos \left (\frac {t}{2}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.449 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+25 y&=64 \,{\mathrm e}^{-t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+25 y&=50 t^{3}-36 t^{2}-63 t +18 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.381 |
|
| \begin{align*}
y^{\prime \prime }&=9 x^{2}+2 x -1 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.964 |
|
| \begin{align*}
y^{\prime \prime }-5 y&=2 \,{\mathrm e}^{5 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.363 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=x^{2}-1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.381 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{2 x} \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.383 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=4 \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.435 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=3 \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=x \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.288 |
|
| \begin{align*}
x^{\prime \prime }+4 x&=\sin \left (2 t \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.576 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x^{5}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.435 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.346 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.290 |
|
| \begin{align*}
y^{\prime \prime }-60 y^{\prime }-900 y&=5 \,{\mathrm e}^{10 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.372 |
|
| \begin{align*}
y^{\prime \prime }-7 y^{\prime }&=-3 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.129 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.239 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.282 |
|
| \begin{align*}
y^{\prime \prime }-y&=4-x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.284 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.175 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{x} \left (1-x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.346 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-6 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.194 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{5 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.305 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=\cos \left (x \right ) x \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.559 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-15 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.186 |
|
| \begin{align*}
9 y+6 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.257 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+13 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.271 |
|
| \begin{align*}
y^{\prime \prime }+25 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.103 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.287 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }&=5 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.179 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.381 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=-2 x^{2}+2 x +2 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.318 |
|
| \begin{align*}
y^{\prime \prime }-y&=4 x \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.392 |
|
| \begin{align*}
y^{\prime \prime }-y&=\sin \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.413 |
|
| \begin{align*}
y^{\prime \prime }-y&=\frac {1}{\left (1+{\mathrm e}^{-x}\right )^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.532 |
|
| \begin{align*}
y^{\prime \prime }+y&=\csc \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.351 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=\sin \left ({\mathrm e}^{-x}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.478 |
|
| \begin{align*}
y^{\prime \prime }+y&=\csc \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.352 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=4 \sec \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.553 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=\frac {1}{1+{\mathrm e}^{-x}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.532 |
|
| \begin{align*}
y^{\prime \prime }-y&={\mathrm e}^{-x} \sin \left ({\mathrm e}^{-x}\right )+\cos \left ({\mathrm e}^{-x}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.117 |
|
| \begin{align*}
y^{\prime \prime }-y&=\frac {1}{\left (1+{\mathrm e}^{-x}\right )^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.487 |
|
| \begin{align*}
y^{\prime \prime }+2 y&={\mathrm e}^{x}+2 \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.326 |
|
| \begin{align*}
y^{\prime \prime }-y&={\mathrm e}^{x} \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.349 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=x^{2}+\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.353 |
|
| \begin{align*}
y^{\prime \prime }-9 y&=x +{\mathrm e}^{2 x}-\sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.507 |
|
| \begin{align*}
y^{\prime \prime }+y&=-2 \sin \left (x \right )+4 \cos \left (x \right ) x \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.450 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&={\mathrm e}^{3 x}+6 \,{\mathrm e}^{x}-3 \,{\mathrm e}^{-2 x}+5 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| \begin{align*}
y^{\prime \prime }-y&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.270 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{x}+x \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=\sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.285 |
|
| \begin{align*}
y^{\prime \prime }+5 y&=\cos \left (\sqrt {5}\, x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.372 |
|
| \begin{align*}
y^{\prime \prime }-y&=x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.218 |
|
| \begin{align*}
y^{\prime \prime }+2 y&=x^{3}+x^{2}+{\mathrm e}^{-2 x}+\cos \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.943 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-y&={\mathrm e}^{x} \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.283 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=\frac {{\mathrm e}^{2 x}}{x^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.454 |
|
| \begin{align*}
y^{\prime \prime }-y&=x \,{\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.257 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&={\mathrm e}^{-2 x} \sec \left (x \right )^{2} \left (1+2 \tan \left (x \right )\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.464 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+13 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.235 |
|
| \begin{align*}
y^{\prime \prime }+y&=\tan \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.411 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.204 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.179 |
|
| \begin{align*}
2 y^{\prime \prime }+7 y^{\prime }-4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.179 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+6 y&=10 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+4 y&=5 \sin \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.408 |
|
| \begin{align*}
y^{\prime \prime }&=f \left (x \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.829 |
|
| \begin{align*}
x^{\prime \prime }+x&=0 \\
x \left (0\right ) &= -1 \\
x^{\prime }\left (0\right ) &= 8 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.351 |
|
| \begin{align*}
x^{\prime \prime }+x&=0 \\
x \left (\frac {\pi }{2}\right ) &= 0 \\
x^{\prime }\left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.596 |
|
| \begin{align*}
x^{\prime \prime }+x&=0 \\
x \left (\frac {\pi }{6}\right ) &= {\frac {1}{2}} \\
x^{\prime }\left (\frac {\pi }{6}\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.861 |
|
| \begin{align*}
x^{\prime \prime }+x&=0 \\
x \left (\frac {\pi }{4}\right ) &= \sqrt {2} \\
x^{\prime }\left (\frac {\pi }{4}\right ) &= 2 \sqrt {2} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.980 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.062 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= {\mathrm e} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.547 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (-1\right ) &= 5 \\
y^{\prime }\left (-1\right ) &= -5 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.612 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.538 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (\pi \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.677 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=0 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime }\left (\frac {\pi }{6}\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.639 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (\pi \right ) &= 5 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.947 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (\pi \right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.552 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=18 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.999 |
|
| \begin{align*}
y^{\prime \prime }&=y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.600 |
|
| \begin{align*}
y^{\prime \prime }+y&=2 \cos \left (x \right )-2 \sin \left (x \right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.519 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.395 |
|
| \begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{x^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.523 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=5 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.973 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&=6 x +4 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&=6 x +4 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -3 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.411 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&=6 x +4 \\
y \left (1\right ) &= 4 \\
y^{\prime }\left (1\right ) &= -2 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.419 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&=6 x +4 \\
y \left (-1\right ) &= 0 \\
y^{\prime }\left (-1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.451 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.238 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.178 |
|
| \begin{align*}
s^{\prime \prime }+2 s^{\prime }+s&=0 \\
s \left (0\right ) &= 4 \\
s^{\prime }\left (0\right ) &= -2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.394 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.239 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&=1+3 x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.289 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=x \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.375 |
|
| \begin{align*}
y^{\prime \prime }+y&=4 \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.380 |
|
| \begin{align*}
9 y+6 y^{\prime }+y^{\prime \prime }&=50 \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.379 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=50 \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.402 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=\cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.357 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.321 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=x^{3} \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.322 |
|
| \begin{align*}
y^{\prime \prime }&=2+x \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.016 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.207 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.007 |
|
| \begin{align*}
y^{\prime \prime }+k^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.275 |
|
| \begin{align*}
y^{\prime \prime }&=1+3 x \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.039 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.637 |
|
| \begin{align*}
3 y^{\prime \prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.881 |
|
| \begin{align*}
y^{\prime \prime }+16 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.093 |
|
| \begin{align*}
y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.496 |
|
| \begin{align*}
y^{\prime \prime }+2 i y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.240 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+5 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.206 |
|
| \begin{align*}
y^{\prime \prime }+\left (-1+3 i\right ) y^{\prime }-3 i y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.187 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-6 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.283 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-6 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.273 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= 1 \\
y \left (\frac {\pi }{2}\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.961 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y \left (\pi \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.543 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (\frac {\pi }{2}\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.588 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y \left (\frac {\pi }{2}\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.545 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 1.286 |
|
| \begin{align*}
y^{\prime \prime }+\left (1+4 i\right ) y^{\prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| \begin{align*}
y^{\prime \prime }+\left (-1+3 i\right ) y^{\prime }-3 i y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| \begin{align*}
y^{\prime \prime }+10 y&=0 \\
y \left (0\right ) &= \pi \\
y^{\prime }\left (0\right ) &= \pi ^{2} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
4.563 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=\sin \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.378 |
|
| \begin{align*}
y^{\prime \prime }+y&=\tan \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.415 |
|
| \begin{align*}
y^{\prime \prime }+2 i y^{\prime }+y&=x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.292 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+5 y&=3 \,{\mathrm e}^{-x}+2 x^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| \begin{align*}
y^{\prime \prime }-7 y^{\prime }+6 y&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.317 |
|
| \begin{align*}
y^{\prime \prime }+y&=2 \sin \left (2 x \right ) \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.662 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.376 |
|
| \begin{align*}
4 y^{\prime \prime }-y&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.268 |
|
| \begin{align*}
6 y^{\prime \prime }+5 y^{\prime }-6 y&=x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.293 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.620 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.763 |
|
| \begin{align*}
y^{\prime \prime }-2 i y^{\prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.188 |
|
| \begin{align*}
y^{\prime \prime }-2 i y^{\prime }-y&={\mathrm e}^{i x}-2 \,{\mathrm e}^{-i x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.466 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.288 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=\sin \left (2 x \right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.365 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=3 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.454 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=x^{2}+\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.410 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=x^{2} {\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| \begin{align*}
y^{\prime \prime }+y&=x \,{\mathrm e}^{x} \cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.565 |
|
| \begin{align*}
y^{\prime \prime }+i y^{\prime }+2 y&=2 \cosh \left (2 x \right )+{\mathrm e}^{-2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.447 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.819 |
|
| \begin{align*}
y^{\prime \prime }+k^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.856 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.869 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.850 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.174 |
|
| \begin{align*}
y^{\prime \prime }-k^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.799 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-6 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.176 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.237 |
|
| \begin{align*}
y^{\prime \prime }+8 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.213 |
|
| \begin{align*}
2 y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.209 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| \begin{align*}
20 y-9 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.186 |
|
| \begin{align*}
2 y^{\prime \prime }+2 y^{\prime }+3 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.314 |
|
| \begin{align*}
4 y^{\prime \prime }-12 y^{\prime }+9 y&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.247 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.756 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+25 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.258 |
|
| \begin{align*}
4 y^{\prime \prime }+20 y^{\prime }+25 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.254 |
|
| \begin{align*}
3 y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.296 |
|
| \begin{align*}
y^{\prime \prime }&=4 y \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.073 |
|
| \begin{align*}
4 y^{\prime \prime }-8 y^{\prime }+7 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.299 |
|
| \begin{align*}
2 y^{\prime \prime }+y^{\prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.181 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.223 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.198 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }-5 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.191 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=0 \\
y \left (1\right ) &= {\mathrm e}^{2} \\
y^{\prime }\left (1\right ) &= 3 \,{\mathrm e}^{2} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.328 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+5 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 11 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.336 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.388 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.352 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+2 y&=0 \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 2+3 \sqrt {2} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.402 |
|
| \begin{align*}
y^{\prime \prime }+8 y^{\prime }-9 y&=0 \\
y \left (1\right ) &= 2 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.341 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }-10 y&=6 \,{\mathrm e}^{4 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.325 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=3 \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.392 |
|
| \begin{align*}
y^{\prime \prime }+10 y^{\prime }+25 y&=14 \,{\mathrm e}^{-5 x} \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.415 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&=25 x^{2}+12 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-6 y&=20 \,{\mathrm e}^{-2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.339 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=14 \sin \left (2 x \right )-18 \cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.374 |
|
| \begin{align*}
y^{\prime \prime }+y&=2 \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.374 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }&=12 x -10 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.839 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=6 \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.389 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&={\mathrm e}^{x} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.353 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=10 x^{4}+2 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.872 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=4 \cos \left (2 x \right )+6 \cos \left (x \right )+8 x^{2}-4 x \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.965 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=2 \sin \left (3 x \right )+4 \sin \left (x \right )-26 \,{\mathrm e}^{-2 x}+27 x^{3} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.263 |
|
| \begin{align*}
y^{\prime \prime }-3 y&={\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.339 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=\tan \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.592 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \ln \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.497 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&=64 x \,{\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.348 |
|
| \begin{align*}
5 y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \sec \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.547 |
|
| \begin{align*}
2 y^{\prime \prime }+3 y^{\prime }+y&={\mathrm e}^{-3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.300 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=\frac {1}{1+{\mathrm e}^{-x}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.392 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cot \left (x \right )^{2} \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.519 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cot \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.685 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cos \left (x \right ) x \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.451 |
|
| \begin{align*}
y^{\prime \prime }+y&=\tan \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.372 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \tan \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.476 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \csc \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.582 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=2 x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.350 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-6 y&={\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.287 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.225 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.283 |
|
| \begin{align*}
9 y+6 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.233 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }+6 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.284 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-5 y&=x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.348 |
|
| \begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.294 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.359 |
|
| \begin{align*}
y^{\prime \prime }-y&={\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.280 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.345 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }+4 y&=x \\
y \left (1\right ) &= 2 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.766 |
|
| \begin{align*}
5 y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.493 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+4 y&=\sin \left (x \right ) \\
y \left (\frac {\pi }{2}\right ) &= 1 \\
y^{\prime }\left (\frac {\pi }{2}\right ) &= -1 \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 1.107 |
|
| \begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{-x} \\
y \left (2\right ) &= 0 \\
y^{\prime }\left (2\right ) &= -2 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.536 |
|
| \begin{align*}
y^{\prime \prime }-y&=\cos \left (x \right ) \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (2\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.569 |
|
| \begin{align*}
y^{\prime \prime }&=\tan \left (x \right ) \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
3.684 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }&=\ln \left (x \right ) \\
y \left (1\right ) &= {\mathrm e} \\
y^{\prime }\left (1\right ) &= {\mathrm e}^{-1} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
2.770 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=2 x -1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.295 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.289 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.317 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-y&={\mathrm e}^{x} \sin \left (x \right ) x \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.467 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=\sec \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.772 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=x \ln \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.586 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=\tan \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.527 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=x^{2}+2 x +2 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=\frac {x -1}{x^{2}} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.956 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=-3 \cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| \begin{align*}
y^{\prime \prime }&=-3 y \\
y \left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.592 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.787 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.948 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.739 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.878 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.720 |
|
| \begin{align*}
y^{\prime \prime }+\beta ^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.548 |
|
| \begin{align*}
y^{\prime \prime }+y&=-\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.424 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=12 x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.352 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=x^{2}+2 x +1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=5 \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.477 |
|
| \begin{align*}
y^{\prime \prime }+16 y&=4 \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.502 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=9 x^{2}+4 \\
y \left (0\right ) &= 6 \\
y^{\prime }\left (0\right ) &= 8 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.526 |
|
| \begin{align*}
y^{\prime \prime }+y&=\tan \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.693 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.246 |
|
| \begin{align*}
5 y^{\prime \prime }+2 y^{\prime }+4 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.452 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+4 y&=1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.379 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+4 y&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| \begin{align*}
y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.476 |
|
| \begin{align*}
y^{\prime \prime }&=1 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.888 |
|
| \begin{align*}
y^{\prime \prime }&=f \left (t \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.879 |
|
| \begin{align*}
y^{\prime \prime }&=k \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.952 |
|
| \begin{align*}
y^{\prime \prime }&=4 \sin \left (x \right )-4 \\
\end{align*} | [[_2nd_order, _quadrature]] | ✓ | ✓ | ✓ | ✓ | 1.100 |
|
| \begin{align*}
z^{\prime \prime }+3 z^{\prime }+2 z&=24 \,{\mathrm e}^{-3 t}-24 \,{\mathrm e}^{-4 t} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.378 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.282 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.246 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=0 \\
y^{\prime }\left (0\right ) &= 0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.334 |
|
| \begin{align*}
y^{\prime \prime }+c y^{\prime }+k y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.353 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.470 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right ) \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.395 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right ) \\
y^{\prime }\left (0\right ) &= 1 \\
y \left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.505 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right ) \\
y \left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.447 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right ) \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right ) \\
y^{\prime }\left (1\right ) &= 0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.467 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right ) \\
y^{\prime }\left (1\right ) &= 0 \\
y \left (2\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.563 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right ) \\
y^{\prime }\left (1\right ) &= 0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.419 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=\sin \left (x \right ) \\
y^{\prime }\left (1\right ) &= 0 \\
y \left (2\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.763 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=\sin \left (x \right ) \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.861 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=\sin \left (x \right ) \\
y^{\prime }\left (1\right ) &= 0 \\
y \left (2\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.802 |
|
| \begin{align*}
y^{\prime \prime }+20 y^{\prime }+500 y&=100000 \cos \left (100 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.419 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-24 y&=16-\left (2+x \right ) {\mathrm e}^{4 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.477 |
|
| \begin{align*}
y^{\prime \prime }&=0 \\
\end{align*} | [[_2nd_order, _quadrature]] | ✓ | ✓ | ✓ | ✓ | 0.556 |
|
| \begin{align*}
a y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.612 |
|
| \begin{align*}
y^{\prime \prime }&=1 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.668 |
|
| \begin{align*}
y^{\prime \prime }&=x \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.712 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.692 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.780 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=x \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.734 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.272 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.346 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=x +1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.367 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=x^{2}+x +1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.371 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=x^{3}+x^{2}+x +1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.395 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.372 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.374 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.781 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=x \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.733 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=x +1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.772 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=x^{2}+x +1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.790 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=x^{3}+x^{2}+x +1 \\
\end{align*} | [[_2nd_order, _missing_y]] | ✓ | ✓ | ✓ | ✓ | 0.843 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.855 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.805 |
|
| \begin{align*}
y^{\prime \prime }+y&=1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.902 |
|
| \begin{align*}
y^{\prime \prime }+y&=x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.312 |
|
| \begin{align*}
y^{\prime \prime }+y&=x +1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.315 |
|
| \begin{align*}
y^{\prime \prime }+y&=x^{2}+x +1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| \begin{align*}
y^{\prime \prime }+y&=x^{3}+x^{2}+x +1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.339 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| \begin{align*}
y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.470 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
4.415 |
|
| \begin{align*}
y^{\prime \prime }+y-\sin \left (n x \right )&=0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.779 |
|
| \begin{align*}
y^{\prime \prime }+y-a \cos \left (b x \right )&=0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.969 |
|
| \begin{align*}
y^{\prime \prime }+y-\sin \left (a x \right ) \sin \left (b x \right )&=0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.467 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
5.482 |
|
| \begin{align*}
y^{\prime \prime }-2 y-4 x^{2} {\mathrm e}^{x^{2}}&=0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.522 |
|
| \begin{align*}
y^{\prime \prime }+l y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
5.053 |
|
| \begin{align*}
b y+a y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.264 |
|
| \begin{align*}
y^{\prime \prime }+a y^{\prime }+b y-f \left (x \right )&=0 \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 3.003 |
|
| \begin{align*}
y^{\prime \prime }+a y^{\prime }+\tan \left (x \right )+b y&=0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
3.440 |
|
| \begin{align*}
y^{\prime \prime }+a y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.173 |
|
| \begin{align*}
b y+a y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.649 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.178 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+25 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.234 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{{\mathrm e}^{x}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.382 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{\left (1-x \right )^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.388 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.274 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.438 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.359 |
|
| \begin{align*}
y^{\prime \prime }+y&=\tan \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.438 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=x^{2}+\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.470 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=2 x \,{\mathrm e}^{2 x}-\sin \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.681 |
|
| \begin{align*}
y^{\prime \prime }+y&=2 \,{\mathrm e}^{x}+x^{3}-x \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.372 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=3 \,{\mathrm e}^{2 x}-\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.507 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }&={\mathrm e}^{2 x}+1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.852 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=\cos \left (x \right )-{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=2 x^{3}-x \,{\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.455 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=\sin \left (x \right )^{2} \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.470 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=\sec \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.550 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cos \left (x \right ) x \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.439 |
|
| \begin{align*}
y^{\prime \prime }&=x \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.693 |
|
| \begin{align*}
x^{\prime \prime }+2 x^{\prime }+2 x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| \begin{align*}
2 x^{\prime \prime }-5 x^{\prime }-3 x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.181 |
|
| \begin{align*}
x^{\prime \prime }&=-3 \sqrt {t} \\
x \left (1\right ) &= 4 \\
x^{\prime }\left (1\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
3.294 |
|
| \begin{align*}
x^{\prime \prime }+x^{\prime }&=3 t \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.760 |
|
| \begin{align*}
x^{\prime \prime }-4 x^{\prime }+4 x&=0 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.376 |
|
| \begin{align*}
x^{\prime \prime }-2 x^{\prime }&=0 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.765 |
|
| \begin{align*}
\frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2}&=0 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.407 |
|
| \begin{align*}
x^{\prime \prime }+4 x^{\prime }+3 x&=0 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.306 |
|
| \begin{align*}
x^{\prime \prime }-4 x^{\prime }+4 x&=0 \\
x \left (0\right ) &= -1 \\
x^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| \begin{align*}
x^{\prime \prime }-2 x^{\prime }&=0 \\
x \left (0\right ) &= -1 \\
x^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.831 |
|
| \begin{align*}
\frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2}&=0 \\
x \left (0\right ) &= -1 \\
x^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| \begin{align*}
x^{\prime \prime }+4 x^{\prime }+3 x&=0 \\
x \left (0\right ) &= -1 \\
x^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.277 |
|
| \begin{align*}
