2.5.15 second order linear constant coeff

Table 2.1141: second order linear constant coeff [3423]

#

ODE

CAS classification

Solved

Maple

Mma

Sympy

time(sec)

11

\begin{align*} x^{\prime \prime }&=50 \\ x \left (0\right ) &= 20 \\ x^{\prime }\left (0\right ) &= 10 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.829

12

\begin{align*} x^{\prime \prime }&=-20 \\ x \left (0\right ) &= 5 \\ x^{\prime }\left (0\right ) &= -15 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.741

13

\begin{align*} x^{\prime \prime }&=3 t \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 5 \\ \end{align*}

[[_2nd_order, _quadrature]]

1.813

14

\begin{align*} x^{\prime \prime }&=2 t +1 \\ x \left (0\right ) &= 4 \\ x^{\prime }\left (0\right ) &= -7 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.832

15

\begin{align*} x^{\prime \prime }&=4 \left (t +3\right )^{2} \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.827

16

\begin{align*} x^{\prime \prime }&=\frac {1}{\sqrt {t +4}} \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _quadrature]]

2.925

17

\begin{align*} x^{\prime \prime }&=\frac {1}{\left (t +1\right )^{3}} \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.909

18

\begin{align*} x^{\prime \prime }&=50 \sin \left (5 t \right ) \\ x \left (0\right ) &= 8 \\ x^{\prime }\left (0\right ) &= -10 \\ \end{align*}

[[_2nd_order, _quadrature]]

1.953

149

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.126

215

\begin{align*} y^{\prime \prime }-y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.089

216

\begin{align*} y^{\prime \prime }-9 y&=0 \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 15 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.214

217

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 8 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.186

218

\begin{align*} y^{\prime \prime }+25 y&=0 \\ y \left (0\right ) &= 10 \\ y^{\prime }\left (0\right ) &= -10 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.839

219

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.285

220

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=0 \\ y \left (0\right ) &= 7 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.276

221

\begin{align*} y^{\prime \prime }+y^{\prime }&=0 \\ y \left (0\right ) &= -2 \\ y^{\prime }\left (0\right ) &= 8 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.883

222

\begin{align*} y^{\prime \prime }-3 y^{\prime }&=0 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.901

223

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.352

224

\begin{align*} y^{\prime \prime }-10 y^{\prime }+25 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 13 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.356

225

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.366

226

\begin{align*} y^{\prime \prime }+6 y^{\prime }+13 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.385

234

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.162

235

\begin{align*} y^{\prime \prime }+2 y^{\prime }-15 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.191

236

\begin{align*} y^{\prime \prime }+5 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.700

237

\begin{align*} 2 y^{\prime \prime }+3 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.723

238

\begin{align*} 2 y^{\prime \prime }-y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.176

239

\begin{align*} 4 y^{\prime \prime }+8 y^{\prime }+3 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.174

240

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.236

241

\begin{align*} 9 y^{\prime \prime }-12 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.259

242

\begin{align*} 6 y^{\prime \prime }-7 y^{\prime }-20 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.184

243

\begin{align*} 35 y^{\prime \prime }-y^{\prime }-12 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.186

257

\begin{align*} y^{\prime \prime }+y&=3 x \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.425

258

\begin{align*} y^{\prime \prime }-4 y&=12 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 10 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.279

259

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=6 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 11 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.343

260

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=2 x \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 8 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.446

261

\begin{align*} y^{\prime \prime }+2 y&=6 x +4 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.355

263

\begin{align*} y^{\prime \prime }-2 y^{\prime }-5 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.317

271

\begin{align*} y^{\prime \prime }-4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.987

272

\begin{align*} 2 y^{\prime \prime }-3 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.658

273

\begin{align*} y^{\prime \prime }+y^{\prime }-10 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.189

274

\begin{align*} 2 y^{\prime \prime }-7 y^{\prime }+3 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.157

275

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.195

276

\begin{align*} y^{\prime \prime }+5 y^{\prime }+5 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.186

277

\begin{align*} 4 y^{\prime \prime }-12 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.202

278

\begin{align*} y^{\prime \prime }-6 y^{\prime }+13 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.209

279

\begin{align*} y^{\prime \prime }+8 y^{\prime }+25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.207

291

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=0 \\ y \left (0\right ) &= 7 \\ y^{\prime }\left (0\right ) &= 11 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.256

292

\begin{align*} 9 y^{\prime \prime }+6 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.368

293

\begin{align*} y^{\prime \prime }-6 y^{\prime }+25 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.339

309

\begin{align*} y^{\prime \prime }+2 i y^{\prime }+3 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.192