x^{\prime \prime }+x^{\prime }+4 x&=0 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.463 |
|
| \begin{align*}
x^{\prime \prime }-4 x^{\prime }+6 x&=0 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| \begin{align*}
x^{\prime \prime }+9 x&=0 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
6.264 |
|
| \begin{align*}
x^{\prime \prime }-12 x&=0 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 1.530 |
|
| \begin{align*}
2 x^{\prime \prime }+3 x^{\prime }+3 x&=0 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.450 |
|
| \begin{align*}
\frac {x^{\prime \prime }}{2}+\frac {5 x^{\prime }}{6}+\frac {2 x}{9}&=0 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.307 |
|
| \begin{align*}
x^{\prime \prime }+x^{\prime }+x&=0 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.431 |
|
| \begin{align*}
x^{\prime \prime }+\frac {x^{\prime }}{8}+x&=0 \\
x \left (0\right ) &= 2 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.454 |
|
| \begin{align*}
x^{\prime \prime }+x^{\prime }+x&=3 t^{3}-1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.380 |
|
| \begin{align*}
x^{\prime \prime }+x^{\prime }+x&=3 \cos \left (t \right )-2 \sin \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.384 |
|
| \begin{align*}
x^{\prime \prime }+x^{\prime }+x&=12 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.309 |
|
| \begin{align*}
x^{\prime \prime }+x^{\prime }+x&=t^{2} {\mathrm e}^{3 t} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| \begin{align*}
x^{\prime \prime }+x^{\prime }+x&=5 \sin \left (7 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.412 |
|
| \begin{align*}
x^{\prime \prime }+x^{\prime }+x&={\mathrm e}^{2 t} \cos \left (t \right )+t^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.973 |
|
| \begin{align*}
x^{\prime \prime }+x^{\prime }+x&=t \,{\mathrm e}^{-t} \sin \left (\pi t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.581 |
|
| \begin{align*}
x^{\prime \prime }+x^{\prime }+x&=\left (t +2\right ) \sin \left (\pi t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.550 |
|
| \begin{align*}
x^{\prime \prime }+x^{\prime }+x&=4 t +5 \,{\mathrm e}^{-t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| \begin{align*}
x^{\prime \prime }+x^{\prime }+x&=5 \sin \left (2 t \right )+{\mathrm e}^{t} t \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.747 |
|
| \begin{align*}
x^{\prime \prime }+x^{\prime }+x&=t^{3}+1-4 t \cos \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.279 |
|
| \begin{align*}
x^{\prime \prime }+x^{\prime }+x&=-6+2 \,{\mathrm e}^{2 t} \sin \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.476 |
|
| \begin{align*}
x^{\prime \prime }+7 x&=t \,{\mathrm e}^{3 t} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.418 |
|
| \begin{align*}
x^{\prime \prime }-x^{\prime }&=6+{\mathrm e}^{2 t} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.833 |
|
| \begin{align*}
x^{\prime \prime }+x&=t^{2} \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.306 |
|
| \begin{align*}
x^{\prime \prime }-3 x^{\prime }-4 x&=2 t^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.310 |
|
| \begin{align*}
x^{\prime \prime }+x&=9 \,{\mathrm e}^{-t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.325 |
|
| \begin{align*}
x^{\prime \prime }-4 x&=\cos \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.400 |
|
| \begin{align*}
x^{\prime \prime }+x^{\prime }+2 x&=t \sin \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.558 |
|
| \begin{align*}
x^{\prime \prime }-b x^{\prime }+x&=\sin \left (2 t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.800 |
|
| \begin{align*}
x^{\prime \prime }-3 x^{\prime }-40 x&=2 \,{\mathrm e}^{-t} \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.462 |
|
| \begin{align*}
x^{\prime \prime }-2 x^{\prime }&=4 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.998 |
|
| \begin{align*}
x^{\prime \prime }+2 x&=\cos \left (t \sqrt {2}\right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.622 |
|
| \begin{align*}
x^{\prime \prime }+\frac {x^{\prime }}{100}+4 x&=\cos \left (2 t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.596 |
|
| \begin{align*}
x^{\prime \prime }+w^{2} x&=\cos \left (\beta t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.703 |
|
| \begin{align*}
x^{\prime \prime }+3025 x&=\cos \left (45 t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.863 |
|
| \begin{align*}
x^{\prime \prime }+x&=\tan \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.438 |
|
| \begin{align*}
x^{\prime \prime }-x&={\mathrm e}^{t} t \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.389 |
|
| \begin{align*}
x^{\prime \prime }-x&=\frac {1}{t} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| \begin{align*}
x^{\prime \prime }+x&=\frac {1}{t +1} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.460 |
|
| \begin{align*}
x^{\prime \prime }-2 x^{\prime }+x&=\frac {{\mathrm e}^{t}}{2 t} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.469 |
|
| \begin{align*}
x^{\prime \prime }-x&=\frac {{\mathrm e}^{t}}{1+{\mathrm e}^{t}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| \begin{align*}
12 y-7 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.194 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=4 x^{2} \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.312 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-8 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.194 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=-8 \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.461 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-6 y&=0 \\
y \left (0\right ) &= 6 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.308 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-12 y&=0 \\
y \left (0\right ) &= 5 \\
y^{\prime }\left (0\right ) &= 6 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.306 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (\pi \right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.981 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&={\mathrm e}^{x} \\
y \left (0\right ) &= 5 \\
y^{\prime }\left (0\right ) &= 7 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.474 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&={\mathrm e}^{x} \\
y \left (0\right ) &= 5 \\
y^{\prime }\left (1\right ) &= 7 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.434 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.191 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.193 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=4 x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.333 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=2-12 x +6 \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.366 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.184 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.191 |
|
| \begin{align*}
4 y^{\prime \prime }-12 y^{\prime }+5 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.197 |
|
| \begin{align*}
3 y^{\prime \prime }-14 y^{\prime }-5 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.204 |
|
| \begin{align*}
y^{\prime \prime }-8 y^{\prime }+16 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.251 |
|
| \begin{align*}
4 y^{\prime \prime }+4 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.253 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+13 y&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.295 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+25 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.272 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.098 |
|
| \begin{align*}
4 y^{\prime \prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.139 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-12 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.314 |
|
| \begin{align*}
y^{\prime \prime }+7 y^{\prime }+10 y&=0 \\
y \left (0\right ) &= -4 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.336 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+8 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 6 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.335 |
|
| \begin{align*}
3 y^{\prime \prime }+4 y^{\prime }-4 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.313 |
|
| \begin{align*}
9 y+6 y^{\prime }+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -3 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.412 |
|
| \begin{align*}
4 y^{\prime \prime }-12 y^{\prime }+9 y&=0 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 9 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.415 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 7 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.416 |
|
| \begin{align*}
9 y^{\prime \prime }-6 y^{\prime }+y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.415 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+29 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.421 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+58 y&=0 \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.449 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+13 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.421 |
|
| \begin{align*}
5 y+2 y^{\prime }+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 6 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.409 |
|
| \begin{align*}
9 y^{\prime \prime }+6 y^{\prime }+5 y&=0 \\
y \left (0\right ) &= 6 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.424 |
|
| \begin{align*}
4 y^{\prime \prime }+4 y^{\prime }+37 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.426 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }+8 y&=4 x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.486 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-8 y&=4 \,{\mathrm e}^{2 x}-21 \,{\mathrm e}^{-3 x} \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.450 |
|
| \begin{align*}
5 y+2 y^{\prime }+y^{\prime \prime }&=6 \sin \left (2 x \right )+7 \cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.414 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=10 \sin \left (4 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.410 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+4 y&=\cos \left (4 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.510 |
|
| \begin{align*}
-4 y-3 y^{\prime }+y^{\prime \prime }&=16 x -12 \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.373 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+5 y&=2 \,{\mathrm e}^{x}+10 \,{\mathrm e}^{5 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.439 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+10 y&=5 \,{\mathrm e}^{-2 x} x \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.427 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-6 y&=10 \,{\mathrm e}^{2 x}-18 \,{\mathrm e}^{3 x}-6 x -11 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.602 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=6 \,{\mathrm e}^{-2 x}+3 \,{\mathrm e}^{x}-4 x^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.650 |
|
| \begin{align*}
y^{\prime \prime }+y&=x \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.487 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=12 x^{2}-16 x \cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.757 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=9 x^{2}+4 \\
y \left (0\right ) &= 6 \\
y^{\prime }\left (0\right ) &= 8 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.482 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+4 y&=16 x +20 \,{\mathrm e}^{x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.525 |
|
| \begin{align*}
y^{\prime \prime }-8 y^{\prime }+15 y&=9 x \,{\mathrm e}^{2 x} \\
y \left (0\right ) &= 5 \\
y^{\prime }\left (0\right ) &= 10 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.504 |
|
| \begin{align*}
y^{\prime \prime }+7 y^{\prime }+10 y&=4 x \,{\mathrm e}^{-3 x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.509 |
|
| \begin{align*}
16 y+8 y^{\prime }+y^{\prime \prime }&=8 \,{\mathrm e}^{-2 x} \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.541 |
|
| \begin{align*}
9 y+6 y^{\prime }+y^{\prime \prime }&=27 \,{\mathrm e}^{-6 x} \\
y \left (0\right ) &= -2 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.549 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+13 y&=18 \,{\mathrm e}^{-2 x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.592 |
|
| \begin{align*}
y^{\prime \prime }-10 y^{\prime }+29 y&=8 \,{\mathrm e}^{5 x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 8 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.546 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+13 y&=8 \sin \left (3 x \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.624 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-6 y&=8 \,{\mathrm e}^{2 x}-5 \,{\mathrm e}^{3 x} \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.701 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=2 x \,{\mathrm e}^{2 x}+6 \,{\mathrm e}^{x} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.786 |
|
| \begin{align*}
y^{\prime \prime }-y&=3 \,{\mathrm e}^{x} x^{2} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.593 |
|
| \begin{align*}
y^{\prime \prime }+y&=3 x^{2}-4 \sin \left (x \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.738 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=8 \sin \left (2 x \right ) \\
y \left (0\right ) &= 6 \\
y^{\prime }\left (0\right ) &= 8 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.594 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+8 y&=x^{3}+x +{\mathrm e}^{-2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.397 |
|
| \begin{align*}
y^{\prime \prime }+9 y&={\mathrm e}^{3 x}+{\mathrm e}^{-3 x}+{\mathrm e}^{3 x} \sin \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.308 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-2 x} \left (\cos \left (x \right )+1\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.516 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{x} x^{4}+x^{3} {\mathrm e}^{2 x}+x^{2} {\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.954 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+13 y&=x \,{\mathrm e}^{-3 x} \sin \left (2 x \right )+x^{2} {\mathrm e}^{-2 x} \sin \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.391 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cot \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.454 |
|
| \begin{align*}
y^{\prime \prime }+y&=\tan \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.599 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.372 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right )^{3} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.476 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=\sec \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.464 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \tan \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.503 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-2 x} \sec \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.493 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&={\mathrm e}^{x} \tan \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.571 |
|
| \begin{align*}
9 y+6 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{-3 x}}{x^{3}} \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.503 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=x \,{\mathrm e}^{x} \ln \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.525 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \csc \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.632 |
|
| \begin{align*}
y^{\prime \prime }+y&=\tan \left (x \right )^{3} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.525 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=\frac {1}{{\mathrm e}^{x}+1} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.410 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=\frac {1}{{\mathrm e}^{2 x}+1} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.440 |
|
| \begin{align*}
y^{\prime \prime }+y&=\frac {1}{1+\sin \left (x \right )} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.644 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \arcsin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.555 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=\frac {{\mathrm e}^{-x}}{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.425 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=x \ln \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.638 |
|
| \begin{align*}
y^{\prime \prime }+\lambda y&=0 \\
y \left (0\right ) &= 0 \\
y \left (\frac {\pi }{2}\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.948 |
|
| \begin{align*}
y^{\prime \prime }+\lambda y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (\pi \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.960 |
|
| \begin{align*}
y^{\prime \prime }+\lambda y&=0 \\
y \left (0\right ) &= 0 \\
y \left (L \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.967 |
|
| \begin{align*}
y^{\prime \prime }+\lambda y&=0 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime }\left (L \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.094 |
|
| \begin{align*}
x^{\prime \prime }-3 x^{\prime }+2 x&=0 \\
x \left (0\right ) &= 2 \\
x^{\prime }\left (0\right ) &= 6 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.464 |
|
| \begin{align*}
z^{\prime \prime }-4 z^{\prime }+13 z&=0 \\
z \left (0\right ) &= 7 \\
z^{\prime }\left (0\right ) &= 42 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.484 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-6 y&=0 \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 8 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.345 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }&=0 \\
y \left (0\right ) &= 13 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.947 |
|
| \begin{align*}
\theta ^{\prime \prime }+4 \theta &=0 \\
\theta \left (0\right ) &= 0 \\
\theta ^{\prime }\left (0\right ) &= 10 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 1.134 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+10 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.433 |
|
| \begin{align*}
2 z^{\prime \prime }+7 z^{\prime }-4 z&=0 \\
z \left (0\right ) &= 0 \\
z^{\prime }\left (0\right ) &= 9 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.358 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.414 |
|
| \begin{align*}
x^{\prime \prime }+6 x^{\prime }+10 x&=0 \\
x \left (0\right ) &= 3 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.401 |
|
| \begin{align*}
4 x^{\prime \prime }-20 x^{\prime }+21 x&=0 \\
x \left (0\right ) &= -4 \\
x^{\prime }\left (0\right ) &= -12 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.351 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=0 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= -4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.333 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=0 \\
y \left (0\right ) &= 10 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.771 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\
y \left (0\right ) &= 27 \\
y^{\prime }\left (0\right ) &= -54 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.405 |
|
| \begin{align*}
y^{\prime \prime }+\omega ^{2} y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.611 |
|
| \begin{align*}
x^{\prime \prime }-4 x&=t^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.333 |
|
| \begin{align*}
x^{\prime \prime }-4 x^{\prime }&=t^{2} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.997 |
|
| \begin{align*}
x^{\prime \prime }+x^{\prime }-2 x&=3 \,{\mathrm e}^{-t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.351 |
|
| \begin{align*}
x^{\prime \prime }+x^{\prime }-2 x&={\mathrm e}^{t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.396 |
|
| \begin{align*}
x^{\prime \prime }+2 x^{\prime }+x&={\mathrm e}^{-t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.419 |
|
| \begin{align*}
x^{\prime \prime }+\omega ^{2} x&=\sin \left (\alpha t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.671 |
|
| \begin{align*}
x^{\prime \prime }+2 x^{\prime }+10 x&={\mathrm e}^{-t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.384 |
|
| \begin{align*}
x^{\prime \prime }+2 x^{\prime }+10 x&={\mathrm e}^{-t} \cos \left (3 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.442 |
|
| \begin{align*}
x^{\prime \prime }+6 x^{\prime }+10 x&={\mathrm e}^{-2 t} \cos \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.415 |
|
| \begin{align*}
x^{\prime \prime }+4 x^{\prime }+4 x&={\mathrm e}^{2 t} \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.405 |
|
| \begin{align*}
x^{\prime \prime }+x^{\prime }-2 x&=12 \,{\mathrm e}^{-t}-6 \,{\mathrm e}^{t} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.526 |
|
| \begin{align*}
x^{\prime \prime }+4 x&=289 t \,{\mathrm e}^{t} \sin \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.676 |
|
| \begin{align*}
x^{\prime \prime }+\omega ^{2} x&=\cos \left (\alpha t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.833 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-6 y&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.333 |
|
| \begin{align*}
x^{\prime \prime }-x&=\frac {1}{t} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.383 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=\cot \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.743 |
|
| \begin{align*}
x^{\prime \prime }-4 x^{\prime }&=\tan \left (t \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.759 |
|
| \begin{align*}
a y^{\prime \prime }+\left (b -a \right ) y^{\prime }+c y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.190 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+10 y&=100 \\
y \left (0\right ) &= 10 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.520 |
|
| \begin{align*}
x^{\prime \prime }+x&=\sin \left (t \right )-\cos \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.609 |
|
| \begin{align*}
y^{\prime \prime }+y&=\frac {1}{\sin \left (x \right )^{3}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.503 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cosh \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.456 |
|
| \begin{align*}
x^{\prime \prime }-4 x^{\prime }+4 x&={\mathrm e}^{t}+{\mathrm e}^{2 t}+1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.432 |
|
| \begin{align*}
y^{\prime \prime }+y&=1-\frac {1}{\sin \left (x \right )} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.425 |
|
| \begin{align*}
x^{\prime \prime }+9 x&=t \sin \left (3 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.500 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=\sinh \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.796 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&={\mathrm e}^{x} \cos \left (x \right ) x \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.415 |
|
| \begin{align*}
x^{\prime \prime }+10 x^{\prime }+25 x&=2^{t}+t \,{\mathrm e}^{-5 t} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.565 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (3 x \right ) \cos \left (x \right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.713 |
|
| \begin{align*}
y^{\prime \prime }&=y+x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.291 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.218 |
|
| \begin{align*}
2 y^{\prime \prime }-3 y^{\prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.188 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&=1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.329 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&={\mathrm e}^{t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.376 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }-7 y&=4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.320 |
|
| \begin{align*}
3 y^{\prime \prime }+5 y^{\prime }-2 y&=3 t^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.324 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=x^{{3}/{2}} {\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.466 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=2 \sec \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.651 |
|
| \begin{align*}
y^{\prime \prime }+y&=f \left (x \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.694 |
|
| \begin{align*}
y^{\prime \prime }+\alpha ^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.006 |
|
| \begin{align*}
y^{\prime \prime }-\alpha ^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.309 |
|
| \begin{align*}
y^{\prime \prime }+\beta y^{\prime }+\gamma y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.376 |
|
| \begin{align*}
y^{\prime \prime }-2 k y^{\prime }+k^{2} y&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.369 |
|
| \begin{align*}
y^{\prime \prime }&=a^{2} y \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.631 |
|
| \begin{align*}
y^{\prime \prime }&=9 y \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.386 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.955 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.099 |
|
| \begin{align*}
y^{\prime \prime }+12 y&=7 y^{\prime } \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.207 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.242 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+10 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.286 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.240 |
|
| \begin{align*}
4 y^{\prime \prime }-12 y^{\prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.263 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.316 |
|
| \begin{align*}
12 y-7 y^{\prime }+y^{\prime \prime }&=x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.319 |
|
| \begin{align*}
s^{\prime \prime }-a^{2} s&=t +1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.375 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=8 \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.373 |
|
| \begin{align*}
y^{\prime \prime }-y&=2+5 x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| \begin{align*}
y^{\prime \prime }-2 a y^{\prime }+a^{2} y&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.381 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+5 y&={\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.313 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=6 \,{\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.472 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }&=2-6 x \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.862 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+3 y&={\mathrm e}^{-x} \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.487 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=2 \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.511 |
|
| \begin{align*}
y^{\prime \prime }+2 h y^{\prime }+n^{2} y&=0 \\
y \left (0\right ) &= a \\
y^{\prime }\left (0\right ) &= c \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.573 |
|
| \begin{align*}
y^{\prime \prime }+n^{2} y&=h \sin \left (r x \right ) \\
y \left (0\right ) &= a \\
y^{\prime }\left (0\right ) &= c \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.882 |
|
| \begin{align*}
y^{\prime \prime }-7 y^{\prime }+6 y&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.526 |
|
| \begin{align*}
y^{\prime \prime }+y&=\frac {1}{\cos \left (2 x \right )^{{3}/{2}}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.756 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.476 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=\sin \left (2 x \right ) {\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.541 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.197 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }-10 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.206 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.250 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-6 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.197 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.296 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -5 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.331 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=0 \\
y \left (1\right ) &= 3 \\
y^{\prime }\left (1\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=0 \\
y \left (0\right ) &= 1 \\
y \left (2\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.341 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (2\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.267 |
|
| \begin{align*}
3 y^{\prime \prime }-2 y^{\prime }+4 y&=x \\
y \left (-1\right ) &= 2 \\
y^{\prime }\left (-1\right ) &= 3 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.894 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.851 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.954 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.610 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=31 \\
y \left (0\right ) &= -9 \\
y^{\prime }\left (0\right ) &= 6 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.772 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=27 x +18 \\
y \left (0\right ) &= 23 \\
y^{\prime }\left (0\right ) &= 21 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.523 |
|
| \begin{align*}
4 y^{\prime \prime }+4 y^{\prime }-3 y&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.194 |
|
| \begin{align*}
y^{\prime \prime }+\alpha y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.645 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }-7 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.200 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-12 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.178 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.313 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+5 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.375 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.327 |
|
| \begin{align*}
y^{\prime \prime }+2 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= -\sqrt {2} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.035 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-6 y&={\mathrm e}^{4 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.302 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+8 y&=2 \,{\mathrm e}^{-3 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.325 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=5 \,{\mathrm e}^{3 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.323 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+13 y&={\mathrm e}^{-t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.369 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+13 y&=-3 \,{\mathrm e}^{-2 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.330 |
|
| \begin{align*}
y^{\prime \prime }+7 y^{\prime }+10 y&={\mathrm e}^{-2 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.413 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }+4 y&={\mathrm e}^{4 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.375 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-6 y&=4 \,{\mathrm e}^{-3 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.335 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+8 y&={\mathrm e}^{-t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.423 |
|
| \begin{align*}
y^{\prime \prime }+7 y^{\prime }+12 y&=3 \,{\mathrm e}^{-t} \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+13 y&=-3 \,{\mathrm e}^{-2 t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.470 |
|
| \begin{align*}
y^{\prime \prime }+7 y^{\prime }+10 y&={\mathrm e}^{-2 t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.675 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+3 y&={\mathrm e}^{-\frac {t}{2}} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.430 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+3 y&={\mathrm e}^{-2 t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.414 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+3 y&={\mathrm e}^{-4 t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.415 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+20 y&={\mathrm e}^{-\frac {t}{2}} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.539 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+20 y&={\mathrm e}^{-2 t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.451 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+20 y&={\mathrm e}^{-4 t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.493 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{-t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.354 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }+4 y&=5 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.402 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&=2 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.395 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+10 y&=10 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.487 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+6 y&=-8 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.523 |
|
| \begin{align*}
y^{\prime \prime }+9 y&={\mathrm e}^{-t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.472 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=2 \,{\mathrm e}^{-2 t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.490 |
|
| \begin{align*}
y^{\prime \prime }+2 y&=-3 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.820 |
|
| \begin{align*}
y^{\prime \prime }+4 y&={\mathrm e}^{t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=6 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.806 |
|
| \begin{align*}
y^{\prime \prime }+2 y&=-{\mathrm e}^{t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.485 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=-3 t^{2}+2 t +3 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.454 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }&=3 t +2 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} | [[_2nd_order, _missing_y]] | ✓ | ✓ | ✓ | ✓ | 1.302 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }&=3 t +2 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.336 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=t^{2} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.438 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=t -\frac {1}{20} t^{2} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.467 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&=4+{\mathrm e}^{-t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.444 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{-t}-4 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.455 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+8 y&=2 t +{\mathrm e}^{-t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.463 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+8 y&=2 t +{\mathrm e}^{t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.454 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=t +{\mathrm e}^{-t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.486 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=6+t^{2}+{\mathrm e}^{t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.519 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=\cos \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.328 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=5 \cos \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.335 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=\sin \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=2 \sin \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.346 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+8 y&=\cos \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.333 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+8 y&=-4 \cos \left (3 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.378 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+13 y&=3 \cos \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.379 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+20 y&=-\cos \left (5 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.396 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+20 y&=-3 \sin \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.382 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&=\cos \left (3 t \right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.469 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+8 y&=\cos \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.480 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+8 y&=2 \cos \left (3 t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.524 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+20 y&=-3 \sin \left (2 t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.642 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&=2 \cos \left (2 t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.651 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+y&=\cos \left (3 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+20 y&=3+2 \cos \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.402 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+20 y&={\mathrm e}^{-t} \cos \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.365 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=\cos \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.378 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=5 \sin \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.381 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=-\cos \left (\frac {t}{2}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.377 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=3 \cos \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=2 \cos \left (3 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.403 |
|
| \begin{align*}
y^{\prime \prime }&=\frac {x +1}{x -1} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.980 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+8 y&={\mathrm e}^{-x^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.305 |
|
| \begin{align*}
y^{\prime \prime }&=\sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.924 |
|
| \begin{align*}
y^{\prime \prime }-3&=x \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.891 |
|
| \begin{align*}
y^{\prime \prime }&=y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.661 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }&=8 \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.898 |
|
| \begin{align*}
y^{\prime \prime }&=2 y^{\prime }-6 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.897 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }&=9 \,{\mathrm e}^{-3 x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.939 |
|
| \begin{align*}
y^{\prime \prime }&=y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.671 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }&=9 \,{\mathrm e}^{-3 x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.901 |
|
| \begin{align*}
y^{\prime \prime }&=y^{\prime } \\
y \left (0\right ) &= 8 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.921 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }&=8 \,{\mathrm e}^{2 x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.216 |
|
| \begin{align*}
y^{\prime \prime }&=2 y^{\prime }-5 y+30 \,{\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.422 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 6 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.334 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 12 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.114 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-6 y&=0 \\
y \left (0\right ) &= 8 \\
y^{\prime }\left (0\right ) &= -9 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.308 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 6 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.859 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-3 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.320 |
|
| \begin{align*}
y^{\prime \prime }-10 y^{\prime }+9 y&=0 \\
y \left (0\right ) &= 8 \\
y^{\prime }\left (0\right ) &= -24 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.325 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.851 |
|
| \begin{align*}
y^{\prime \prime }-7 y^{\prime }+10 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.197 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-24 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.197 |
|
| \begin{align*}
y^{\prime \prime }-25 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.094 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.779 |
|
| \begin{align*}
4 y^{\prime \prime }-y&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 1.019 |
|
| \begin{align*}
3 y^{\prime \prime }+7 y^{\prime }-6 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.219 |
|
| \begin{align*}
y^{\prime \prime }-8 y^{\prime }+15 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.339 |
|
| \begin{align*}
y^{\prime \prime }-8 y^{\prime }+15 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.319 |
|
| \begin{align*}
y^{\prime \prime }-8 y^{\prime }+15 y&=0 \\
y \left (0\right ) &= 5 \\
y^{\prime }\left (0\right ) &= 19 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.322 |
|
| \begin{align*}
y^{\prime \prime }-9 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.359 |
|
| \begin{align*}
y^{\prime \prime }-9 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.634 |
|
| \begin{align*}
y^{\prime \prime }-9 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= -3 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.804 |
|
| \begin{align*}
y^{\prime \prime }-10 y^{\prime }+25 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.252 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.247 |
|
| \begin{align*}
4 y^{\prime \prime }-4 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.252 |
|
| \begin{align*}
25 y^{\prime \prime }-10 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.251 |
|
| \begin{align*}
16 y^{\prime \prime }-24 y^{\prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.254 |
|
| \begin{align*}
9 y^{\prime \prime }+12 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.251 |
|
| \begin{align*}
y^{\prime \prime }-8 y^{\prime }+16 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.410 |
|
| \begin{align*}
y^{\prime \prime }-8 y^{\prime }+16 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.401 |
|
| \begin{align*}
y^{\prime \prime }-8 y^{\prime }+16 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 14 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.408 |
|
| \begin{align*}
4 y^{\prime \prime }+4 y^{\prime }+y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| \begin{align*}
4 y^{\prime \prime }+4 y^{\prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.389 |
|
| \begin{align*}
4 y^{\prime \prime }+4 y^{\prime }+y&=0 \\
y \left (0\right ) &= 6 \\
y^{\prime }\left (0\right ) &= -5 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.398 |
|
| \begin{align*}
y^{\prime \prime }+25 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.775 |
|
| \begin{align*}
5 y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.250 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.211 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+29 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.266 |
|
| \begin{align*}
9 y^{\prime \prime }+18 y^{\prime }+10 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.259 |
|
| \begin{align*}
4 y^{\prime \prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.765 |
|
| \begin{align*}
y^{\prime \prime }+16 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
14.247 |
|
| \begin{align*}
y^{\prime \prime }+16 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.708 |
|
| \begin{align*}
y^{\prime \prime }+16 y&=0 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 12 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.112 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+13 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.436 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+13 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.346 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+13 y&=0 \\
y \left (0\right ) &= 5 \\
y^{\prime }\left (0\right ) &= 31 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.380 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.437 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -{\frac {1}{2}} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.439 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=24 \,{\mathrm e}^{2 x} \\
y \left (0\right ) &= 6 \\
y^{\prime }\left (0\right ) &= 6 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.483 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=24 \,{\mathrm e}^{2 x} \\
y \left (0\right ) &= -2 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.468 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-8 y&=8 x^{2}-3 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.440 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-8 y&=8 x^{2}-3 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -3 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.418 |
|
| \begin{align*}
y^{\prime \prime }-9 y&=36 \\
y \left (0\right ) &= 8 \\
y^{\prime }\left (0\right ) &= 6 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 1.188 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }-10 y&=-6 \,{\mathrm e}^{4 x} \\
y \left (0\right ) &= 6 \\
y^{\prime }\left (0\right ) &= 8 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }-10 y&=7 \,{\mathrm e}^{5 x} \\
y \left (0\right ) &= 12 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.510 |
|
| \begin{align*}
9 y+6 y^{\prime }+y^{\prime \prime }&=169 \sin \left (2 x \right ) \\
y \left (0\right ) &= -10 \\
y^{\prime }\left (0\right ) &= 9 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.678 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }-10 y&={\mathrm e}^{4 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.293 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }-10 y&={\mathrm e}^{5 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }-10 y&=-18 \,{\mathrm e}^{4 x}+14 \,{\mathrm e}^{5 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.477 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }-10 y&=35 \,{\mathrm e}^{5 x}+12 \,{\mathrm e}^{4 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.470 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=52 \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.352 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=27 \,{\mathrm e}^{6 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }-5 y&=30 \,{\mathrm e}^{-4 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.313 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }&={\mathrm e}^{\frac {x}{2}} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.843 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }-10 y&=-5 \,{\mathrm e}^{3 x} \\
y \left (0\right ) &= 5 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.440 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=10 \cos \left (2 x \right )+15 \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.466 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=25 \sin \left (6 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.497 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }&=26 \cos \left (\frac {x}{3}\right )-12 \sin \left (\frac {x}{3}\right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.088 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }-5 y&=\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.317 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }-10 y&=-4 \cos \left (x \right )+7 \sin \left (x \right ) \\
y \left (0\right ) &= 8 \\
y^{\prime }\left (0\right ) &= -5 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.477 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }-10 y&=-200 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.261 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }-5 y&=x^{3} \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.305 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=18 x^{2}+3 x +4 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.369 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=9 x^{4}-9 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=x^{3} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=25 x \cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.458 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{2 x} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.422 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=54 x^{2} {\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| \begin{align*}
y^{\prime \prime }&=6 \,{\mathrm e}^{x} \sin \left (x \right ) x \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.056 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\left (-6 x -8\right ) \cos \left (2 x \right )+\left (8 x -11\right ) \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.733 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\left (12 x -4\right ) {\mathrm e}^{-5 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.389 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=39 x \,{\mathrm e}^{2 x} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.540 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }-10 y&=-3 \,{\mathrm e}^{-2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.329 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }&=20 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.891 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }&=x^{2} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.874 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=3 \sin \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=10 \,{\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }-10 y&=\left (72 x^{2}-1\right ) {\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.360 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }-10 y&=4 x \,{\mathrm e}^{6 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.336 |
|
| \begin{align*}
y^{\prime \prime }-10 y^{\prime }+25 y&=6 \,{\mathrm e}^{5 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.392 |
|
| \begin{align*}
y^{\prime \prime }-10 y^{\prime }+25 y&=6 \,{\mathrm e}^{-5 x} \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.413 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=24 \sin \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.375 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=8 \,{\mathrm e}^{-3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.339 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+5 y&={\mathrm e}^{2 x} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.363 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+5 y&={\mathrm e}^{-x} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.349 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+5 y&=100 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.283 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+5 y&={\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.320 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+5 y&=10 x^{2}+4 x +8 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| \begin{align*}
y^{\prime \prime }+9 y&={\mathrm e}^{2 x} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.472 |
|
| \begin{align*}
y^{\prime \prime }+y&=6 \cos \left (x \right )-3 \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.530 |
|
| \begin{align*}
y^{\prime \prime }+y&=6 \cos \left (2 x \right )-3 \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.457 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+5 y&=x^{3} {\mathrm e}^{-x} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.663 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+5 y&=x^{3} {\mathrm e}^{2 x} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.663 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=x^{2} {\mathrm e}^{-7 x}+2 \,{\mathrm e}^{-7 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.372 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.301 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{-8 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.310 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.321 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=x^{2} {\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.345 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=\cos \left (2 x \right ) x^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.689 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=x^{2} {\mathrm e}^{3 x} \sin \left (2 x \right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.717 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+20 y&={\mathrm e}^{4 x} \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.422 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+20 y&={\mathrm e}^{2 x} \sin \left (4 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+20 y&=x^{3} \sin \left (4 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.697 |
|
| \begin{align*}
y^{\prime \prime }-10 y^{\prime }+25 y&=3 x^{2} {\mathrm e}^{5 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.404 |
|
| \begin{align*}
y^{\prime \prime }-10 y^{\prime }+25 y&=3 x^{4} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.411 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=27 \,{\mathrm e}^{6 x}+25 \sin \left (6 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.660 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=25 x \cos \left (2 x \right )+3 \sin \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.845 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+5 y&=5 \sin \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.397 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+5 y&=20 \sinh \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.550 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cot \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.450 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=\csc \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.605 |
|
| \begin{align*}
y^{\prime \prime }-7 y^{\prime }+10 y&=6 \,{\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.328 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=\left (24 x^{2}+2\right ) {\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.440 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{-2 x}}{x^{2}+1} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.491 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-6 y&=12 \,{\mathrm e}^{2 x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 8 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.450 |
|
| \begin{align*}
y^{\prime \prime }+36 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.732 |
|
| \begin{align*}
y^{\prime \prime }-12 y^{\prime }+36 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.211 |
|
| \begin{align*}
y^{\prime \prime }-36 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.888 |
|
| \begin{align*}
y^{\prime \prime }-9 y^{\prime }+14 y&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.184 |
|
| \begin{align*}
9 y+6 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.234 |
|
| \begin{align*}
y^{\prime \prime }+3 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.906 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+25 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.256 |
|
| \begin{align*}
y^{\prime \prime }-8 y^{\prime }+25 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.248 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-30 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.181 |
|
| \begin{align*}
16 y^{\prime \prime }-8 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.244 |
|
| \begin{align*}
2 y^{\prime \prime }-7 y^{\prime }+3&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.946 |
|
| \begin{align*}
y^{\prime \prime }+20 y^{\prime }+100 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.240 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.756 |
|
| \begin{align*}
y^{\prime \prime }-9 y^{\prime }+14 y&=98 x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| \begin{align*}
y^{\prime \prime }-12 y^{\prime }+36 y&=25 \sin \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.509 |
|
| \begin{align*}
y^{\prime \prime }-9 y^{\prime }+14 y&=576 x^{2} {\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.365 |
|
| \begin{align*}
y^{\prime \prime }-12 y^{\prime }+36 y&=81 \,{\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.401 |
|
| \begin{align*}
y^{\prime \prime }-12 y^{\prime }+36 y&=3 x \,{\mathrm e}^{6 x}-2 \,{\mathrm e}^{6 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.460 |
|
| \begin{align*}
y^{\prime \prime }+36 y&=6 \sec \left (6 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.815 |
|
| \begin{align*}
9 y+6 y^{\prime }+y^{\prime \prime }&=10 \,{\mathrm e}^{-3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.416 |
|
| \begin{align*}
9 y+6 y^{\prime }+y^{\prime \prime }&=2 \cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.498 |
|
| \begin{align*}
4 y^{\prime \prime }-12 y^{\prime }+9 y&=x \,{\mathrm e}^{\frac {3 x}{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.447 |
|
| \begin{align*}
3 y^{\prime \prime }+8 y^{\prime }-3 y&=123 \sin \left (3 x \right ) x \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.519 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=x^{3} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.351 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-12 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.187 |
|
| \begin{align*}
y^{\prime \prime }+9 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.818 |
|
| \begin{align*}
x^{\prime \prime }+2 x^{\prime }-10 x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.230 |
|
| \begin{align*}
x^{\prime \prime }+x&=t \cos \left (t \right )-\cos \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.528 |
|
| \begin{align*}
y^{\prime \prime }-12 y^{\prime }+40 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-12 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.312 |
|
| \begin{align*}
y^{\prime \prime }+9 y^{\prime }&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.954 |
|
| \begin{align*}
16 y^{\prime \prime }+24 y^{\prime }+153 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.251 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }-5 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.187 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+45 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.258 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.373 |
|
| \begin{align*}
12 y-7 y^{\prime }+y^{\prime \prime }&=2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.295 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=t \\
y \left (\frac {\pi }{4}\right ) &= 1 \\
y^{\prime }\left (\frac {\pi }{4}\right ) &= \frac {\pi }{16} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.517 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.731 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.278 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.709 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=0 \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= -5 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -3 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 1.239 |
|
| \begin{align*}
y^{\prime \prime }+y&=2 \cos \left (t \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.611 |
|
| \begin{align*}
y^{\prime \prime }+10 y^{\prime }+24 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.217 |
|
| \begin{align*}
y^{\prime \prime }+16 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.427 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+18 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.290 |
|
| \begin{align*}
a y^{\prime \prime }+b y^{\prime }+c y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.994 |
|
| \begin{align*}
y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.787 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }-12 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.145 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }-4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.214 |
|
| \begin{align*}
y^{\prime \prime }+8 y^{\prime }+12 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.211 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.253 |
|
| \begin{align*}
8 y^{\prime \prime }+6 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.219 |
|
| \begin{align*}
4 y^{\prime \prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.108 |
|
| \begin{align*}
y^{\prime \prime }+16 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.132 |
|
| \begin{align*}
y^{\prime \prime }+8 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.263 |
|
| \begin{align*}
y^{\prime \prime }+7 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.293 |
|
| \begin{align*}
4 y^{\prime \prime }+21 y^{\prime }+5 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.215 |
|
| \begin{align*}
7 y^{\prime \prime }+4 y^{\prime }-3 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.216 |
|
| \begin{align*}
4 y^{\prime \prime }+4 y^{\prime }+y&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.286 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.281 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.151 |
|
| \begin{align*}
3 y^{\prime \prime }-y^{\prime }&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 7 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.316 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-12 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 7 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.351 |
|
| \begin{align*}
y^{\prime \prime }-7 y^{\prime }+12 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| \begin{align*}
2 y^{\prime \prime }-7 y^{\prime }-4 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.406 |
|
| \begin{align*}
y^{\prime \prime }-7 y^{\prime }+10 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.342 |
|
| \begin{align*}
y^{\prime \prime }+36 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -6 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.599 |
|
| \begin{align*}
y^{\prime \prime }+100 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 10 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.503 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+y&=0 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.445 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.459 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+5 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.453 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+20 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.455 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.454 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.492 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.449 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.404 |
|
| \begin{align*}
6 y^{\prime \prime }+5 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.250 |
|
| \begin{align*}
9 y^{\prime \prime }+6 y^{\prime }+y&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.280 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+20 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.240 |
|
| \begin{align*}
a y^{\prime \prime }+2 b y^{\prime }+c y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.920 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }+6 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.216 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }-16 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.236 |
|
| \begin{align*}
y^{\prime \prime }-16 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.287 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+5 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (\frac {\pi }{2}\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.244 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+3 y&=0 \\
y \left (0\right ) &= a \\
y^{\prime }\left (0\right ) &= b \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.329 |
|
| \begin{align*}
y^{\prime \prime }+y&=8 \,{\mathrm e}^{2 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.396 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=-{\mathrm e}^{-9 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.371 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=2 \,{\mathrm e}^{3 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.445 |
|
| \begin{align*}
y^{\prime \prime }-y&=2 t -4 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.374 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+y&=t^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.448 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }&=3-4 t \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.148 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cos \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=4 \cos \left (t \right )-\sin \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.619 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=\cos \left (2 t \right )+t \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.622 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=3 t \,{\mathrm e}^{-t} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| \begin{align*}
y^{\prime \prime }&=3 t^{4}-2 t \\
\end{align*} | [[_2nd_order, _quadrature]] | ✓ | ✓ | ✓ | ✓ | 1.069 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+13 y&=2 t \,{\mathrm e}^{-2 t} \sin \left (3 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.711 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=-1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.339 |
|
| \begin{align*}
5 y^{\prime \prime }+y^{\prime }-4 y&=-3 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.378 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-8 y&=32 t \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| \begin{align*}
16 y^{\prime \prime }-8 y^{\prime }-15 y&=75 t \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.369 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+26 y&=-338 t \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.439 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }-4 y&=-32 t^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.378 |
|
| \begin{align*}
8 y^{\prime \prime }+6 y^{\prime }+y&=5 t^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.381 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+8 y&=-256 t^{3} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.401 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }&=52 \sin \left (3 t \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.255 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+13 y&=25 \sin \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.481 |
|
| \begin{align*}
y^{\prime \prime }-9 y&=54 t \sin \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.631 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }+6 y&=-78 \cos \left (3 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.415 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=-32 t^{2} \cos \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.013 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-20 y&=-2 \,{\mathrm e}^{t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.373 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }-5 y&=-648 t^{2} {\mathrm e}^{5 t} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.507 |
|
| \begin{align*}
y^{\prime \prime }-7 y^{\prime }+12 y&=-2 t^{3} {\mathrm e}^{4 t} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.436 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }&=8 \,{\mathrm e}^{4 t}-4 \,{\mathrm e}^{-4 t} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✗ |
1.307 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }&=t^{2}-{\mathrm e}^{3 t} \\
\end{align*} | [[_2nd_order, _missing_y]] | ✓ | ✓ | ✓ | ✓ | 1.230 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }&=-24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.287 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }&=t^{2}-{\mathrm e}^{3 t} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.133 |
|
| \begin{align*}
y^{\prime \prime }&=t^{2}+{\mathrm e}^{t}+\sin \left (t \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.508 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }&=18 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.388 |
|
| \begin{align*}
y^{\prime \prime }-y&=4 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.509 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=32 t \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 6 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.496 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-3 y&=-2 \\
y \left (0\right ) &= {\frac {2}{3}} \\
y^{\prime }\left (0\right ) &= 8 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.483 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-6 y&=3 t \\
y \left (0\right ) &= {\frac {23}{12}} \\
y^{\prime }\left (0\right ) &= -{\frac {3}{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.484 |
|
| \begin{align*}
y^{\prime \prime }+8 y^{\prime }+16 y&=4 \\
y \left (0\right ) &= {\frac {5}{4}} \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.621 |
|
| \begin{align*}
y^{\prime \prime }+7 y^{\prime }+10 y&=t \,{\mathrm e}^{-t} \\
y \left (0\right ) &= -{\frac {5}{16}} \\
y^{\prime }\left (0\right ) &= {\frac {9}{16}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.523 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+25 y&=-1 \\
y \left (0\right ) &= -{\frac {1}{25}} \\
y^{\prime }\left (0\right ) &= 7 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.572 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }&=-{\mathrm e}^{3 t}-2 t \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= {\frac {8}{9}} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.467 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }&=-3 t -4 \,{\mathrm e}^{2 t} t^{2} \\
y \left (0\right ) &= -{\frac {7}{2}} \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.539 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }&=2 t^{2} \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= {\frac {3}{2}} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.304 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }&=-24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.585 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }&={\mathrm e}^{-3 t}-{\mathrm e}^{3 t} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✗ |
1.914 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=\left \{\begin {array}{cc} 2 t & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.712 |
|
| \begin{align*}
y^{\prime \prime }+9 \pi ^{2} y&=\left \{\begin {array}{cc} 2 t & 0\le t <\pi \\ 2 t -2 \pi & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
17.058 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=\left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 10 & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 2.222 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=f \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= a \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.878 |
|
| \begin{align*}
x^{\prime \prime }+9 x&=\sin \left (3 t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.660 |
|
| \begin{align*}
4 y^{\prime \prime }+4 y^{\prime }+37 y&=\cos \left (3 t \right ) \\
y \left (0\right ) &= a \\
y^{\prime }\left (\pi \right ) &= a \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.731 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.602 |
|
| \begin{align*}
y^{\prime \prime }+16 y^{\prime }&=t \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.126 |
|
| \begin{align*}
y^{\prime \prime }-7 y^{\prime }+10 y&={\mathrm e}^{3 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.377 |
|
| \begin{align*}
y^{\prime \prime }+16 y&=2 \cos \left (4 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.471 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+20 y&=2 t \,{\mathrm e}^{-2 t} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.433 |
|
| \begin{align*}
y^{\prime \prime }+\frac {y}{4}&=\sec \left (\frac {t}{2}\right )+\csc \left (\frac {t}{2}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.786 |
|
| \begin{align*}
y^{\prime \prime }+16 y&=\csc \left (4 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.008 |
|
| \begin{align*}
y^{\prime \prime }+16 y&=\cot \left (4 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.198 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+50 y&={\mathrm e}^{-t} \csc \left (7 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.667 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+25 y&={\mathrm e}^{-3 t} \left (\sec \left (4 t \right )+\csc \left (4 t \right )\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.599 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+26 y&={\mathrm e}^{t} \left (\sec \left (5 t \right )+\csc \left (5 t \right )\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.727 |
|
| \begin{align*}
y^{\prime \prime }+12 y^{\prime }+37 y&={\mathrm e}^{-6 t} \csc \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.561 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+34 y&={\mathrm e}^{3 t} \tan \left (5 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.670 |
|
| \begin{align*}
y^{\prime \prime }-10 y^{\prime }+34 y&={\mathrm e}^{5 t} \cot \left (3 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.713 |
|
| \begin{align*}
y^{\prime \prime }-12 y^{\prime }+37 y&={\mathrm e}^{6 t} \sec \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.546 |
|
| \begin{align*}
y^{\prime \prime }-8 y^{\prime }+17 y&={\mathrm e}^{4 t} \sec \left (t \right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.539 |
|
| \begin{align*}
y^{\prime \prime }-9 y&=\frac {1}{1+{\mathrm e}^{3 t}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.542 |
|
| \begin{align*}
y^{\prime \prime }-25 y&=\frac {1}{1-{\mathrm e}^{5 t}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.606 |
|
| \begin{align*}
y^{\prime \prime }-y&=2 \sinh \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.582 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+y&=\frac {{\mathrm e}^{t}}{t} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.536 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=\frac {{\mathrm e}^{2 t}}{t^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.555 |
|
| \begin{align*}
y^{\prime \prime }+8 y^{\prime }+16 y&=\frac {{\mathrm e}^{-4 t}}{t^{4}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.580 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+9 y&=\frac {{\mathrm e}^{-3 t}}{t} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.564 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+9 y&={\mathrm e}^{-3 t} \ln \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.582 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=\cos \left ({\mathrm e}^{t}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.620 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&={\mathrm e}^{-2 t} \sqrt {-t^{2}+1} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.658 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+y&={\mathrm e}^{t} \sqrt {-t^{2}+1} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.586 |
|
| \begin{align*}
y^{\prime \prime }-10 y^{\prime }+25 y&={\mathrm e}^{5 t} \ln \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.636 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 t} \arctan \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.638 |
|
| \begin{align*}
y^{\prime \prime }+8 y^{\prime }+16 y&=\frac {{\mathrm e}^{-4 t}}{t^{2}+1} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.524 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (\frac {t}{2}\right )+\csc \left (\frac {t}{2}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.862 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=\tan \left (3 t \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.054 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=\sec \left (3 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.628 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=\tan \left (3 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.714 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=\tan \left (2 t \right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.635 |
|
| \begin{align*}
y^{\prime \prime }+16 y&=\tan \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.618 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=\tan \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.552 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=\sec \left (3 t \right ) \tan \left (3 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.027 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=\sec \left (2 t \right ) \tan \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.939 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=\frac {\csc \left (3 t \right )}{2} \\
y \left (\frac {\pi }{4}\right ) &= \sqrt {2} \\
y^{\prime }\left (\frac {\pi }{4}\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.584 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=\sec \left (2 t \right )^{2} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.299 |
|
| \begin{align*}
y^{\prime \prime }-16 y&=16 t \,{\mathrm e}^{-4 t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.582 |
|
| \begin{align*}
y^{\prime \prime }+y&=\tan \left (t \right )^{2} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.915 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=\sec \left (2 t \right )+\tan \left (2 t \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.240 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=\csc \left (3 t \right ) \\
y \left (\frac {\pi }{12}\right ) &= 0 \\
y^{\prime }\left (\frac {\pi }{12}\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.385 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+3 y&=65 \cos \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.417 |
|
| \begin{align*}
4 y^{\prime \prime }+4 y^{\prime }+y&={\mathrm e}^{-\frac {t}{2}} \\
y \left (0\right ) &= a \\
y^{\prime }\left (0\right ) &= b \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.606 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=f \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.856 |
|
| \begin{align*}
y^{\prime \prime }-7 y^{\prime }+10 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.226 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.212 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.247 |
|
| \begin{align*}
y^{\prime \prime }+7 y^{\prime }+10 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.222 |
|
| \begin{align*}
6 y^{\prime \prime }+5 y^{\prime }-4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.262 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.289 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.221 |
|
| \begin{align*}
y^{\prime \prime }-10 y^{\prime }+34 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.286 |
|
| \begin{align*}
2 y^{\prime \prime }-5 y^{\prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.217 |
|
| \begin{align*}
15 y^{\prime \prime }-11 y^{\prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.220 |
|
| \begin{align*}
20 y^{\prime \prime }+y^{\prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.217 |
|
| \begin{align*}
12 y^{\prime \prime }+8 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.218 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-8 y&=-t \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.384 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }&=5 t^{2} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.153 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }&=-3 \sin \left (t \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.246 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+5 y&=3 \sin \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.481 |
|
| \begin{align*}
y^{\prime \prime }-9 y&=\frac {1}{1+{\mathrm e}^{3 t}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.507 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }&=\frac {1}{1+{\mathrm e}^{2 t}} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✗ |
1.537 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }+2 y&=-4 \,{\mathrm e}^{-2 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.373 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+13 y&=3 \,{\mathrm e}^{-2 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.445 |
|
| \begin{align*}
y^{\prime \prime }+9 y^{\prime }+20 y&=-2 \,{\mathrm e}^{t} t \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.401 |
|
| \begin{align*}
y^{\prime \prime }+7 y^{\prime }+12 y&=3 t^{2} {\mathrm e}^{-4 t} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.421 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.358 |
|
| \begin{align*}
y^{\prime \prime }+10 y^{\prime }+16 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.377 |
|
| \begin{align*}
y^{\prime \prime }+16 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= -8 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 1.010 |
|
| \begin{align*}
y^{\prime \prime }+25 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
27.691 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=t \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.504 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }-4 y&={\mathrm e}^{t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.598 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=\sin \left (3 t \right ) \\
y \left (0\right ) &= 6 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.648 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cos \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.598 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=\tan \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.589 |
|
| \begin{align*}
y^{\prime \prime }+y&=\csc \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.470 |
|
| \begin{align*}
y^{\prime \prime }-8 y^{\prime }+16 y&=\frac {{\mathrm e}^{4 t}}{t^{3}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.468 |
|
| \begin{align*}
y^{\prime \prime }-8 y^{\prime }+16 y&=\frac {{\mathrm e}^{4 t}}{t^{3}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.450 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+y&={\mathrm e}^{t} \ln \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.506 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+y&={\mathrm e}^{t} \ln \left (t \right ) \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.834 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }-4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.213 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.283 |
|
| \begin{align*}
4 x^{\prime \prime }+9 x&=0 \\
x \left (0\right ) &= -1 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.671 |
|
| \begin{align*}
9 x^{\prime \prime }+4 x&=0 \\
x \left (0\right ) &= -{\frac {1}{2}} \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.722 |
|
| \begin{align*}
x^{\prime \prime }+64 x&=0 \\
x \left (0\right ) &= {\frac {3}{4}} \\
x^{\prime }\left (0\right ) &= -2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.749 |
|
| \begin{align*}
x^{\prime \prime }+100 x&=0 \\
x \left (0\right ) &= -{\frac {1}{4}} \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.825 |
|
| \begin{align*}
x^{\prime \prime }+x&=0 \\
x \left (0\right ) &= 3 \\
x^{\prime }\left (0\right ) &= -4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.560 |
|
| \begin{align*}
x^{\prime \prime }+4 x&=0 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 1.797 |
|
| \begin{align*}
x^{\prime \prime }+16 x&=0 \\
x \left (0\right ) &= -2 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.681 |
|
| \begin{align*}
x^{\prime \prime }+256 x&=0 \\
x \left (0\right ) &= 2 \\
x^{\prime }\left (0\right ) &= 4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.040 |
|
| \begin{align*}
x^{\prime \prime }+9 x&=0 \\
x \left (0\right ) &= {\frac {1}{3}} \\
x^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.249 |
|
| \begin{align*}
10 x^{\prime \prime }+\frac {x}{10}&=0 \\
x \left (0\right ) &= -5 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.694 |
|
| \begin{align*}
x^{\prime \prime }+4 x^{\prime }+3 x&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= -4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.383 |
|
| \begin{align*}
\frac {x^{\prime \prime }}{32}+2 x^{\prime }+x&=0 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.491 |
|
| \begin{align*}
\frac {x^{\prime \prime }}{4}+2 x^{\prime }+x&=0 \\
x \left (0\right ) &= -{\frac {1}{2}} \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.504 |
|
| \begin{align*}
4 x^{\prime \prime }+2 x^{\prime }+8 x&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.501 |
|
| \begin{align*}
x^{\prime \prime }+4 x^{\prime }+13 x&=0 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.474 |
|
| \begin{align*}
x^{\prime \prime }+4 x^{\prime }+20 x&=0 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.478 |
|
| \begin{align*}
x^{\prime \prime }+x&=\left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.859 |
|
| \begin{align*}
x^{\prime \prime }+x&=\left \{\begin {array}{cc} t & 0\le t <1 \\ 2-t & 1\le t <2 \\ 0 & 2\le t \end {array}\right . \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.919 |
|
| \begin{align*}
x^{\prime \prime }+4 x^{\prime }+13 x&=\left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 1-t & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
8.148 |
|
| \begin{align*}
x^{\prime \prime }+x&=\cos \left (t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.605 |
|
| \begin{align*}
x^{\prime \prime }+x&=\cos \left (t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.527 |
|
| \begin{align*}
x^{\prime \prime }+x&=\cos \left (\frac {9 t}{10}\right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.689 |
|
| \begin{align*}
x^{\prime \prime }+x&=\cos \left (\frac {7 t}{10}\right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.635 |
|
| \begin{align*}
x^{\prime \prime }+\frac {x^{\prime }}{10}+x&=3 \cos \left (2 t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.780 |
|
| \begin{align*}
x^{\prime \prime }-3 x^{\prime }+4 x&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.364 |
|
| \begin{align*}
x^{\prime \prime }+6 x^{\prime }+9 x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| \begin{align*}
x^{\prime \prime }+16 x&=t \sin \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.635 |
|
| \begin{align*}
x^{\prime \prime }+x&={\mathrm e}^{t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.368 |
|
| \begin{align*}
y^{\prime \prime }+y&=2 \cos \left (x \right )+2 \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.622 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.980 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.286 |
|
| \begin{align*}
y^{\prime \prime }&=x \,{\mathrm e}^{x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
2.092 |
|
| \begin{align*}
y^{\prime \prime }&=2 x \ln \left (x \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.892 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+2&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.970 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.011 |
|
| \begin{align*}
3 y^{\prime \prime }-2 y^{\prime }-8 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.201 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.237 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=0 \\
y \left (0\right ) &= 6 \\
y^{\prime }\left (0\right ) &= 10 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.319 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.237 |
|
| \begin{align*}
4 y^{\prime \prime }-8 y^{\prime }+5 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.259 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.414 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+3 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.464 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }&=3 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.901 |
|
| \begin{align*}
y^{\prime \prime }-7 y^{\prime }&=\left (x -1\right )^{2} \\
\end{align*} | [[_2nd_order, _missing_y]] | ✓ | ✓ | ✓ | ✓ | 0.921 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.846 |
|
| \begin{align*}
y^{\prime \prime }+7 y^{\prime }&={\mathrm e}^{-7 x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.864 |
|
| \begin{align*}
y^{\prime \prime }-8 y^{\prime }+16 y&=\left (1-x \right ) {\mathrm e}^{4 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.449 |
|
| \begin{align*}
y^{\prime \prime }-10 y^{\prime }+25 y&={\mathrm e}^{5 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.415 |
|
| \begin{align*}
4 y^{\prime \prime }-3 y^{\prime }&=x \,{\mathrm e}^{\frac {3 x}{4}} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.043 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }&={\mathrm e}^{4 x} x \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.939 |
|
| \begin{align*}
y^{\prime \prime }+25 y&=\cos \left (5 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.454 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right )-\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.479 |
|
| \begin{align*}
y^{\prime \prime }+16 y&=\sin \left (4 x +\alpha \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.678 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+8 y&={\mathrm e}^{2 x} \left (\sin \left (2 x \right )+\cos \left (2 x \right )\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.480 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+8 y&={\mathrm e}^{2 x} \left (\sin \left (2 x \right )-\cos \left (2 x \right )\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.477 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+13 y&={\mathrm e}^{-3 x} \cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.445 |
|
| \begin{align*}
y^{\prime \prime }+k^{2} y&=k \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.147 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=-2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.349 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }&=-2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.937 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=9 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.941 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.400 |
|
| \begin{align*}
y^{\prime \prime }+8 y^{\prime }&=8 x \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.917 |
|
| \begin{align*}
y^{\prime \prime }-2 k y^{\prime }+k^{2} y&={\mathrm e}^{x} \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.384 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=8 \,{\mathrm e}^{-2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.435 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+3 y&=9 \,{\mathrm e}^{-3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.433 |
|
| \begin{align*}
7 y^{\prime \prime }-y^{\prime }&=14 x \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.882 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }&=3 x \,{\mathrm e}^{-3 x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.965 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&=10 \left (1-x \right ) {\mathrm e}^{-2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.382 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=x +1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.352 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=\left (x^{2}+x \right ) {\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.506 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }-2 y&=8 \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.433 |
|
| \begin{align*}
y^{\prime \prime }+y&=4 \cos \left (x \right ) x \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.471 |
|
| \begin{align*}
y^{\prime \prime }-2 m y^{\prime }+m^{2} y&=\sin \left (n x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.530 |
|
| \begin{align*}
5 y+2 y^{\prime }+y^{\prime \prime }&=\sin \left (2 x \right ) {\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.447 |
|
| \begin{align*}
y^{\prime \prime }+a^{2} y&=2 \cos \left (m x \right )+3 \sin \left (m x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.691 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }&={\mathrm e}^{x} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.063 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }&=4 \,{\mathrm e}^{x} \left (\cos \left (x \right )+\sin \left (x \right )\right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.281 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=10 \cos \left (x \right ) {\mathrm e}^{-2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.435 |
|
| \begin{align*}
4 y^{\prime \prime }+8 y^{\prime }&=x \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.215 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=x \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.349 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&={\mathrm e}^{4 x} x^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.377 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=\left (x^{2}+x \right ) {\mathrm e}^{3 x} \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.366 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=x^{3} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.450 |
|
| \begin{align*}
y^{\prime \prime }+y&=x^{2} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.552 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=x^{2} {\mathrm e}^{-x} \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.599 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+5 y&={\mathrm e}^{2 x} \left (2 \cos \left (x \right )+\sin \left (x \right )\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.434 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{x}+{\mathrm e}^{-2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.374 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }&=x +{\mathrm e}^{-4 x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.005 |
|
| \begin{align*}
y^{\prime \prime }-y&=x +\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.436 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&=\left (1+\sin \left (x \right )\right ) {\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.413 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=\sin \left (2 x \right ) \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.923 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }&=2 \cos \left (4 x \right )^{2} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.274 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=4 x -2 \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.360 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }&=18 x -10 \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.165 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=2+{\mathrm e}^{x} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.487 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=\left (5 x +4\right ) {\mathrm e}^{x}+{\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.425 |
|
| \begin{align*}
5 y+2 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{-x}+17 \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.510 |
|
| \begin{align*}
2 y^{\prime \prime }-3 y^{\prime }-2 y&=5 \,{\mathrm e}^{x} \cosh \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.601 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=x \sin \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.701 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=\cos \left (x \right )^{2}+{\mathrm e}^{x}+x^{2} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.420 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&=10 \sin \left (x \right )+17 \sin \left (2 x \right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.556 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=x^{2}-{\mathrm e}^{-x}+{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✗ |
1.385 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&=2 x +{\mathrm e}^{-x}-2 \,{\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.561 |
|
| \begin{align*}
4 y+y^{\prime \prime }&={\mathrm e}^{x}+4 \sin \left (2 x \right )+2 \cos \left (x \right )^{2}-1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.769 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=6 x \,{\mathrm e}^{-x} \left (1-{\mathrm e}^{-x}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.510 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cos \left (2 x \right )^{2}+\sin \left (\frac {x}{2}\right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.960 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+5 y&=1+8 \cos \left (x \right )+{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.454 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&={\mathrm e}^{x} \sin \left (\frac {x}{2}\right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.442 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }&=1+{\mathrm e}^{x}+\cos \left (x \right )+\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.335 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&={\mathrm e}^{x} \left (1-2 \sin \left (x \right )^{2}\right )+10 x +1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.751 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=4 x +\sin \left (x \right )+\sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.768 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=1+2 \cos \left (x \right )+\cos \left (2 x \right )-\sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.715 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y+1&=\sin \left (x \right )+x +x^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.500 |
|
| \begin{align*}
9 y+6 y^{\prime }+y^{\prime \prime }&=18 \,{\mathrm e}^{-3 x}+8 \sin \left (x \right )+6 \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.629 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+1&=3 \sin \left (2 x \right )+\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.727 |
|
| \begin{align*}
y^{\prime \prime }+y&=2 \sin \left (2 x \right ) \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.694 |
|
| \begin{align*}
y^{\prime \prime }+y&=-2 x +2 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.412 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=9 x^{2}-12 x +2 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.605 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=36 \,{\mathrm e}^{3 x} \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 6 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.484 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=2 \,{\mathrm e}^{2 x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.576 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=\left (12 x -7\right ) {\mathrm e}^{-x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.502 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&={\mathrm e}^{-x} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.065 |
|
| \begin{align*}
9 y+6 y^{\prime }+y^{\prime \prime }&=10 \sin \left (x \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.678 |
|
| \begin{align*}
y^{\prime \prime }+y&=2 \cos \left (x \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.547 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=\sin \left (x \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.605 |
|
| \begin{align*}
y^{\prime \prime }+y&=4 \cos \left (x \right ) x \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.556 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+5 y&=2 \,{\mathrm e}^{x} x^{2} \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.550 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=16 \,{\mathrm e}^{-x}+9 x -6 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.606 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }&=-5 \,{\mathrm e}^{-x} \left (\cos \left (x \right )+\sin \left (x \right )\right ) \\
y \left (0\right ) &= -4 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.661 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&=4 \,{\mathrm e}^{x} \cos \left (x \right ) \\
y \left (\pi \right ) &= \pi \,{\mathrm e}^{\pi } \\
y^{\prime }\left (\pi \right ) &= {\mathrm e}^{\pi } \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.600 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+5 y&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.366 |
|
| \begin{align*}
5 y+2 y^{\prime }+y^{\prime \prime }&=4 \cos \left (2 x \right )+\sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.480 |
|
| \begin{align*}
y^{\prime \prime }-y&=1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.464 |
|
| \begin{align*}
y^{\prime \prime }-y&=-2 \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.351 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{-x} \\
y \left (\infty \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.509 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-5 y&=1 \\
y \left (\infty \right ) &= -{\frac {1}{5}} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.524 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{-2 x} \left (9 \sin \left (2 x \right )+4 \cos \left (2 x \right )\right ) \\
y \left (\infty \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✗ |
✓ |
0.565 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{-x} \left (9 x^{2}+5 x -12\right ) \\
y \left (\infty \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✗ |
✗ |
0.630 |
|
| \begin{align*}
y^{\prime \prime }+y&=\frac {1}{\sin \left (x \right )} \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.487 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=\frac {1}{{\mathrm e}^{x}+1} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✗ |
1.164 |
|
| \begin{align*}
y^{\prime \prime }+y&=\frac {1}{\cos \left (x \right )^{3}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.491 |
|
| \begin{align*}
y^{\prime \prime }+y&=\frac {1}{\sqrt {\sin \left (x \right )^{5} \cos \left (x \right )}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
2.230 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x^{2}+1} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.497 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=\frac {{\mathrm e}^{-x}}{\sin \left (x \right )} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.496 |
|
| \begin{align*}
y^{\prime \prime }+y&=\frac {2}{\sin \left (x \right )^{3}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.544 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&={\mathrm e}^{2 x} \cos \left ({\mathrm e}^{x}\right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.504 |
|
| \begin{align*}
x^{\prime \prime }+x^{\prime }+x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.321 |
|
| \begin{align*}
x^{\prime \prime }+2 x^{\prime }+6 x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.305 |
|
| \begin{align*}
x^{\prime \prime }+2 x^{\prime }+x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.291 |
|
| \begin{align*}
y^{\prime \prime }+\lambda y&=0 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime }\left (\pi \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.375 |
|
| \begin{align*}
y^{\prime \prime }+\lambda y&=0 \\
y \left (0\right ) &= 0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.815 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (0\right ) &= 0 \\
y \left (2 \pi \right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.060 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y \left (\frac {\pi }{2}\right ) &= \alpha \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.091 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.894 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (\pi \right ) &= {\mathrm e}^{\pi } \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.237 |
|
| \begin{align*}
y^{\prime \prime }+\alpha ^{2} y&=1 \\
y^{\prime }\left (0\right ) &= \alpha \\
y^{\prime }\left (\pi \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✗ |
✓ |
7.611 |
|
| \begin{align*}
y^{\prime \prime }+y&=1 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (\pi \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.763 |
|
| \begin{align*}
y^{\prime \prime }+\lambda ^{2} y&=0 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime }\left (\pi \right ) &= 0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 1.177 |
|
| \begin{align*}
y^{\prime \prime }+\lambda ^{2} y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (\pi \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.856 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=\cos \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.518 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=\pi ^{2}-x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.426 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=\cos \left (\pi x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.447 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=\arcsin \left (\sin \left (x \right )\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.517 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=\sin \left (x \right )^{3} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.707 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.349 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
8.579 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+16 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.455 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+4 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.429 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }+4 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.445 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.044 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.215 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.174 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-3 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.183 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.183 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.226 |
|
| \begin{align*}
9 y^{\prime \prime }+6 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.225 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.243 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+6 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.279 |
|
| \begin{align*}
4 y^{\prime \prime }-4 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.232 |
|
| \begin{align*}
2 y^{\prime \prime }-3 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.183 |
|
| \begin{align*}
6 y^{\prime \prime }-y^{\prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.181 |
|
| \begin{align*}
9 y^{\prime \prime }+12 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.236 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-8 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.183 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.640 |
|
| \begin{align*}
4 y^{\prime \prime }-9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.022 |
|
| \begin{align*}
25 y^{\prime \prime }-20 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.236 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+16 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+13 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.250 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+\frac {5 y}{4}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.233 |
|
| \begin{align*}
y^{\prime \prime }-9 y^{\prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.217 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.213 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.227 |
|
| \begin{align*}
9 y^{\prime \prime }-24 y^{\prime }+16 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.229 |
|
| \begin{align*}
4 y^{\prime \prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.955 |
|
| \begin{align*}
4 y^{\prime \prime }+9 y^{\prime }-9 y&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.185 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+\frac {5 y}{4}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.233 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+\frac {25 y}{4}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.246 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.284 |
|
| \begin{align*}
y^{\prime \prime }+16 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.842 |
|
| \begin{align*}
9 y^{\prime \prime }-12 y^{\prime }+4 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.376 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.297 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.389 |
|
| \begin{align*}
6 y^{\prime \prime }-5 y^{\prime }+y&=0 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.309 |
|
| \begin{align*}
9 y+6 y^{\prime }+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.378 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&=0 \\
y \left (\frac {\pi }{2}\right ) &= 0 \\
y^{\prime }\left (\frac {\pi }{2}\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }&=0 \\
y \left (0\right ) &= -2 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.809 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (\frac {\pi }{3}\right ) &= 2 \\
y^{\prime }\left (\frac {\pi }{3}\right ) &= -4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.427 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\
y \left (-1\right ) &= 2 \\
y^{\prime }\left (-1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.411 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+3 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+\frac {5 y}{4}&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.380 |
|
| \begin{align*}
2 y^{\prime \prime }+y^{\prime }-4 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.371 |
|
| \begin{align*}
y^{\prime \prime }+8 y^{\prime }-9 y&=0 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.316 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=0 \\
y \left (\frac {\pi }{4}\right ) &= 2 \\
y^{\prime }\left (\frac {\pi }{4}\right ) &= -2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.412 |
|
| \begin{align*}
4 y^{\prime \prime }-y&=0 \\
y \left (-2\right ) &= 1 \\
y^{\prime }\left (-2\right ) &= -1 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 1.815 |
|
| \begin{align*}
y^{\prime \prime }+2 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.921 |
|
| \begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{4}+2 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.393 |
|
| \begin{align*}
m y^{\prime \prime }+k y&=0 \\
y \left (0\right ) &= a \\
y^{\prime }\left (0\right ) &= b \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.944 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&=3 \,{\mathrm e}^{2 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.274 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+5 y&=3 \sin \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.369 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&=-3 t \,{\mathrm e}^{-t} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.300 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }&=3+4 \sin \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.059 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=t^{2} {\mathrm e}^{3 t}+6 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&=2 \,{\mathrm e}^{-t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.338 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }+4 y&=2 \,{\mathrm e}^{t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.308 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=2 \,{\mathrm e}^{-t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.293 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&=3 \,{\mathrm e}^{-t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| \begin{align*}
4 y^{\prime \prime }-4 y^{\prime }+y&=16 \,{\mathrm e}^{\frac {t}{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.367 |
|
| \begin{align*}
2 y^{\prime \prime }+3 y^{\prime }+y&=t^{2}+3 \sin \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.406 |
|
| \begin{align*}
y^{\prime \prime }+y&=3 \sin \left (2 t \right )+\cos \left (2 t \right ) t \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.565 |
|
| \begin{align*}
u^{\prime \prime }+w_{0}^{2} u&=\cos \left (t w \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.464 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+4 y&=2 \sinh \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.780 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=\cosh \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.479 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=2 t \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.398 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=t^{2}+3 \,{\mathrm e}^{t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.505 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+y&={\mathrm e}^{t} t +4 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.524 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&=3 \,{\mathrm e}^{2 t} t \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.419 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=3 \sin \left (2 t \right ) \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.489 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+5 y&=4 \,{\mathrm e}^{-t} \cos \left (2 t \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.510 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }&=2 t^{4}+t^{2} {\mathrm e}^{-3 t}+\sin \left (3 t \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.553 |
|
| \begin{align*}
y^{\prime \prime }+y&=t \left (1+\sin \left (t \right )\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.475 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }+6 y&={\mathrm e}^{t} \cos \left (2 t \right )+{\mathrm e}^{2 t} \left (3 t +4\right ) \sin \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
3.147 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=3 \,{\mathrm e}^{-t}+2 \,{\mathrm e}^{-t} \cos \left (t \right )+4 \,{\mathrm e}^{-t} t^{2} \sin \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.684 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=2 t^{2}+4 \,{\mathrm e}^{2 t} t +t \sin \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.843 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=t^{2} \sin \left (2 t \right )+\left (6 t +7\right ) \cos \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.925 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{t} \left (t^{2}+1\right ) \sin \left (2 t \right )+3 \,{\mathrm e}^{-t} \cos \left (t \right )+4 \,{\mathrm e}^{t} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.948 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }-4 y&=2 \,{\mathrm e}^{-t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.309 |
|
| \begin{align*}
y^{\prime \prime }+y&=\left \{\begin {array}{cc} t & 0\le t \le \pi \\ \pi \,{\mathrm e}^{\pi -t} & \pi <t \end {array}\right . \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.231 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+5 y&=\left \{\begin {array}{cc} 1 & 0\le t \le \frac {\pi }{2} \\ 0 & \frac {\pi }{2}<t \end {array}\right . \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.544 |
|
| \begin{align*}
y^{\prime \prime }+y&=\left \{\begin {array}{cc} A t & 0\le t \le \pi \\ A \left (2 \pi -t \right ) & \pi <t \le 2 \pi \\ 0 & 2 \pi <t \end {array}\right . \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.992 |
|
| \begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{4}+2 y&=2 \cos \left (t w \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.625 |
|
| \begin{align*}
y^{\prime \prime }+y&=2 \cos \left (t w \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| \begin{align*}
y^{\prime \prime }+y&=3 \cos \left (t w \right ) \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.456 |
|
| \begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{8}+4 y&=3 \cos \left (\frac {t}{4}\right ) \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.582 |
|
| \begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{8}+4 y&=3 \cos \left (2 t \right ) \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.526 |
|
| \begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{8}+4 y&=3 \cos \left (6 t \right ) \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.558 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }+6 y&=2 \,{\mathrm e}^{t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.271 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=2 \,{\mathrm e}^{-t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.296 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&=3 \,{\mathrm e}^{-t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.357 |
|
| \begin{align*}
4 y^{\prime \prime }-4 y^{\prime }+y&=16 \,{\mathrm e}^{\frac {t}{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.357 |
|
| \begin{align*}
y^{\prime \prime }+y&=\tan \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.401 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=3 \sec \left (2 t \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.748 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{2 t}}{t^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.503 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=2 \csc \left (\frac {t}{2}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.716 |
|
| \begin{align*}
4 y^{\prime \prime }+y&=2 \sec \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.931 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+y&=\frac {{\mathrm e}^{t}}{t^{2}+1} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.445 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }+6 y&=g \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.421 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=g \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.437 |
|
| \begin{align*}
y^{\prime \prime }+y&=g \left (t \right ) \\
y \left (0\right ) &= y_{0} \\
y^{\prime }\left (0\right ) &= y_{1} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.487 |
|
| \begin{align*}
y^{\prime \prime }&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.660 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.024 |
|
| \begin{align*}
y^{\prime \prime }+p_{1} y^{\prime }+p_{2} y&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 1.263 |
|
| \begin{align*}
2 y^{\prime \prime }+y^{\prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.250 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.558 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+8 y&={\mathrm e}^{x}+{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.703 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=\sin \left (2 x \right ) x \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.811 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&={\mathrm e}^{-\frac {x}{2}} \sin \left (\frac {\sqrt {3}\, x}{2}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.705 |
|
| \begin{align*}
y^{\prime \prime }-y&=\frac {{\mathrm e}^{x}-{\mathrm e}^{-x}}{{\mathrm e}^{x}+{\mathrm e}^{-x}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.635 |
|
| \begin{align*}
-2 y+y^{\prime \prime }&=4 x^{2} {\mathrm e}^{x^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.506 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (2 x \right ) \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.219 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=\ln \left (2 \sin \left (\frac {x}{2}\right )\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.880 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.099 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.373 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.266 |
|
| \begin{align*}
y^{\prime \prime }-k y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
6.181 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=4 x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.453 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }&=6 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.318 |
|
| \begin{align*}
-2 y+y^{\prime \prime }&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.616 |
|
| \begin{align*}
y^{\prime \prime }&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.755 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }&=4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.473 |
|
| \begin{align*}
y^{\prime \prime }-y&=\sin \left (x \right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.569 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }&=6 \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.378 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
4.101 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.448 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.374 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=0 \\
y \left (0\right ) &= 8 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.459 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=0 \\
y \left (2\right ) &= 0 \\
y^{\prime }\left (2\right ) &= {\mathrm e}^{-2} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.308 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-6 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.271 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.376 |
|
| \begin{align*}
y^{\prime \prime }+8 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.653 |
|
| \begin{align*}
2 y^{\prime \prime }-4 y^{\prime }+8 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.493 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.361 |
|
| \begin{align*}
20 y-9 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.265 |
|
| \begin{align*}
2 y^{\prime \prime }+2 y^{\prime }+3 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.465 |
|
| \begin{align*}
4 y^{\prime \prime }-12 y^{\prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.735 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+25 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| \begin{align*}
4 y^{\prime \prime }+20 y^{\prime }+25 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.377 |
|
| \begin{align*}
3 y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.442 |
|
| \begin{align*}
y^{\prime \prime }&=4 y \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.785 |
|
| \begin{align*}
4 y^{\prime \prime }-8 y^{\prime }+7 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| \begin{align*}
2 y^{\prime \prime }+y^{\prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.267 |
|
| \begin{align*}
16 y^{\prime \prime }-8 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.374 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.320 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }-5 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.275 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=0 \\
y \left (1\right ) &= {\mathrm e}^{2} \\
y^{\prime }\left (1\right ) &= 3 \,{\mathrm e}^{2} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.480 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+5 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 11 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.452 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.568 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.437 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+2 y&=0 \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 2+3 \sqrt {2} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.553 |
|
| \begin{align*}
y^{\prime \prime }+8 y^{\prime }-9 y&=0 \\
y \left (1\right ) &= 2 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.458 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }-10 y&=6 \,{\mathrm e}^{4 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.512 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=3 \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.641 |
|
| \begin{align*}
y^{\prime \prime }+10 y^{\prime }+25 y&=14 \,{\mathrm e}^{-5 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.649 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&=25 x^{2}+12 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.585 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-6 y&=20 \,{\mathrm e}^{-2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.505 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=14 \sin \left (2 x \right )-18 \cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.572 |
|
| \begin{align*}
y^{\prime \prime }+y&=2 \cos \left (x \right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.584 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }&=12 x -10 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.761 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=6 \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.631 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&={\mathrm e}^{x} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.551 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=10 x^{4}+2 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.554 |
|
| \begin{align*}
y^{\prime \prime }+k^{2} y&=\sin \left (b x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.105 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=4 \cos \left (2 x \right )+6 \cos \left (x \right )+8 x^{2}-4 x \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.402 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=2 \sin \left (3 x \right )+4 \sin \left (x \right )-26 \,{\mathrm e}^{-2 x}+27 x^{3} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
3.739 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=2 x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.594 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-6 y&={\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.452 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=\tan \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.749 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \ln \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.665 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&=64 x \,{\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.512 |
|
| \begin{align*}
5 y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \sec \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.734 |
|
| \begin{align*}
2 y^{\prime \prime }+3 y^{\prime }+y&={\mathrm e}^{-3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.471 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=\frac {1}{1+{\mathrm e}^{-x}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.507 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.533 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cot \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.740 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cot \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.882 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cos \left (x \right ) x \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.853 |
|
| \begin{align*}
y^{\prime \prime }+y&=\tan \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.532 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \tan \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.653 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \csc \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.783 |
|
| \begin{align*}
y^{\prime \prime }-4 y&={\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.550 |
|
| \begin{align*}
y^{\prime \prime }-y&=x^{2} {\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.490 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=10 x^{3} {\mathrm e}^{-2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.704 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.573 |
|
| \begin{align*}
y^{\prime \prime }-y&={\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.457 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&=6 \,{\mathrm e}^{5 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.491 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }+y&=x^{3}-3 x^{2}+1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.722 |
|
| \begin{align*}
4 y^{\prime \prime }+y&=x^{4} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.510 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-y&=-x^{4}+3 x \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.557 |
|
| \begin{align*}
y^{\prime \prime }+y&=x^{4} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.465 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=x^{3} {\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.508 |
|
| \begin{align*}
12 y-7 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{2 x} \left (x^{3}-5 x^{2}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.542 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=2 x^{2} {\mathrm e}^{-2 x}+3 \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.221 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 x} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.688 |
|
| \begin{align*}
x^{\prime \prime }-5 x^{\prime }+6 x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.267 |
|
| \begin{align*}
x^{\prime \prime }-4 x^{\prime }+4 x&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.391 |
|
| \begin{align*}
x^{\prime \prime }-4 x^{\prime }+5 x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.370 |
|
| \begin{align*}
x^{\prime \prime }+3 x^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.476 |
|
| \begin{align*}
x^{\prime \prime }-3 x^{\prime }+2 x&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.499 |
|
| \begin{align*}
x^{\prime \prime }+x&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.227 |
|
| \begin{align*}
x^{\prime \prime }+2 x^{\prime }+x&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.581 |
|
| \begin{align*}
x^{\prime \prime }-2 x^{\prime }+2 x&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.469 |
|
| \begin{align*}
x^{\prime \prime }-x&=t^{2} \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.647 |
|
| \begin{align*}
x^{\prime \prime }-x&={\mathrm e}^{t} \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.702 |
|
| \begin{align*}
x^{\prime \prime }+2 x^{\prime }+4 x&={\mathrm e}^{t} \cos \left (2 t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.965 |
|
| \begin{align*}
x^{\prime \prime }-x^{\prime }+x&=\sin \left (2 t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.836 |
|
| \begin{align*}
x^{\prime \prime }+4 x^{\prime }+3 x&=t \sin \left (t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.985 |
|
| \begin{align*}
x^{\prime \prime }+x&=\cos \left (t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.779 |
|
| \begin{align*}
\theta ^{\prime \prime }&=-p^{2} \theta \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
4.881 |
|
| \begin{align*}
\theta ^{\prime \prime }-p^{2} \theta &=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
7.025 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.621 |
|
| \begin{align*}
y^{\prime \prime }+12 y&=7 y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.289 |
|
| \begin{align*}
r^{\prime \prime }-a^{2} r&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
6.171 |
|
| \begin{align*}
v^{\prime \prime }-6 v^{\prime }+13 v&={\mathrm e}^{-2 u} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.689 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }-y&=\sin \left (t \right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.708 |
|
| \begin{align*}
y^{\prime \prime }+3 y&=\sin \left (x \right )+\frac {\sin \left (3 x \right )}{3} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.320 |
|
| \begin{align*}
y^{\prime \prime }&=-m^{2} y \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
5.289 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+3 y&=2 \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.508 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.358 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.328 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+3 y&=2 \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.482 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+2 y&=x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.539 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }-y&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.556 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.721 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.600 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.623 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.612 |
|
| \begin{align*}
e y^{\prime \prime }&=\frac {P \left (\frac {L}{2}-x \right )}{2} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
2.859 |
|
| \begin{align*}
e y^{\prime \prime }&=\frac {w \left (\frac {L^{2}}{4}-x^{2}\right )}{2} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
2.750 |
|
| \begin{align*}
e y^{\prime \prime }&=-\frac {\left (w L +P \right ) x}{2}-\frac {w \,x^{2}}{2} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
2.721 |
|
| \begin{align*}
e y^{\prime \prime }&=-P \left (L -x \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
2.027 |
|
| \begin{align*}
e y^{\prime \prime }&=-P L +\left (w L +P \right ) x -\frac {w \left (L^{2}+x^{2}\right )}{2} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
2.576 |
|
| \begin{align*}
e y^{\prime \prime }&=P \left (-y+a \right ) \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
13.066 |
|
| \begin{align*}
y^{\prime \prime }&=\cos \left (x \right ) \\
\end{align*} | [[_2nd_order, _quadrature]] | ✓ | ✓ | ✓ | ✓ | 1.811 |
|
| \begin{align*}
y^{\prime \prime }&=-a^{2} y \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
5.720 |
|
| \begin{align*}
x&=y^{\prime \prime }+y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.661 |
|
| \begin{align*}
y^{\prime \prime }-k^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
7.502 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }-54 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.184 |
|
| \begin{align*}
y^{\prime \prime }-m^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.098 |
|
| \begin{align*}
2 y^{\prime \prime }+5 y^{\prime }-12 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.176 |
|
| \begin{align*}
9 y^{\prime \prime }+18 y^{\prime }-16 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.171 |
|
| \begin{align*}
y^{\prime \prime }+8 y^{\prime }+25 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.234 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{4 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.274 |
|
| \begin{align*}
y^{\prime \prime }-y&=2+5 x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=3 \,{\mathrm e}^{\frac {5 x}{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.368 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=2 \sin \left (\frac {x}{2}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.370 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{2 x} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.337 |
|
| \begin{align*}
y^{\prime \prime }+2 y&=x^{2} {\mathrm e}^{3 x}+{\mathrm e}^{x} \cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.981 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=x \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| \begin{align*}
y^{\prime \prime }-y&=x^{2} \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.457 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=\sin \left (3 x \right )+{\mathrm e}^{x}+x^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.609 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=x +{\mathrm e}^{m x} \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.309 |
|
| \begin{align*}
y^{\prime \prime }-a^{2} y&={\mathrm e}^{a x}+{\mathrm e}^{n x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.596 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=x^{2} {\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.380 |
|
| \begin{align*}
y^{\prime \prime }+n^{2} y&={\mathrm e}^{x} x^{4} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.483 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=\sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.443 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+4 y&={\mathrm e}^{x} \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.404 |
|
| \begin{align*}
y^{\prime \prime }-y&=x \sin \left (x \right )+\left (x^{2}+1\right ) {\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.690 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&={\mathrm e}^{x} \cos \left (2 x \right )+\cos \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.854 |
|
| \begin{align*}
20 y-9 y^{\prime }+y^{\prime \prime }&=20 x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.275 |
|
| \begin{align*}
y^{\prime \prime }&=x^{2} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.833 |
|
| \begin{align*}
y^{\prime \prime }+a^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.836 |
|
| \begin{align*}
y^{\prime \prime }&=\frac {a}{x} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.717 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.697 |
|
| \begin{align*}
a y^{\prime \prime }&=y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.644 |
|
| \begin{align*}
y^{\prime \prime }-n^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.855 |
|
| \begin{align*}
2 x^{\prime \prime }+5 x^{\prime }-12 x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.195 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }-54 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.180 |
|
| \begin{align*}
9 x^{\prime \prime }+18 x^{\prime }-16 x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.193 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.229 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{4 x} \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.284 |
|
| \begin{align*}
y^{\prime \prime }-y&=2+5 x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.279 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-15 y&=15 x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.321 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.566 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{\frac {5 x}{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.380 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&={\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.411 |
|
| \begin{align*}
y^{\prime \prime }+2 p y^{\prime }+\left (p^{2}+q^{2}\right ) y&={\mathrm e}^{k x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.650 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=\sin \left (2 x \right )+\cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.607 |
|
| \begin{align*}
4 y+y^{\prime \prime }&={\mathrm e}^{x}+\sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.640 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=2 \sin \left (\frac {x}{2}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.311 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (3 x \right )-\cos \left (\frac {x}{2}\right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.890 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&={\mathrm e}^{2 x} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.422 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+4 y&={\mathrm e}^{x} \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.424 |
|
| \begin{align*}
y^{\prime \prime }-y&=\cos \left (x \right ) \cosh \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.599 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }-12 y&=\left (x -1\right ) {\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.399 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=\cos \left (x \right ) x \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.490 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \sin \left (x \right ) x \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.459 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=8 x^{2} {\mathrm e}^{2 x} \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.701 |
|
| \begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{-x}+\cos \left (x \right )+x^{3}+{\mathrm e}^{x} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.314 |
|
| \begin{align*}
y^{\prime \prime }+y&=3 \cos \left (x \right )^{2}+2 \sin \left (x \right )^{3} \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 1.436 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+10 y+37 \sin \left (3 x \right )&=0 \\
y \left (\frac {\pi }{2}\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.593 |
|
| \begin{align*}
y^{\prime \prime }&=x +\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.021 |
|
| \begin{align*}
y^{\prime \prime }&=x \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.867 |
|
| \begin{align*}
y^{\prime \prime }&=\frac {a}{x} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.031 |
|
| \begin{align*}
y^{\prime \prime }&=y \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.059 |
|
| \begin{align*}
y^{\prime \prime }-a^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.516 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.851 |
|
| \begin{align*}
a y^{\prime \prime }&=y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.106 |
|
| \begin{align*}
y^{\prime \prime }+a^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.428 |
|
| \begin{align*}
y^{\prime \prime }+y&=x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.545 |
|
| \begin{align*}
y^{\prime \prime }+y&=\csc \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.644 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=4 \tan \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.863 |
|
| \begin{align*}
y^{\prime \prime }-y&=\frac {2}{{\mathrm e}^{x}+1} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.455 |
|
| \begin{align*}
2 y^{\prime \prime }+9 y^{\prime }-18 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.230 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+y&=a \cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.466 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=x \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.622 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=x^{2} {\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.480 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=2 \sinh \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.662 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=x \sin \left (x \right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.591 |
|
| \begin{align*}
y^{\prime \prime }&=x^{2} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.343 |
|
| \begin{align*}
y^{\prime \prime }&=\sec \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.599 |
|
| \begin{align*}
20 y-9 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.218 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }+4 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.706 |
|
| \begin{align*}
8 y^{\prime \prime }+4 y^{\prime }+y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.608 |
|
| \begin{align*}
x^{\prime \prime }-x^{\prime }-6 x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.702 |
|
| \begin{align*}
x^{\prime \prime }-3 x^{\prime }+2 x&=6 \,{\mathrm e}^{3 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.370 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=10 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.323 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=5+10 \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.691 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=3 \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.361 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }-6 y&=3 \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.462 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right )^{3} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.003 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=3 x^{2} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.008 |
|
| \begin{align*}
y^{\prime \prime }-y&={\mathrm e}^{x}+1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.433 |
|
| \begin{align*}
y^{\prime \prime }+y&=\tan \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.649 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=6 x \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.491 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{2 x}}{\left ({\mathrm e}^{x}+1\right )^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.872 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=\cos \left ({\mathrm e}^{x}\right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.716 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=20 \,{\mathrm e}^{-2 x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.668 |
|
| \begin{align*}
y^{\prime \prime }+y&=2 \sin \left (3 x \right ) \\
y \left (0\right ) &= 5 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.772 |
|
| \begin{align*}
y^{\prime \prime }+y&=1+2 \cos \left (x \right ) \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.838 |
|
| \begin{align*}
x^{\prime \prime }+x&=5 t^{2} \\
x \left (0\right ) &= 4 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.687 |
|
| \begin{align*}
x^{\prime \prime }+x&=2 \tan \left (t \right ) \\
x \left (0\right ) &= 4 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.270 |
|
| \begin{align*}
y^{\prime \prime }-k^{2} y&=f \left (x \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.314 |
|
| \begin{align*}
y^{\prime \prime }-y&={\mathrm e}^{-x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.516 |
|
| \begin{align*}
y^{\prime \prime }-4 y&={\mathrm e}^{2 x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.603 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&={\mathrm e}^{x} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.623 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&={\mathrm e}^{x} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.732 |
|
| \begin{align*}
u^{\prime \prime }+2 a u^{\prime }+\omega ^{2} u&=c \cos \left (\omega t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.920 |
|
| \begin{align*}
x^{\prime \prime }+x&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.362 |
|
| \begin{align*}
x^{\prime \prime }+4 x&=0 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
4.804 |
|
| \begin{align*}
2 x^{\prime \prime }+x^{\prime }-x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.244 |
|
| \begin{align*}
x^{\prime \prime }+2 x^{\prime }+2 x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.430 |
|
| \begin{align*}
x^{\prime \prime }+8 x^{\prime }+16 x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.312 |
|
| \begin{align*}
x^{\prime \prime }+2 x^{\prime }-15 x&=0 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.373 |
|
| \begin{align*}
x^{\prime \prime }-3 x^{\prime }+2 x&=0 \\
x \left (1\right ) &= 0 \\
x^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.435 |
|
| \begin{align*}
4 x^{\prime }+2 x^{\prime \prime }&=-5 x \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.681 |
|
| \begin{align*}
x^{\prime \prime }-6 x^{\prime }+9 x&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.482 |
|
| \begin{align*}
x^{\prime \prime }+x^{\prime }-\beta x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.542 |
|
| \begin{align*}
x^{\prime \prime }+4 x^{\prime }+k x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.570 |
|
| \begin{align*}
x^{\prime \prime }+b x^{\prime }+c x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.814 |
|
| \begin{align*}
x^{\prime \prime }+5 x^{\prime }+6 x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.231 |
|
| \begin{align*}
x^{\prime \prime }+p x^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.922 |
|
| \begin{align*}
x^{\prime \prime }+x^{\prime }-2 x&=0 \\
x \left (0\right ) &= a \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.351 |
|
| \begin{align*}
x^{\prime \prime }-2 x^{\prime }+2 x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.422 |
|
| \begin{align*}
x^{\prime \prime }-2 a x^{\prime }+b x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.788 |
|
| \begin{align*}
x^{\prime \prime }+\lambda ^{2} x&=0 \\
x \left (0\right ) &= 0 \\
x \left (\pi \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.337 |
|
| \begin{align*}
x^{\prime \prime }+x&=0 \\
x \left (a \right ) &= 0 \\
x \left (b \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.115 |
|
| \begin{align*}
x^{\prime \prime }-x&=0 \\
x \left (0\right ) &= 0 \\
x \left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.962 |
|
| \begin{align*}
x^{\prime \prime }+x^{\prime }-2 x&=0 \\
x \left (0\right ) &= 0 \\
x \left (\infty \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| \begin{align*}
x^{\prime \prime }-2 x^{\prime }+5 x&=0 \\
x \left (0\right ) &= 0 \\
x \left (\frac {\pi }{4}\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.478 |
|
| \begin{align*}
x^{\prime \prime }-2 x^{\prime }+5 x&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (\theta \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.412 |
|
| \begin{align*}
x^{\prime \prime }-4 x&=t \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.368 |
|
| \begin{align*}
x^{\prime \prime }-4 x&=4 t^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.382 |
|
| \begin{align*}
x^{\prime \prime }+x&=t^{2}-2 t \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.556 |
|
| \begin{align*}
x^{\prime \prime }+x&=3 t^{2}+t \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.548 |
|
| \begin{align*}
x^{\prime \prime }-x&={\mathrm e}^{-3 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| \begin{align*}
x^{\prime \prime }-x&=3 \,{\mathrm e}^{2 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| \begin{align*}
x^{\prime \prime }-x&={\mathrm e}^{2 t} t \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.423 |
|
| \begin{align*}
x^{\prime \prime }-3 x^{\prime }-x&=t^{2}+t \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.512 |
|
| \begin{align*}
x^{\prime \prime }-4 x^{\prime }+13 x&=20 \,{\mathrm e}^{t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.655 |
|
| \begin{align*}
x^{\prime \prime }-x^{\prime }-2 x&=2 t +{\mathrm e}^{t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.420 |
|
| \begin{align*}
x^{\prime \prime }+4 x&=\cos \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.657 |
|
| \begin{align*}
x^{\prime \prime }+x&=\sin \left (2 t \right )-\cos \left (3 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.008 |
|
| \begin{align*}
x^{\prime \prime }+2 x^{\prime }+2 x&=\cos \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.618 |
|
| \begin{align*}
x^{\prime \prime }+x&=t \sin \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.787 |
|
| \begin{align*}
x^{\prime \prime }-x^{\prime }&=t \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.126 |
|
| \begin{align*}
x^{\prime \prime }-x&={\mathrm e}^{k t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.406 |
|
| \begin{align*}
x^{\prime \prime }-x^{\prime }-2 x&=3 \,{\mathrm e}^{-t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.402 |
|
| \begin{align*}
x^{\prime \prime }-3 x^{\prime }+2 x&=3 \,{\mathrm e}^{t} t \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.434 |
|
| \begin{align*}
x^{\prime \prime }-4 x^{\prime }+3 x&=2 \,{\mathrm e}^{t}-5 \,{\mathrm e}^{2 t} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.562 |
|
| \begin{align*}
x^{\prime \prime }+2 x&=\cos \left (t \sqrt {2}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.763 |
|
| \begin{align*}
x^{\prime \prime }+4 x&=\sin \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.639 |
|
| \begin{align*}
x^{\prime \prime }+x&=2 \sin \left (t \right )+2 \cos \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.813 |
|
| \begin{align*}
x^{\prime \prime }+9 x&=\sin \left (t \right )+\sin \left (3 t \right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 1.101 |
|
| \begin{align*}
x^{\prime \prime }-x&=t \\
x \left (0\right ) &= 0 \\
x \left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.474 |
|
| \begin{align*}
x^{\prime \prime }+4 x^{\prime }+x&=k \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.603 |
|
| \begin{align*}
x^{\prime \prime }-2 x&=2 \,{\mathrm e}^{t} \\
x \left (0\right ) &= 0 \\
x \left (a \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.664 |
|
| \begin{align*}
x^{\prime \prime }+x^{\prime }+x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.531 |
|
| \begin{align*}
x^{\prime \prime }+2 x^{\prime }-x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| \begin{align*}
x^{\prime \prime }+2 x^{\prime }+x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.340 |
|
| \begin{align*}
x^{\prime \prime }+2 h x^{\prime }+k^{2} x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.864 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.244 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
4.929 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.553 |
|
| \begin{align*}
y^{\prime \prime }+b y^{\prime }+c y&=f \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.590 |
|
| \begin{align*}
x^{\prime \prime }-4 x&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
4.438 |
|
| \begin{align*}
y^{\prime \prime }-5 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.631 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.251 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.343 |
|
| \begin{align*}
x^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.289 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.348 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.609 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-y&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.294 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.629 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.789 |
|
| \begin{align*}
5 y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.562 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.560 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.416 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-2 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.569 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.542 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+10 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.676 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-6 y&=0 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.420 |
|
| \begin{align*}
y^{\prime \prime }+16 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.575 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+25 y&=0 \\
y \left (0\right ) &= -3 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.726 |
|
| \begin{align*}
y^{\prime \prime }-\frac {6 y^{\prime }}{5}+\frac {9 y}{25}&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.555 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.465 |
|
| \begin{align*}
y^{\prime \prime }&=9 x^{2}+2 x -1 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.577 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.541 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&=x^{2}+2 x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.454 |
|
| \begin{align*}
5 y+2 y^{\prime }+y^{\prime \prime }&=x^{3}+3 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.672 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-6 y&=2 x^{3}+5 x^{2}-7 x +2 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.468 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.685 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.440 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=\sin \left (x \right )+\sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.160 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+5 y&=2 \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.691 |
|
| \begin{align*}
5 y+2 y^{\prime }+y^{\prime \prime }&=3 \sin \left (x +\frac {\pi }{4}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.724 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=2 x^{2}+{\mathrm e}^{x}+2 x \,{\mathrm e}^{x}+4 \,{\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.030 |
|
| \begin{align*}
5 y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.673 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=3 \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.457 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\left (x^{2}-1\right ) {\mathrm e}^{2 x}+\left (3 x +4\right ) {\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.155 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+8 y&=\left (10 x^{2}+21 x +9\right ) \sin \left (3 x \right )+x \cos \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.953 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=2 \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.430 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=2 x -40 \cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.691 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&=2 \,{\mathrm e}^{x}-10 \sin \left (x \right ) \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.873 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&=x^{2}+2 x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.400 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=\frac {1}{1+{\mathrm e}^{-x}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.449 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.373 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x} \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.837 |
|
| \begin{align*}
y^{\prime \prime }-y&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.442 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \tan \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.729 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=\sec \left (2 x \right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.829 |
|
| \begin{align*}
y^{\prime \prime }+y&=\csc \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.565 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.630 |
|
| \begin{align*}
y^{\prime \prime }+y&=\tan \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.598 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.915 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.273 |
|
| \begin{align*}
y^{\prime \prime }&=\cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.504 |
|
| \begin{align*}
y^{\prime \prime }+k^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
4.260 |
|
| \begin{align*}
2 y^{\prime \prime }+5 y^{\prime }-12 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.233 |
|
| \begin{align*}
y^{\prime \prime }-y&=2 x +{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.418 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&=16 x^{3} {\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.701 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=x \,{\mathrm e}^{x}+7 x -2 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.599 |
|
| \begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.584 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.560 |
|
| \begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{x} \cos \left (x \right ) x \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.921 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+3 y&={\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| \begin{align*}
y^{\prime \prime }-y&=x^{2}-x +1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{2 x} \left (x +1\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.540 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-12 y&={\mathrm e}^{x} x^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.427 |
|
| \begin{align*}
y^{\prime \prime }+2 b y^{\prime }+y&=k \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 1.242 |
|
| \begin{align*}
m y^{\prime \prime }+a y^{\prime }+k y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.542 |
|
| \begin{align*}
y^{\prime \prime }+\omega ^{2} y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= v \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
9.883 |
|
| \begin{align*}
\theta ^{\prime \prime }+4 \theta &=15 \cos \left (3 t \right ) \\
\theta \left (0\right ) &= 0 \\
\theta ^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.105 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.889 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-3 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.375 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-3 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.342 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 0 \\
y \left (\frac {\pi }{4}\right ) &= 7 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
7.242 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 4 \\
y \left (\pi \right ) &= 4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✗ |
2.327 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 0 \\
y \left (L \right ) &= 7 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.780 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.678 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=6 y+5 \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.539 |
|
| \begin{align*}
y^{\prime \prime }-12 y^{\prime }+35 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.301 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.158 |
|
| \begin{align*}
9 y^{\prime \prime }-30 y^{\prime }+25 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| \begin{align*}
3 y^{\prime \prime }-4 y^{\prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.646 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y+8 \,{\mathrm e}^{-x}+3 x&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.535 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=2 \tan \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.735 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }&=6 x^{5} {\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.545 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=x \,{\mathrm e}^{2 x} \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.631 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=4 \cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.716 |
|
| \begin{align*}
y^{\prime \prime }+2 a y^{\prime }+a^{2} y&=x^{2} {\mathrm e}^{-a x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.745 |
|
| \begin{align*}
9 y+6 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{-x} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.751 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=x \sin \left (x \right ) \\
y \left (0\right ) &= {\frac {7}{9}} \\
y \left (\frac {\pi }{2}\right ) &= \frac {\pi }{6}-1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.186 |
|
| \begin{align*}
y^{\prime \prime }+3 y&=0 \\
y \left (0\right ) &= -2 \\
y \left (1\right ) &= \left (1-3 \,{\mathrm e}^{3}\right ) {\mathrm e}^{-3} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
26.830 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y+8 \,{\mathrm e}^{-x}+3 x&=0 \\
y \left (0\right ) &= -{\frac {2}{3}} \\
y \left (1\right ) &= 2 \,{\mathrm e}^{-1}+\frac {1}{3} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.670 |
|
| \begin{align*}
9 y+6 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.437 |
|
| \begin{align*}
k^{2} y^{\prime \prime }+2 k y^{\prime }+\left (k^{2}+1\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.414 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{-2 x}}{x^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.657 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=\sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.680 |
|
| \begin{align*}
x^{\prime \prime }+2 x^{\prime }+2 x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.558 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+13 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.550 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.201 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.258 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.675 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=0 \\
y \left (\frac {\pi }{8}\right ) &= 0 \\
y \left (\frac {\pi }{6}\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.237 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.695 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.277 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.847 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.174 |
|
| \begin{align*}
y^{\prime \prime }-7 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.685 |
|
| \begin{align*}
y^{\prime \prime }-5 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.188 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.259 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.906 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.294 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.224 |
|
| \begin{align*}
y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.530 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.533 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-30 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.181 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.215 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.694 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.201 |
|
| \begin{align*}
y^{\prime \prime }-7 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.104 |
|
| \begin{align*}
9 y+6 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.226 |
|
| \begin{align*}
3 y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.274 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }-5 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.217 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+\frac {y}{4}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.228 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=4 x^{2} \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.330 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.286 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=\sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.336 |
|
| \begin{align*}
y^{\prime \prime }&=9 x^{2}+2 x -1 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.727 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=x^{2}-1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.353 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=3 \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.370 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=4 \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.468 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=3 \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.376 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=x \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.436 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.288 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x^{5}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.405 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=\sin \left (2 x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.481 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=4 x^{2} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.429 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x} \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.661 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+8 y&=\sin \left (x \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.563 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{3 x} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.421 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{3 x} \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.412 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.268 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{3 x} \\
y \left (1\right ) &= 2 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.430 |
|
| \begin{align*}
y^{\prime \prime }+y&=x \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.448 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=\sin \left (2 x \right )^{2} \\
y \left (\pi \right ) &= 0 \\
y^{\prime }\left (\pi \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.532 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (2\right ) &= 0 \\
y^{\prime }\left (2\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.608 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=\sin \left (2 x \right )+\cos \left (2 x \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.542 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-3 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.203 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-3 y&=9 x \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.383 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y \left (\frac {\pi }{2}\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.586 |
|
| \begin{align*}
y^{\prime \prime }+y&=x \\
y \left (0\right ) &= 0 \\
y \left (\frac {\pi }{2}\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.360 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y \left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.869 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= -1 \\
y \left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.658 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (\frac {\pi }{2}\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.602 |
|
| \begin{align*}
y^{\prime \prime }+y&=x \\
y \left (\frac {\pi }{2}\right ) &= \frac {\pi }{2} \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.292 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }-5 y&={\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.301 |
|
| \begin{align*}
x^{\prime \prime }-3 x&=\sin \left (y \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.411 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }-10 y&=6 \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.271 |
|
| \begin{align*}
s^{\prime \prime }&=-9 s \\
s \left (0\right ) &= 9 \\
s^{\prime }\left (0\right ) &= 18 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.164 |
|
| \begin{align*}
x^{\prime \prime }&=t^{2}-4 t +8 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= -3 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.869 |
|
| \begin{align*}
y^{\prime \prime }&=12 x \left (4-x \right ) \\
y \left (0\right ) &= 7 \\
y \left (1\right ) &= 0 \\
\end{align*} | [[_2nd_order, _quadrature]] | ✓ | ✓ | ✓ | ✓ | 1.659 |
|
| \begin{align*}
y^{\prime \prime }&=1-\cos \left (x \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.086 |
|
| \begin{align*}
y^{\prime \prime }&=\sqrt {2 x +1} \\
y \left (0\right ) &= 5 \\
y \left (4\right ) &= -3 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.837 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }-4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.182 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }-4 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.289 |
|
| \begin{align*}
y^{\prime \prime }-y&=4 x \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| \begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{-x^{2}} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.718 |
|
| \begin{align*}
y^{\prime \prime }+\lambda y&=0 \\
y \left (0\right ) &= 0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.078 |
|
| \begin{align*}
y^{\prime \prime }&=2 x \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 10 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.112 |
|
| \begin{align*}
i^{\prime \prime }&=t^{2}+1 \\
i \left (0\right ) &= 2 \\
i^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.106 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.261 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.067 |
|
| \begin{align*}
y^{\prime \prime }&=y^{\prime }+2 x \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.082 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=x^{3} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.321 |
|
| \begin{align*}
s^{\prime \prime }+b s^{\prime }+\omega ^{2} s&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.341 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.272 |
|
| \begin{align*}
y^{\prime \prime }-y&={\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.289 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=x^{2} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.407 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.255 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&={\mathrm e}^{-x} \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.275 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.296 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }-5 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.163 |
|
| \begin{align*}
4 y^{\prime \prime }-25 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.926 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.754 |
|
| \begin{align*}
i^{\prime \prime }-4 i^{\prime }+2 i&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.202 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -3 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.993 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.270 |
|
| \begin{align*}
y^{\prime \prime }-\left (m_{1} +m_{2} \right ) y^{\prime }+m_{1} m_{2} y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.392 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.222 |
|
| \begin{align*}
16 y^{\prime \prime }-8 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| \begin{align*}
4 i^{\prime \prime }-12 i^{\prime }+9 i&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.217 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.349 |
|
| \begin{align*}
s^{\prime \prime }+16 s^{\prime }+64 s&=0 \\
s \left (0\right ) &= 0 \\
s^{\prime }\left (0\right ) &= -4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✗ |
0.350 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.968 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.186 |
|
| \begin{align*}
4 y^{\prime \prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.767 |
|
| \begin{align*}
4 y^{\prime \prime }-8 y^{\prime }+7 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.252 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.766 |
|
| \begin{align*}
u^{\prime \prime }+16 u&=0 \\
u \left (0\right ) &= 0 \\
u^{\prime }\left (0\right ) &= 4 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.787 |
|
| \begin{align*}
i^{\prime \prime }+2 i^{\prime }+5 i&=0 \\
i \left (0\right ) &= 2 \\
i^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.348 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.231 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.218 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-3 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.161 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.201 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.156 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.195 |
|
| \begin{align*}
y^{\prime \prime }+y&=2 \,{\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.293 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=4 \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.418 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=8 x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.252 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x}+15 x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| \begin{align*}
4 i^{\prime \prime }+i&=t^{2}+2 \cos \left (4 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.535 |
|
| \begin{align*}
y^{\prime \prime }+16 y&=5 \sin \left (x \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.542 |
|
| \begin{align*}
s^{\prime \prime }-3 s^{\prime }+2 s&=8 t^{2}+12 \,{\mathrm e}^{-t} \\
s \left (0\right ) &= 0 \\
s^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.490 |
|
| \begin{align*}
y^{\prime \prime }+y&=6 \cos \left (x \right )^{2} \\
y \left (0\right ) &= 0 \\
y \left (\frac {\pi }{2}\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.556 |
|
| \begin{align*}
L q^{\prime \prime }+R q^{\prime }+\frac {q}{c}&=E_{0} \sin \left (\omega t \right ) \\
q \left (0\right ) &= 0 \\
q^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.479 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=4 \sin \left (3 x \right )^{3} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.602 |
|
| \begin{align*}
y^{\prime \prime }+y&=\left \{\begin {array}{cc} x & 0\le x \le \pi \\ 0 & \pi <x \end {array}\right . \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.894 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-3 y&=2 \,{\mathrm e}^{x} \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.351 |
|
| \begin{align*}
y^{\prime \prime }+y&=x^{2}+\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.414 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=x^{2}+3 x +{\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.830 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.337 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=8 \cos \left (2 x \right )-4 x \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.420 |
|
| \begin{align*}
i^{\prime \prime }+9 i&=12 \cos \left (3 t \right ) \\
i \left (0\right ) &= 4 \\
i^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.510 |
|
| \begin{align*}
s^{\prime \prime }+s^{\prime }&=t +{\mathrm e}^{-t} \\
s \left (0\right ) &= 0 \\
s^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.008 |
|
| \begin{align*}
y^{\prime \prime }+y&=x \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.388 |
|
| \begin{align*}
y^{\prime \prime }+\omega ^{2} y&=A \cos \left (\lambda x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.505 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=\sin \left (x \right )^{4} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.713 |
|
| \begin{align*}
y^{\prime \prime }+y&=x \,{\mathrm e}^{-x}+3 \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.638 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&=\sin \left (2 x \right ) x +x^{3} {\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.687 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-y&={\mathrm e}^{x} x^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.333 |
|
| \begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{-x} \cos \left (x \right )+2 x \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.591 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=3 \,{\mathrm e}^{x}+2 \,{\mathrm e}^{-x}+x^{3} {\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.449 |
|
| \begin{align*}
y^{\prime \prime }-y&=x \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.369 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=x^{2}+3 x \cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.646 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=\sin \left (3 x \right )+x \,{\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.860 |
|
| \begin{align*}
q^{\prime \prime }+q&=t \sin \left (t \right )+\cos \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.550 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \left (1+\cos \left (2 x \right )\right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.389 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=\cos \left (x \right ) \cos \left (2 x \right ) \cos \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.056 |
|
| \begin{align*}
y^{\prime \prime }+y&=x^{2} \cos \left (5 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.636 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cot \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.419 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.377 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=\csc \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.570 |
|
| \begin{align*}
y^{\prime \prime }-y&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.330 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=3 \,{\mathrm e}^{-2 x}+x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.330 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=\ln \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.437 |
|
| \begin{align*}
2 y^{\prime \prime }+3 y^{\prime }+y&={\mathrm e}^{-3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.288 |
|
| \begin{align*}
y^{\prime \prime }-y&={\mathrm e}^{x} x^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.367 |
|
| \begin{align*}
y^{\prime \prime }-y&={\mathrm e}^{-x^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.429 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=\sqrt {x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.549 |
|
| \begin{align*}
y^{\prime \prime }-y&=1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.219 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.333 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{x}-{\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.434 |
|
| \begin{align*}
y^{\prime \prime }-y&=2 x^{4}-3 x +1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.289 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=4 x^{3}-2 \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.858 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=x^{2} {\mathrm e}^{-x}+1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.471 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 x} \sin \left (3 x \right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.388 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&={\mathrm e}^{4 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.249 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=x^{3} {\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.300 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=2 x^{2} {\mathrm e}^{-2 x}+3 \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.445 |
|
| \begin{align*}
y^{\prime \prime }+y&=x^{2} \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.448 |
|
| \begin{align*}
y^{\prime \prime }+3 y&=x^{2}+1 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.459 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.294 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x}+{\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.511 |
|
| \begin{align*}
i^{\prime \prime }+2 i^{\prime }+5 i&=34 \cos \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.379 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=x \,{\mathrm e}^{2 x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.517 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=x \left (\cos \left (x \right )+1\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.489 |
|
| \begin{align*}
r^{\prime \prime }-2 r&=-{\mathrm e}^{-2 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.323 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.628 |
|
| \begin{align*}
4 y^{\prime \prime }-4 y^{\prime }+y&=\ln \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.507 |
|
| \begin{align*}
y^{\prime \prime }+\lambda y&=0 \\
y \left (0\right ) &= 0 \\
y \left (\pi \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.015 |
|
| \begin{align*}
Q^{\prime \prime }+k Q&=e \left (t \right ) \\
Q \left (0\right ) &= q_{0} \\
Q^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.823 |
|
| \begin{align*}
y^{\prime \prime }&=f \left (x \right ) \\
y \left (0\right ) &= 0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.766 |
|
| \begin{align*}
y^{\prime \prime }+y&=f \left (x \right ) \\
y \left (0\right ) &= 0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.823 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.165 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }+4 y&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.177 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=0 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.864 |
|
| \begin{align*}
y^{\prime \prime }+7 y^{\prime }-8 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.175 |
|
| \begin{align*}
3 x^{\prime \prime }+19 x^{\prime }-14 x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.187 |
|
| \begin{align*}
8 y^{\prime \prime }-10 y^{\prime }+3 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.299 |
|
| \begin{align*}
y^{\prime \prime }-9 y^{\prime }+18 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.178 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-63 y&=0 \\
y \left (0\right ) &= 5 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.285 |
|
| \begin{align*}
20 y^{\prime \prime }-3 y^{\prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.179 |
|
| \begin{align*}
35 y^{\prime \prime }-29 y^{\prime }+6 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.185 |
|
| \begin{align*}
3 y^{\prime \prime }+2 y^{\prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.209 |
|
| \begin{align*}
12 x^{\prime \prime }-25 x^{\prime }+12 x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.180 |
|
| \begin{align*}
38 x^{\prime \prime }+10 x^{\prime }-3 x&=0 \\
x \left (0\right ) &= 5 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.381 |
|
| \begin{align*}
2 y^{\prime \prime }-15 y^{\prime }+27 y&=0 \\
y \left (0\right ) &= 7 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.306 |
|
| \begin{align*}
y^{\prime \prime }-3 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.272 |
|
| \begin{align*}
y^{\prime \prime }-8 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.490 |
|
| \begin{align*}
4 y^{\prime \prime }-7 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.010 |
|
| \begin{align*}
z^{\prime \prime }-3 z^{\prime }+z&=0 \\
z \left (0\right ) &= 1 \\
z^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.374 |
|
| \begin{align*}
y^{\prime \prime }+8 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.214 |
|
| \begin{align*}
x^{\prime \prime }+36 x&=0 \\
x \left (0\right ) &= 5 \\
x \left (\frac {\pi }{12}\right ) &= 7 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.852 |
|
| \begin{align*}
y^{\prime \prime }+3 y&=0 \\
y \left (0\right ) &= 0 \\
y \left (\frac {\pi \sqrt {3}}{6}\right ) &= 4 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.989 |
|
| \begin{align*}
z^{\prime \prime }+g z&=0 \\
z \left (\frac {\pi }{3 \sqrt {g}}\right ) &= 5 \\
z \left (\frac {2 \pi }{3 \sqrt {g}}\right ) &= \frac {\pi }{3} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
4.304 |
|
| \begin{align*}
9 y^{\prime \prime }+49 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.477 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+3 y&=0 \\
y \left (0\right ) &= 1 \\
y \left (\frac {\pi \sqrt {3}}{3}\right ) &= 5 \,{\mathrm e}^{-\frac {\pi \sqrt {3}}{2}} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| \begin{align*}
x^{\prime \prime }+2 x^{\prime }+4 x&=0 \\
x \left (0\right ) &= 5 \\
x \left (\frac {\pi \sqrt {3}}{6}\right ) &= 2 \,{\mathrm e}^{-\frac {\pi \sqrt {3}}{6}} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.396 |
|
| \begin{align*}
z^{\prime \prime }-7 z^{\prime }-13 z&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.262 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.267 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }+8 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.190 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.219 |
|
| \begin{align*}
x^{\prime \prime }-2 x^{\prime }+x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.215 |
|
| \begin{align*}
z^{\prime \prime }+6 z^{\prime }+9 z&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.226 |
|
| \begin{align*}
z^{\prime \prime }+8 z^{\prime }+16 z&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.220 |
|
| \begin{align*}
y^{\prime \prime }-9 y&=5 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.215 |
|
| \begin{align*}
y^{\prime \prime }-3 y&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.296 |
|
| \begin{align*}
x^{\prime \prime }-3 x^{\prime }-4 x&=3 \cos \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.350 |
|
| \begin{align*}
z^{\prime \prime }-3 z^{\prime }+2 z&=4 \sin \left (3 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.344 |
|
| \begin{align*}
x^{\prime \prime }-6 x^{\prime }-7 x&=4 z -7 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.304 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+5 y&=4 \,{\mathrm e}^{3 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.410 |
|
| \begin{align*}
x^{\prime \prime }-2 x^{\prime }+5 x&=3 \cos \left (2 t \right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.380 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+8 y&=4 \sin \left (5 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.432 |
|
| \begin{align*}
x^{\prime \prime }+9 x^{\prime }+8 x&=\sin \left (5 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.360 |
|
| \begin{align*}
x^{\prime \prime }-9 x^{\prime }-10 x&=\cos \left (4 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| \begin{align*}
y^{\prime \prime }-9 y^{\prime }+14 y&={\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.338 |
|
| \begin{align*}
z^{\prime \prime }-4 z&=\sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.387 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-15 y&={\mathrm e}^{4 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.289 |
|
| \begin{align*}
x^{\prime \prime }+3 x^{\prime }&={\mathrm e}^{-3 t} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.782 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }&=7 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.813 |
|
| \begin{align*}
z^{\prime \prime }+2 z^{\prime }&=3 \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.927 |
|
| \begin{align*}
s^{\prime \prime }&=5 t^{2}-7 t \\
s \left (0\right ) &= 0 \\
s \left (1\right ) &= {\frac {1}{4}} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.738 |
|
| \begin{align*}
s^{\prime \prime }&=-9 s \\
s \left (0\right ) &= 9 \\
s^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
5.756 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.288 |
|
| \begin{align*}
y^{\prime \prime }-y&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.342 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }+4 y&=x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.294 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.344 |
|
| \begin{align*}
y^{\prime \prime }-11 y^{\prime }+30 y&={\mathrm e}^{5 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.308 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| \begin{align*}
2 y^{\prime \prime }-3 y^{\prime }-5 y&=2 \sin \left (2 x \right )+3 \cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.374 |
|
| \begin{align*}
y^{\prime \prime }-7 y^{\prime }+2 y&={\mathrm e}^{2 x} \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.335 |
|
| \begin{align*}
2 y^{\prime \prime }-4 y^{\prime }-y&=7 \,{\mathrm e}^{5 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.392 |
|
| \begin{align*}
y^{\prime \prime }+2 y&=7 \cos \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.409 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-y&=2 \cos \left (3 x \right )-3 \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.564 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=5 x^{3} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.378 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=2 x^{3}+7 x^{2}-x \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=5 \sin \left (x \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.487 |
|
| \begin{align*}
x^{\prime \prime }-3 x^{\prime }+2 x&=5 \cos \left (t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.486 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=x \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.407 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=8 \sin \left (2 x \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.633 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=1+x^{2}+{\mathrm e}^{-2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.346 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+13 y&={\mathrm e}^{2 x} \sin \left (3 x \right ) \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= -{\frac {25}{6}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.592 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=x^{2} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.510 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=12 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.171 |
|
| \begin{align*}
x^{\prime \prime }+4 x&=\sin \left (2 t \right )+2 t \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.575 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} x^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.397 |
|
| \begin{align*}
16 y+8 y^{\prime }+y^{\prime \prime }&=x \left (12-{\mathrm e}^{-4 x}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.445 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+4 y&={\mathrm e}^{x} \cos \left (x \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.512 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.666 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.643 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.610 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.843 |
|
| \begin{align*}
m s^{\prime \prime }&=\frac {g \,t^{2}}{2} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.865 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.216 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cos \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.402 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=3 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.955 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.847 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.018 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }-6 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.183 |
|
| \begin{align*}
y^{\prime \prime }&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.816 |
|
| \begin{align*}
y^{\prime \prime }&=3 x \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.780 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.511 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.927 |
|
| \begin{align*}
y^{\prime \prime }+a^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.293 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.171 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.237 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.245 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.702 |
|
| \begin{align*}
2 y^{\prime \prime }-3 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.185 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.946 |
|
| \begin{align*}
y^{\prime \prime }-7 y^{\prime }+6 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.192 |
|
| \begin{align*}
3 y^{\prime \prime }+48 y^{\prime }+192 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.231 |
|
| \begin{align*}
3 y^{\prime \prime }+y^{\prime }-2 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.318 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.665 |
|
| \begin{align*}
y^{\prime \prime }+a^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.933 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }+6 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.292 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.176 |
|
| \begin{align*}
2 y^{\prime \prime }+3 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.218 |
|
| \begin{align*}
2 y^{\prime \prime }+3 y^{\prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.183 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.295 |
|
| \begin{align*}
3 y^{\prime \prime }-5 y^{\prime }+3 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.287 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.250 |
|
| \begin{align*}
2 y^{\prime \prime }-4 y^{\prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.210 |
|
| \begin{align*}
4 y^{\prime \prime }-3 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.291 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.280 |
|
| \begin{align*}
2 y^{\prime \prime }+y&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.983 |
|
| \begin{align*}
y^{\prime \prime }+16 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.089 |
|
| \begin{align*}
2 y^{\prime \prime }+14 y^{\prime }+25 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.239 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.197 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.963 |
|
| \begin{align*}
4 y^{\prime \prime }-8 y^{\prime }+5 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.221 |
|
| \begin{align*}
2 y^{\prime \prime }-6 y^{\prime }+5 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.237 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.856 |
|
| \begin{align*}
2 y^{\prime \prime }-6 y^{\prime }+5 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.192 |
|
| \begin{align*}
y^{\prime \prime }+25 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.765 |
|
| \begin{align*}
2 y^{\prime \prime }+3 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.177 |
|
| \begin{align*}
8 y^{\prime \prime }-6 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.180 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.238 |
|
| \begin{align*}
9 y^{\prime \prime }-6 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.246 |
|
| \begin{align*}
y^{\prime \prime }+6 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.940 |
|
| \begin{align*}
y^{\prime \prime }-9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.997 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.373 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= \sqrt {3} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.404 |
|
| \begin{align*}
y^{\prime \prime }-i y^{\prime }+12 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.215 |
|
| \begin{align*}
y^{\prime \prime }+3 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= -6 \sqrt {3} \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 2.201 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.773 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=0 \\
y \left (\frac {\pi }{4}\right ) &= 1 \\
y^{\prime }\left (\frac {\pi }{4}\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.959 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (-1\right ) &= {\mathrm e} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.270 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+12 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.310 |
|
| \begin{align*}
y^{\prime \prime }+20 y^{\prime }+64 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.191 |
|
| \begin{align*}
y^{\prime \prime }+9 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.226 |
|
| \begin{align*}
5 y^{\prime \prime }+10 y^{\prime }+20 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.248 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.243 |
|
| \begin{align*}
6 y^{\prime \prime }+4 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.300 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.228 |
|
| \begin{align*}
y^{\prime \prime }+8 y^{\prime }+16 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.233 |
|
| \begin{align*}
4 y^{\prime \prime }+8 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.226 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.210 |
|
| \begin{align*}
y^{\prime \prime }-2 r y^{\prime }+\left (r^{2}-\frac {\alpha ^{2}}{4}\right ) y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.387 |
|
| \begin{align*}
y^{\prime \prime }-2 \left (r +\beta \right ) y^{\prime }+r^{2} y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.731 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=x^{2}+3 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.344 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&={\mathrm e}^{x}+{\mathrm e}^{-2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.498 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.363 |
|
| \begin{align*}
y^{\prime \prime }-y&={\mathrm e}^{x} \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.364 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=\cos \left (3 x \right )-\sin \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.522 |
|
| \begin{align*}
y^{\prime \prime }-13 y^{\prime }+36 y&={\mathrm e}^{4 x} x \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.389 |
|
| \begin{align*}
y^{\prime \prime }-10 y^{\prime }+25 y&=x^{2} {\mathrm e}^{5 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.451 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&={\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.865 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.165 |
|
| \begin{align*}
y^{\prime \prime }+y&=x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.295 |
|
| \begin{align*}
y^{\prime \prime }-3 y&=\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.424 |
|
| \begin{align*}
y^{\prime \prime }+2 y&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| \begin{align*}
y^{\prime \prime }-y&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.358 |
|
| \begin{align*}
y^{\prime \prime }+y&=x +2 \,{\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| \begin{align*}
y^{\prime \prime }-y&={\mathrm e}^{x}+\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.594 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.409 |
|
| \begin{align*}
y^{\prime \prime }-y&=x \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.401 |
|
| \begin{align*}
y^{\prime \prime }+y&=x +{\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.349 |
|
| \begin{align*}
y^{\prime \prime }-y&={\mathrm e}^{x}+\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.479 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.402 |
|
| \begin{align*}
y^{\prime \prime }-y&=x \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=4 x^{3}-8 x^{2}-14 x +7 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| \begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{x} \left (x +1\right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.361 |
|
| \begin{align*}
y^{\prime \prime }-y&=x \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.467 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.383 |
|
| \begin{align*}
2 y^{\prime \prime }+y^{\prime }-y&={\mathrm e}^{x} \left (x^{2}-1\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.385 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=x \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.374 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.392 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=2 x \,{\mathrm e}^{-x}+x^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.412 |
|
| \begin{align*}
y^{\prime \prime }-y&=4 \cosh \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.519 |
|
| \begin{align*}
y^{\prime \prime }&=3 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.602 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.297 |
|
| \begin{align*}
y^{\prime \prime }-7 y^{\prime }-8 y&={\mathrm e}^{x} \left (x^{2}+2\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.282 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }+4 y&={\mathrm e}^{2 x} \cos \left (x \right )+{\mathrm e}^{2 x} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.287 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-3 y&={\mathrm e}^{2 x} \left (x +3\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.274 |
|
| \begin{align*}
y^{\prime \prime }+y&=x +2 \,{\mathrm e}^{-x} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.656 |
|
| \begin{align*}
y^{\prime \prime }-y&=x \,{\mathrm e}^{x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.402 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.475 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.262 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.266 |
|
| \begin{align*}
y^{\prime \prime }+y&=\frac {1}{x} \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.341 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.352 |
|
| \begin{align*}
y^{\prime \prime }-3 y&=x \ln \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.546 |
|
| \begin{align*}
4 y^{\prime \prime }+7 y^{\prime }+3 y&=5 \cos \left (t \right ) \\
y \left (0\right ) &= -3 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.450 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{a x} \\
y \left (0\right ) &= y_{0} \\
y^{\prime }\left (0\right ) &= y_{1} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.429 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (a x \right ) \\
y \left (0\right ) &= y_{0} \\
y^{\prime }\left (0\right ) &= y_{1} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.419 |
|
| \begin{align*}
y^{\prime \prime }+y&=\tan \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.358 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.393 |
|
| \begin{align*}
y^{\prime \prime }+10 y^{\prime }+25 y&=\frac {{\mathrm e}^{-5 x} \ln \left (x \right )}{x^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.573 |
|
| \begin{align*}
9 y+6 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{-3 x}}{x^{3}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.527 |
|
| \begin{align*}
y^{\prime \prime }+y&=\csc \left (x \right ) \cot \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.467 |
|
| \begin{align*}
y^{\prime \prime }-12 y^{\prime }+36 y&={\mathrm e}^{6 x} \ln \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.555 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-2 x} \sec \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.437 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right )^{3} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.415 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=\frac {{\mathrm e}^{2 x}}{x^{4}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.524 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{-x} \ln \left (x \right )}{x^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.548 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{2 x}}{\left ({\mathrm e}^{x}+1\right )^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.453 |
|
| \begin{align*}
y^{\prime \prime }+y&=\csc \left (x \right ) \\
y \left (\frac {\pi }{2}\right ) &= 0 \\
y^{\prime }\left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.708 |
|
| \begin{align*}
y^{\prime \prime }+y&=\tan \left (x \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.672 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x} \\
y \left (1\right ) &= {\mathrm e} \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.675 |
|
| \begin{align*}
9 y+6 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{-3 x}}{x^{3}} \\
y \left (1\right ) &= 4 \,{\mathrm e}^{-3} \\
y^{\prime }\left (1\right ) &= -2 \,{\mathrm e}^{-3} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.743 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right )^{3} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.595 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=\frac {{\mathrm e}^{2 x}}{x^{4}} \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= {\mathrm e}^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.705 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{2 x}}{\left ({\mathrm e}^{x}+1\right )^{2}} \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= {\frac {5}{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.755 |
|
| \begin{align*}
x^{\prime \prime }+2 x^{\prime }+x&=-\frac {{\mathrm e}^{-t}}{\left (t +1\right )^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.524 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=0 \\
y \left (0\right ) &= 1 \\
y \left (\pi \right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.939 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=0 \\
y \left (0\right ) &= 1 \\
y \left (\frac {\pi }{2}\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.584 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=0 \\
y \left (0\right ) &= 1 \\
y \left (\pi \right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.482 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\
y \left (0\right ) &= 0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.181 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.157 |
|
| \begin{align*}
-\frac {u^{\prime \prime }}{2}&=x \\
u \left (0\right ) &= 0 \\
u \left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✗ |
0.800 |
|
| \begin{align*}
-\frac {u^{\prime \prime }}{2}&=x \\
u \left (0\right ) &= 0 \\
u \left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✗ |
0.778 |
|
| \begin{align*}
y^{\prime \prime }+y&=2 x -1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.272 |
|
| \begin{align*}
6 y^{\prime \prime }+11 y^{\prime }+4 y&=2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.258 |
|
| \begin{align*}
3 y^{\prime \prime }-4 y^{\prime }+y&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.349 |
|
| \begin{align*}
y^{\prime \prime }-k^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.044 |
|
| \begin{align*}
y^{\prime \prime }+k^{2} y&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 1.764 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.212 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.236 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.208 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.055 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.752 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.352 |
|
| \begin{align*}
y^{\prime \prime }+k y^{\prime }+L y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.366 |
|
| \begin{align*}
y^{\prime \prime }+\frac {327 y^{\prime }}{100}-\frac {21 y}{50}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.230 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }-6 y&=x^{3} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=x^{2}-2 x +1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.358 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=1-x \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.513 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.614 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.379 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=2 \,{\mathrm e}^{x} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.352 |
|
| \begin{align*}
y^{\prime \prime }-9 y&={\mathrm e}^{x}+3 \,{\mathrm e}^{-3 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.379 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=1+2 x +3 \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.403 |
|
| \begin{align*}
y^{\prime \prime }-\left (m_{1} +m_{2} \right ) y^{\prime }+m_{1} m_{2} y&={\mathrm e}^{m x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.451 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&={\mathrm e}^{-2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.298 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=x +{\mathrm e}^{2 x} \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.389 |
|
| \begin{align*}
y^{\prime \prime }-y&=4 \,{\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.297 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.234 |
|
| \begin{align*}
y^{\prime \prime }+y&=\csc \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.349 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=\frac {{\mathrm e}^{2 x}}{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.292 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{3 x} \sin \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.466 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x} \ln \left (x \right )}{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.306 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+5 y&={\mathrm e}^{2 x} \sec \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.392 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.350 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.399 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=x \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.323 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-2 y&=x^{2}+4 x +3 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.341 |
|
| \begin{align*}
y^{\prime \prime }+3 y&=-x^{6}+x^{4} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.495 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&=x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.284 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+8 y&={\mathrm e}^{x} x^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.323 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.369 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=x +{\mathrm e}^{-x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.928 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=1+\ln \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.272 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }-4 y&=12 \,{\mathrm e}^{2 x} \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.416 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{2 x}}{\left ({\mathrm e}^{x}+1\right )^{2}} \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✗ | 1.452 |
|
| \begin{align*}
y^{\prime \prime }+i y&=\cosh \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.702 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=x -4 \\
y \left (0\right ) &= {\frac {1}{2}} \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.489 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }-5 y&=x^{2} {\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.329 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-y&=\sinh \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.647 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cot \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.401 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.182 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.091 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-6 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.175 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.170 |
|
| \begin{align*}
y^{\prime \prime }-4 a y^{\prime }+3 a^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.301 |
|
| \begin{align*}
y^{\prime \prime }-\left (a +b \right ) y^{\prime }+a b y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.433 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+3 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= -4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.545 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-6 y&=0 \\
y \left (0\right ) &= 0 \\
y \left (1\right ) &= {\mathrm e}^{3} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.363 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&=0 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.353 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-6 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.338 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }-10 y&=0 \\
y \left (0\right ) &= 0 \\
y \left (2\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.334 |
|
| \begin{align*}
4 y^{\prime \prime }-4 y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.249 |
|
| \begin{align*}
9 y+6 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.236 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.372 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\
y \left (0\right ) &= 2 \\
y \left (2\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.321 |
|
| \begin{align*}
4 y^{\prime \prime }-4 y^{\prime }+y&=0 \\
y \left (0\right ) &= -2 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.373 |
|
| \begin{align*}
y^{\prime \prime }+a^{2} y-2 a y^{\prime }+b^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.828 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.258 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.976 |
|
| \begin{align*}
y^{\prime \prime }-9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.102 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+13 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.288 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+7 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.353 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (0\right ) &= y_{0} \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.886 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= y_{0} \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.549 |
|
| \begin{align*}
x^{\prime \prime }+k^{2} x&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= v_{0} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.243 |
|
| \begin{align*}
x^{\prime \prime }+2 b x^{\prime }+k^{2} x&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= v_{0} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.731 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-6 y&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.414 |
|
| \begin{align*}
5 y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.217 |
|
| \begin{align*}
y^{\prime \prime }+y&=1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.767 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=8 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.613 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }-5 y&=20 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.196 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=-\cos \left (x \right ) \\
\end{align*} | [[_2nd_order, _missing_y]] | ✓ | ✓ | ✓ | ✓ | 0.793 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.270 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&=27 x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.234 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&=-6 x^{2}-8 x +4 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.232 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=15 \,{\mathrm e}^{x}-8 x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.268 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=15 \,{\mathrm e}^{x}-8 x^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.279 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=12 \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.233 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=12 \,{\mathrm e}^{-2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.249 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=2+{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.309 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=6 x +6 \,{\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.270 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=20 \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.246 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=2 \cos \left (x \right )+4 \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.251 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=7+75 \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.401 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=50 x +13 \,{\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.292 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.283 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.286 |
|
| \begin{align*}
y^{\prime \prime }-y&={\mathrm e}^{-x} \left (2 \sin \left (x \right )+4 \cos \left (x \right )\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.620 |
|
| \begin{align*}
y^{\prime \prime }-y&=8 x \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.313 |
|
| \begin{align*}
y^{\prime \prime }-y&=10 \sin \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.351 |
|
| \begin{align*}
y^{\prime \prime }+y&=12 \cos \left (x \right )^{2} \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.326 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=4 \sin \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| \begin{align*}
y^{\prime \prime }+y&=10 \,{\mathrm e}^{2 x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.346 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=2-8 x \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.300 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }&=-18 x \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.908 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=10 \,{\mathrm e}^{-3 x} \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.384 |
|
| \begin{align*}
x^{\prime \prime }+4 x^{\prime }+5 x&=10 \\
x \left (0\right ) &= 4 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| \begin{align*}
x^{\prime \prime }+4 x^{\prime }+5 x&=8 \sin \left (t \right ) \\
x \left (0\right ) &= 4 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.358 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=x \\
y \left (0\right ) &= -3 \\
y \left (1\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.317 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=x \\
y \left (0\right ) &= -2 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.355 |
|
| \begin{align*}
4 y^{\prime \prime }+y&=2 \\
y \left (\pi \right ) &= 0 \\
y^{\prime }\left (\pi \right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.617 |
|
| \begin{align*}
2 y^{\prime \prime }-5 y^{\prime }-3 y&=-9 x^{2}-1 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.331 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=x +1 \\
y \left (0\right ) &= 1 \\
y \left (1\right ) &= {\frac {1}{2}} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.665 |
|
| \begin{align*}
y^{\prime \prime }+y&=2 \cos \left (x \right ) \\
y \left (0\right ) &= 0 \\
y \left (\pi \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.297 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=-2 x +2 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.659 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=\sin \left (3 x \right ) \\
y \left (0\right ) &= 1 \\
y \left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.379 |
|
| \begin{align*}
y^{\prime \prime }+a^{2} y&=\sin \left (b x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.350 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=4 \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.273 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=15 \cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=18 x -3+20 \,{\mathrm e}^{x} \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.266 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }&=42 \,{\mathrm e}^{4 x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.725 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&={\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.213 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+14 y&=42 \,{\mathrm e}^{x}-7 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.329 |
|
| \begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.216 |
|
| \begin{align*}
y^{\prime \prime }+y&=4 x +1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.203 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.254 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.251 |
|
| \begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{x}-x +\sin \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.397 |
|
| \begin{align*}
y^{\prime \prime }-y&=2 x -3 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.204 |
|
| \begin{align*}
y^{\prime \prime }-y&=x +\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.295 |
|
| \begin{align*}
y^{\prime \prime }-y&={\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.212 |
|
| \begin{align*}
y^{\prime \prime }-y&=16 \,{\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.224 |
|
| \begin{align*}
y^{\prime \prime }-y&=\cos \left (4 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.291 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=6 \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.309 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&={\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.236 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=4-{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.252 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.256 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.250 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{3 x} \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.255 |
|
| \begin{align*}
4 y^{\prime \prime }-y&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.208 |
|
| \begin{align*}
4 y^{\prime \prime }-y&=x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.202 |
|
| \begin{align*}
4 y^{\prime \prime }-y&=x +{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.227 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.268 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.269 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=7+{\mathrm e}^{x}+{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.308 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.272 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.263 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=12 \,{\mathrm e}^{-2 x} x \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.309 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=3 x \,{\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.302 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=18 x \,{\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.251 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=36 x \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.306 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=20-3 x \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.329 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=4-8 x +6 x \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.341 |
|
| \begin{align*}
y^{\prime \prime }-9 y&=18 x -162 x \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.288 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=4 x -6 \,{\mathrm e}^{-2 x}+3 \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x}+3 x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=16 \,{\mathrm e}^{-2 x} x +8 x +4 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.298 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=8 x \,{\mathrm e}^{2 x} \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.308 |
|
| \begin{align*}
y^{\prime \prime }-9 y&=-72 x \,{\mathrm e}^{-3 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=48 \,{\mathrm e}^{-x} \cos \left (4 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=18 \,{\mathrm e}^{-2 x} \cos \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.349 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \sec \left (x \right )^{2} \tan \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.506 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=-\frac {{\mathrm e}^{-2 x}}{x^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.462 |
|
| \begin{align*}
y^{\prime \prime }-2 a y^{\prime }+a^{2} y&={\mathrm e}^{a x}+f^{\prime \prime }\left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.671 |
|
| \begin{align*}
y^{\prime \prime }+7 y^{\prime }+12 y&={\mathrm e}^{-3 x} \sec \left (x \right )^{2} \left (1+2 \tan \left (x \right )\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.475 |
|
| \begin{align*}
y^{\prime \prime }-y&={\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.200 |
|
| \begin{align*}
y^{\prime \prime }-y&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.256 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.272 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=\cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.276 |
|
| \begin{align*}
y^{\prime \prime }+9 y&={\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.232 |
|
| \begin{align*}
4 y+y^{\prime \prime }&={\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.226 |
|
| \begin{align*}
4 y^{\prime \prime }+y&={\mathrm e}^{-2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.235 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }&={\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.671 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=\cos \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.271 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=\cos \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.277 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=\sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.269 |
|
| \begin{align*}
y^{\prime \prime }+36 y&=\sin \left (6 x \right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.314 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=\sin \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.245 |
|
| \begin{align*}
y^{\prime \prime }+36 y&=\cos \left (6 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.289 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }-4 y&=12 \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.234 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }-4 y&=21 \,{\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.231 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }-4 y&=15 \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.291 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }-4 y&=20 \,{\mathrm e}^{-4 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x}+{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.297 |
|
| \begin{align*}
4 y^{\prime \prime }-y&={\mathrm e}^{\frac {x}{2}}+12 \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.271 |
|
| \begin{align*}
y^{\prime \prime }+16 y&=14 \cos \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.290 |
|
| \begin{align*}
4 y^{\prime \prime }+y&=33 \sin \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.283 |
|
| \begin{align*}
y^{\prime \prime }+16 y&=24 \sin \left (4 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.294 |
|
| \begin{align*}
y^{\prime \prime }+16 y&=48 \cos \left (4 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.289 |
|
| \begin{align*}
y^{\prime \prime }+y&=12 \cos \left (2 x \right )-\sin \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.440 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (3 x \right )+4 \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.486 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&={\mathrm e}^{x} \cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.299 |
|
| \begin{align*}
5 y+2 y^{\prime }+y^{\prime \prime }&=\sin \left (2 x \right ) {\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.289 |
|
| \begin{align*}
y^{\prime \prime }-y&=x^{3} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.218 |
|
| \begin{align*}
y^{\prime \prime }-y&=x^{4} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.227 |
|
| \begin{align*}
4 y^{\prime \prime }+y&=x^{3} \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.224 |
|
| \begin{align*}
4 y^{\prime \prime }+y&=x^{4} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.231 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.265 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=x^{2}+3 x +3 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.278 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=x^{3}-4 x^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.280 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=x^{3}+6 x^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.285 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=6 x^{2}-6 x -11 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.224 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=2 x^{3}-9 x^{2}+2 x -16 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.238 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=6 x^{2} {\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.310 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.274 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }&={\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.716 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=8 x^{5} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=16 x \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.258 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=4 \cos \left (x \right ) {\mathrm e}^{-2 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.274 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=4 x^{2}-3 \,{\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.271 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+13 y&=24 \,{\mathrm e}^{2 x} \sin \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.342 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+13 y&=24 \,{\mathrm e}^{2 x} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.269 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=\left (x -2\right ) {\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.250 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=72 x \,{\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.242 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=12 \sin \left (x \right )+12 \sin \left (2 x \right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.474 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=20 \,{\mathrm e}^{x}-20 \cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.397 |
|
| \begin{align*}
y^{\prime \prime }+16 y&=8 x +8 \sin \left (4 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=8 \cos \left (x \right ) \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.274 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=8 \cos \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.325 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+13 y&=24 \,{\mathrm e}^{2 x} \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.273 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+13 y&=24 \,{\mathrm e}^{2 x} \cos \left (3 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.300 |
|
| \begin{align*}
y^{\prime \prime }+25 y&=\sin \left (5 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=x^{2}-2 x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.225 |
|
| \begin{align*}
y^{\prime \prime }+y&=4 \,{\mathrm e}^{x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.334 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=2 x -8 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.333 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=4 x^{2} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.324 |
|
| \begin{align*}
y^{\prime \prime }-y&=\sin \left (2 x \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.419 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }&=2 x \\
y \left (0\right ) &= 0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.701 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }&=2 x \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.920 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=2+x \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.343 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=2+x \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.358 |
|
| \begin{align*}
y^{\prime \prime }+y&=3 \\
y \left (\frac {\pi }{2}\right ) &= 1 \\
y^{\prime }\left (\frac {\pi }{2}\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.526 |
|
| \begin{align*}
y^{\prime \prime }+y&=\csc \left (x \right ) \cot \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cot \left (x \right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.336 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.312 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.363 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right )^{3} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.345 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right )^{4} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.395 |
|
| \begin{align*}
y^{\prime \prime }+y&=\tan \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.332 |
|
| \begin{align*}
y^{\prime \prime }+y&=\tan \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.372 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \csc \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.483 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right )^{2} \csc \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.486 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{2 x}}{\left ({\mathrm e}^{x}+1\right )^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.520 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{2 x}}{{\mathrm e}^{2 x}+1} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.337 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=\cos \left ({\mathrm e}^{-x}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.366 |
|
| \begin{align*}
y^{\prime \prime }-y&=\frac {2}{\sqrt {1-{\mathrm e}^{-2 x}}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.443 |
|
| \begin{align*}
y^{\prime \prime }-y&={\mathrm e}^{-2 x} \sin \left ({\mathrm e}^{-x}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.616 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }+4 y&=\frac {6}{1+{\mathrm e}^{-2 x}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.364 |
|
| \begin{align*}
y^{\prime \prime }-y&=\frac {1}{\left (1+{\mathrm e}^{-x}\right )^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.412 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }-3 y&=\cos \left ({\mathrm e}^{-x}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.895 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=15 \sqrt {1+{\mathrm e}^{-x}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.371 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=\frac {1}{\sqrt {1+{\mathrm e}^{-2 x}}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.376 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=f \left (x \right ) \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.531 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=\frac {1}{\left ({\mathrm e}^{x}-1\right )^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.511 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=\frac {1}{\left ({\mathrm e}^{x}+1\right )^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.470 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&=\sin \left ({\mathrm e}^{-x}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.374 |
|
| \begin{align*}
y^{\prime \prime }-y&=\frac {2 \,{\mathrm e}^{x}}{\left ({\mathrm e}^{x}+1\right )^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.419 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.255 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right )^{3} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.276 |
|
| \begin{align*}
y^{\prime \prime }+y&=\csc \left (x \right )^{3} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.378 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=\frac {1}{\sqrt {1+{\mathrm e}^{-2 x}}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.309 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{-2 x}}{x^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.487 |
|
| \begin{align*}
y^{\prime \prime }-y&=\frac {2 \,{\mathrm e}^{-x}}{\left (1+{\mathrm e}^{-2 x}\right )^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.423 |
|
| \begin{align*}
y^{\prime \prime }-y&=\frac {1}{\left (1-{\mathrm e}^{2 x}\right )^{{3}/{2}}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.339 |
|
| \begin{align*}
y^{\prime \prime }-y&={\mathrm e}^{2 x} \left (3 \tan \left ({\mathrm e}^{x}\right )+{\mathrm e}^{x} \sec \left ({\mathrm e}^{x}\right )^{2}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.001 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right )^{2} \tan \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.413 |
|
| \begin{align*}
y^{\prime \prime }+y&=\csc \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.300 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=\sec \left ({\mathrm e}^{-x}\right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.447 |
|
| \begin{align*}
y^{\prime \prime }-y&=\frac {2}{{\mathrm e}^{x}+1} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.368 |
|
| \begin{align*}
y^{\prime \prime }-y&=\frac {2}{{\mathrm e}^{x}-{\mathrm e}^{-x}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.374 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=\sin \left ({\mathrm e}^{-x}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.354 |
|
| \begin{align*}
y^{\prime \prime }-y&=\frac {1}{{\mathrm e}^{2 x}+1} \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.346 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right )^{3} \tan \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.402 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \tan \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+3 y&=\sin \left ({\mathrm e}^{x}\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.391 |
|
| \begin{align*}
y^{\prime \prime }+y&=\csc \left (x \right )^{3} \cot \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.458 |
|
| \begin{align*}
y^{\prime \prime }+\beta ^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.889 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.079 |
|
| \begin{align*}
y^{\prime \prime }&=2 t +1 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.677 |
|
| \begin{align*}
y^{\prime \prime }&=6 \sin \left (3 t \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.746 |
|
| \begin{align*}
y^{\prime \prime }&=6 \sin \left (3 t \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.062 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }&={\mathrm e}^{t} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.863 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+3 y&={\mathrm e}^{-t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.439 |
|
| \begin{align*}
y^{\prime \prime }-7 y^{\prime }+10 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.196 |
|
| \begin{align*}
y^{\prime \prime }+8 y&=t \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.473 |
|
| \begin{align*}
y^{\prime \prime }+2&=\cos \left (t \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.913 |
|
| \begin{align*}
2 y^{\prime \prime }-12 y^{\prime }+18 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.250 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.194 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-12 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.193 |
|
| \begin{align*}
y^{\prime \prime }+10 y^{\prime }+24 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.193 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }-12 y&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.191 |
|
| \begin{align*}
y^{\prime \prime }+8 y^{\prime }+16 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.253 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }-10 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.197 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+5 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.274 |
|
| \begin{align*}
2 y^{\prime \prime }-12 y^{\prime }+18 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.241 |
|
| \begin{align*}
y^{\prime \prime }+13 y^{\prime }+36 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.202 |
|
| \begin{align*}
y^{\prime \prime }+8 y^{\prime }+25 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.274 |
|
| \begin{align*}
y^{\prime \prime }+10 y^{\prime }+25 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.254 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }-21 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.197 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.228 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }-10 y&=0 \\
y \left (0\right ) &= 5 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| \begin{align*}
y^{\prime \prime }-10 y^{\prime }+25 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.404 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+13 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -5 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.407 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }-4 y&={\mathrm e}^{2 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.321 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }-10 y&=7 \,{\mathrm e}^{2 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.341 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.378 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{-t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.399 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.299 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+5 y&={\mathrm e}^{-3 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.445 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=1+{\mathrm e}^{t} \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.361 |
|
| \begin{align*}
y^{\prime \prime }-y&=t^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.313 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.373 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.407 |
|
| \begin{align*}
y^{\prime \prime }+y&=2 \sin \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.354 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+9 y&=25 \,{\mathrm e}^{2 t} t \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.407 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+9 y&=25 t \,{\mathrm e}^{-3 t} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.451 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+13 y&={\mathrm e}^{-3 t} \cos \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.455 |
|
| \begin{align*}
y^{\prime \prime }-8 y^{\prime }+25 y&=104 \sin \left (3 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.434 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }-6 y&={\mathrm e}^{3 t} \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.465 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+5 y&=8 \,{\mathrm e}^{-t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 8 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.535 |
|
| \begin{align*}
y^{\prime \prime }+y&=10 \,{\mathrm e}^{2 t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.492 |
|
| \begin{align*}
y^{\prime \prime }-4 y&=2-8 t \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.453 |
|
| \begin{align*}
y^{\prime \prime }-4 y&={\mathrm e}^{-6 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.323 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-15 y&=16 \,{\mathrm e}^{t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+6 y&={\mathrm e}^{-2 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.326 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.293 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-8 y&=6 \,{\mathrm e}^{-4 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.366 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }-10 y&=\sin \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+9 y&=25 \,{\mathrm e}^{2 t} t \\
\end{align*} | [[_2nd_order, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.437 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }-6 y&=10 t \,{\mathrm e}^{4 t} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.365 |
|
| \begin{align*}
y^{\prime \prime }-8 y^{\prime }+25 y&=36 t \,{\mathrm e}^{4 t} \sin \left (3 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.551 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&=\cos \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.443 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&={\mathrm e}^{t} \cos \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.485 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.307 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=t^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.362 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-2 y&=\frac {t^{2}+1}{-t^{2}+1} \\
y \left (2\right ) &= y_{1} \\
y^{\prime }\left (2\right ) &= y_{1} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.228 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.484 |
|
| \begin{align*}
y^{\prime \prime }-4 y&={\mathrm e}^{2 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.394 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&={\mathrm e}^{t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.402 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }&={\mathrm e}^{-3 t} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.881 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }+2 y&={\mathrm e}^{3 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.285 |
|
| \begin{align*}
y^{\prime \prime }+y&=\tan \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.465 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+y&=\frac {{\mathrm e}^{t}}{t} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.500 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.419 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=\frac {{\mathrm e}^{2 t}}{t^{2}+1} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.491 |
|
| \begin{align*}
y^{\prime \prime }-y&=\frac {1}{1+{\mathrm e}^{-t}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.461 |
|
| \begin{align*}
m y^{\prime \prime }+k y&=F \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.354 |
|
| \begin{align*}
m y^{\prime \prime }+k y&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 1.921 |
|
| \begin{align*}
y^{\prime \prime }&=-9 y \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.943 |
|
| \begin{align*}
y^{\prime \prime }&=-9 y \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.810 |
|
| \begin{align*}
y^{\prime \prime }+4 y&=F \cos \left (\omega t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.558 |
|
| \begin{align*}
y^{\prime \prime }+9 y&={\mathrm e}^{c t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.414 |
|
| \begin{align*}
y^{\prime \prime }+9 y&={\mathrm e}^{i \omega t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.505 |
|
| \begin{align*}
y^{\prime \prime }+100 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 10 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.481 |
|
| \begin{align*}
y^{\prime \prime }+100 y&=\cos \left (\omega t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.583 |
|
| \begin{align*}
y^{\prime \prime }+100 y&=\cos \left (\omega t \right )-\sin \left (\omega t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.595 |
|
| \begin{align*}
m y^{\prime \prime }+k y&=\delta \left (-t +T \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.837 |
|
| \begin{align*}
m y^{\prime \prime }+k y&=f \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.614 |
|
| \begin{align*}
m y^{\prime \prime }+k y&=1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
12.042 |
|
| \begin{align*}
y^{\prime \prime }&=f \left (t \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.526 |
|
| \begin{align*}
y^{\prime \prime }&={\mathrm e}^{i \omega t} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.599 |
|
| \begin{align*}
m y^{\prime \prime }-k y&={\mathrm e}^{i \omega t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.614 |
|
| \begin{align*}
y^{\prime \prime }+\omega ^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.660 |
|
| \begin{align*}
y^{\prime \prime }-2 a y^{\prime }+\left (a^{2}+\omega ^{2}\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.204 |
|
| \begin{align*}
2 y^{\prime \prime }+8 y^{\prime }+6 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.155 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+5 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.200 |
|
| \begin{align*}
4 y^{\prime \prime }+B y^{\prime }+16 y&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.241 |
|
| \begin{align*}
y^{\prime \prime }&=2 a y^{\prime }-\left (a^{2}-\omega ^{2}\right ) y \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.188 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+10 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.191 |
|
| \begin{align*}
y^{\prime \prime }&=1 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.750 |
|
| \begin{align*}
y^{\prime \prime }+y&=1 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.617 |
|
| \begin{align*}
y^{\prime \prime }+y&=\delta \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.271 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+5 y&={\mathrm e}^{t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.312 |
|
| \begin{align*}
2 y^{\prime \prime }+4 y&={\mathrm e}^{i t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.418 |
|
| \begin{align*}
y^{\prime \prime }+y&=10 \,{\mathrm e}^{-3 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{i \omega t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.532 |
|
| \begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{t} {\mathrm e}^{i t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.328 |
|
| \begin{align*}
y^{\prime \prime }+c y&={\mathrm e}^{i \omega t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.575 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }+c y&={\mathrm e}^{i \omega t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.605 |
|
| \begin{align*}
y^{\prime \prime }+k y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.690 |
|
| \begin{align*}
y^{\prime \prime }+k y&={\mathrm e}^{i \omega t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.546 |
|
| \begin{align*}
m y^{\prime \prime }+b y^{\prime }+k y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.352 |
|
| \begin{align*}
m y^{\prime \prime }+b y^{\prime }+k y&={\mathrm e}^{c t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.406 |
|
| \begin{align*}
m y^{\prime \prime }+b y^{\prime }+k y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.292 |
|
| \begin{align*}
y^{\prime \prime }+\omega ^{2} y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.504 |
|
| \begin{align*}
y^{\prime \prime }+2 z \omega _{n} y^{\prime }+\omega _{n}^{2} y&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.301 |
|
| \begin{align*}
y^{\prime \prime }+2 z \omega _{n} y^{\prime }+\omega _{n}^{2} y&={\mathrm e}^{c t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.350 |
|
| \begin{align*}
y^{\prime \prime }+b y^{\prime }+c y&=f \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.364 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+3 y&=5 \cos \left (\omega t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.301 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (\omega t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.370 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.407 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{c t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.278 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{i \omega t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.504 |
|
| \begin{align*}
y^{\prime \prime }+2 z y^{\prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.314 |
|
| \begin{align*}
m y^{\prime \prime }+k y&=\cos \left (\sqrt {\frac {k}{m}}\, t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.996 |
|
| \begin{align*}
a y^{\prime \prime }+b y^{\prime }+c y&=f \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.045 |
|
| \begin{align*}
4 a y^{\prime \prime }+b y^{\prime }+\frac {c y}{4}&=f \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.033 |
|
| \begin{align*}
g^{\prime \prime }-3 g^{\prime }+2 g&=\delta \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.342 |
|
| \begin{align*}
y^{\prime \prime }+b y^{\prime }+y&=\cos \left (t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.449 |
|
| \begin{align*}
m y^{\prime \prime }+k y&=\cos \left (\omega t \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.495 |
|
| \begin{align*}
r^{\prime \prime }+\frac {5 r^{\prime }}{2}+r&=1 \\
r \left (0\right ) &= 0 \\
r^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.335 |
|
| \begin{align*}
r^{\prime \prime }+2 r^{\prime }+r&=1 \\
r \left (0\right ) &= 0 \\
r^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.361 |
|
| \begin{align*}
r^{\prime \prime }+r^{\prime }+r&=1 \\
r \left (0\right ) &= 0 \\
r^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.418 |
|
| \begin{align*}
r^{\prime \prime }+r&=1 \\
r \left (0\right ) &= 0 \\
r^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.554 |
|
| \begin{align*}
y^{\prime \prime }+2 p y^{\prime }+\omega _{n}^{2} y&=\omega _{n}^{2} t \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.548 |
|
| \begin{align*}
y^{\prime \prime }+y&=4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.612 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.752 |
|
| \begin{align*}
y^{\prime \prime }&=4 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.639 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&={\mathrm e}^{t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.250 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&={\mathrm e}^{c t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.276 |
|
| \begin{align*}
y^{\prime \prime }-y&=\cos \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.314 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cos \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.299 |
|
| \begin{align*}
y^{\prime \prime }+y&=t +{\mathrm e}^{t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| \begin{align*}
y^{\prime \prime }+9 y&={\mathrm e}^{2 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.274 |
|
| \begin{align*}
y^{\prime \prime }+9 y&={\mathrm e}^{2 t} t \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.294 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=t +1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.757 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=t^{2}+1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.778 |
|
| \begin{align*}
y^{\prime \prime }+3 y&=\cos \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.330 |
|
| \begin{align*}
y^{\prime \prime }+3 y&=t \cos \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.357 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=t^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.274 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=t^{3} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.282 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=\cos \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.276 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=t \sin \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.323 |
|
| \begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{i t} \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.392 |
|
| \begin{align*}
y^{\prime \prime }+y&=\cos \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.295 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&={\mathrm e}^{t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.261 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+3 y&={\mathrm e}^{3 t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.311 |
|
| \begin{align*}
y^{\prime \prime }+4 y&={\mathrm e}^{t} \sin \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.360 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }-4 y&=t \,{\mathrm e}^{c t} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.304 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.244 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{-t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.252 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }&={\mathrm e}^{2 t} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.798 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }&={\mathrm e}^{-4 t} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.782 |
|
| \begin{align*}
y^{\prime \prime }+b y^{\prime }+c y&=1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.307 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }+6 y&=12 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.230 |
|
| \begin{align*}
y^{\prime \prime }&=t \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.665 |
|
| \begin{align*}
y^{\prime \prime }&=t^{2} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.690 |
|
| \begin{align*}
y^{\prime \prime }+y&=1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.541 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.223 |
|
| \begin{align*}
\frac {c y^{\prime \prime }}{\omega ^{2}}+c y&=\cos \left (\omega t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.320 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+13 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.186 |
|
| \begin{align*}
y^{\prime \prime }+y&=\tan \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.612 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.179 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.158 |
|
| \begin{align*}
2 y^{\prime \prime }+9 y^{\prime }-5 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.166 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+6 y&=10 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.314 |
|
| \begin{align*}
x^{\prime \prime }+x&=0 \\
x \left (0\right ) &= -1 \\
x^{\prime }\left (0\right ) &= 8 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.403 |
|
| \begin{align*}
x^{\prime \prime }+x&=0 \\
x \left (\frac {\pi }{2}\right ) &= 0 \\
x^{\prime }\left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.486 |
|
| \begin{align*}
x^{\prime \prime }+x&=0 \\
x \left (\frac {\pi }{6}\right ) &= {\frac {1}{2}} \\
x^{\prime }\left (\frac {\pi }{6}\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.704 |
|
| \begin{align*}
x^{\prime \prime }+x&=0 \\
x \left (\frac {\pi }{4}\right ) &= \sqrt {2} \\
x^{\prime }\left (\frac {\pi }{4}\right ) &= 2 \sqrt {2} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.792 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.242 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= {\mathrm e} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.465 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (-1\right ) &= 5 \\
y^{\prime }\left (-1\right ) &= -5 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.509 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.444 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (\pi \right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.165 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=0 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime }\left (\frac {\pi }{4}\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.133 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (\pi \right ) &= 5 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.452 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=18 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.339 |
|
| \begin{align*}
y^{\prime \prime }&=y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.969 |
|
| \begin{align*}
y^{\prime \prime }+y&=2 \cos \left (x \right )-2 \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.571 |
|
| \begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{x^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.040 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-3 y&=-12 x +8 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} | [[_2nd_order, _with_linear_symmetries]] | ✓ | ✓ | ✓ | ✓ | 0.408 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-3 y&=-12 x +8 \\
y \left (0\right ) &= 5 \\
y^{\prime }\left (0\right ) &= -11 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.393 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-3 y&=-12 x +8 \\
y \left (1\right ) &= -2 \\
y^{\prime }\left (1\right ) &= 4 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.427 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-3 y&=-12 x +8 \\
y \left (-1\right ) &= 1 \\
y^{\prime }\left (-1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.427 |
|
| \begin{align*}
y^{\prime \prime }+9 y&=f \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.974 |
|