310

\begin{align*} y^{\prime \prime }-i y^{\prime }+6 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.191

322

\begin{align*} y^{\prime \prime }+16 y&={\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.351

323

\begin{align*} y^{\prime \prime }-y^{\prime }+2 y&=3 x +4 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.355

324

\begin{align*} y^{\prime \prime }-y^{\prime }-6 y&=2 \sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.306

325

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime }+y&=3 x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.345

326

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=\sin \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.427

327

\begin{align*} 2 y^{\prime \prime }+4 y^{\prime }+7 y&=x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.391

328

\begin{align*} y^{\prime \prime }-4 y&=\sinh \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.464

329

\begin{align*} y^{\prime \prime }-4 y&=\cosh \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.518

330

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&=1+x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.377

331

\begin{align*} 2 y^{\prime \prime }+9 y&=2 \cos \left (3 x \right )+3 \sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.542

334

\begin{align*} 5 y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.345

337

\begin{align*} y^{\prime \prime }+9 y&=2 x^{2} {\mathrm e}^{3 x}+5 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.399

338

\begin{align*} y^{\prime \prime }+y&=\sin \left (x \right )+\cos \left (x \right ) x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.539

342

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&={\mathrm e}^{x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.356

344

\begin{align*} 4 y+y^{\prime \prime }&=3 x \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.497

346

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=x \left ({\mathrm e}^{-x}-{\mathrm e}^{-2 x}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.486

347

\begin{align*} y^{\prime \prime }-6 y^{\prime }+13 y&=x \,{\mathrm e}^{3 x} \sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.418

351

\begin{align*} 4 y+y^{\prime \prime }&=2 x \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.379

352

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.355

353

\begin{align*} y^{\prime \prime }+9 y&=\sin \left (2 x \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.467

354

\begin{align*} y^{\prime \prime }+y&=\cos \left (x \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.435

355

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=x +1 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.385

358

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=\sin \left (3 x \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.546

363

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=\sin \left (x \right ) \sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.473

364

\begin{align*} y^{\prime \prime }+9 y&=\sin \left (x \right )^{4} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.585

365

\begin{align*} y^{\prime \prime }+y&=\cos \left (x \right )^{3} x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.708

366

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=4 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.260

367

\begin{align*} y^{\prime \prime }-2 y^{\prime }-8 y&=3 \,{\mathrm e}^{-2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.282

368

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=2 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.332

369

\begin{align*} y^{\prime \prime }-4 y&=\sinh \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.507

370

\begin{align*} 4 y+y^{\prime \prime }&=\cos \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.316

371

\begin{align*} y^{\prime \prime }+9 y&=\sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.323

372

\begin{align*} y^{\prime \prime }+9 y&=2 \sec \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.549

373

\begin{align*} y^{\prime \prime }+y&=\csc \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.404

374

\begin{align*} 4 y+y^{\prime \prime }&=\sin \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.392

375

\begin{align*} y^{\prime \prime }-4 y&=x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.279

382

\begin{align*} y^{\prime \prime }+y&=2 \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.369

383

\begin{align*} x^{\prime \prime }+9 x&=10 \cos \left (2 t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.539

384

\begin{align*} x^{\prime \prime }+4 x&=5 \sin \left (3 t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.533

385

\begin{align*} x^{\prime \prime }+100 x&=225 \cos \left (5 t \right )+300 \sin \left (5 t \right ) \\ x \left (0\right ) &= 375 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.659

386

\begin{align*} x^{\prime \prime }+25 x&=90 \cos \left (4 t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 90 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.545

387

\begin{align*} m x^{\prime \prime }+k x&=F_{0} \cos \left (\omega t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.681

388

\begin{align*} x^{\prime \prime }+4 x^{\prime }+4 x&=10 \cos \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.430

389

\begin{align*} x^{\prime \prime }+3 x^{\prime }+5 x&=-4 \cos \left (5 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.431

390

\begin{align*} 2 x^{\prime \prime }+2 x^{\prime }+x&=3 \sin \left (10 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.385

391

\begin{align*} x^{\prime \prime }+3 x^{\prime }+3 x&=8 \cos \left (10 t \right )+6 \sin \left (10 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.450

392

\begin{align*} x^{\prime \prime }+4 x^{\prime }+5 x&=10 \cos \left (3 t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.560

393

\begin{align*} x^{\prime \prime }+6 x^{\prime }+13 x&=10 \sin \left (5 t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.553

394

\begin{align*} x^{\prime \prime }+2 x^{\prime }+26 x&=600 \cos \left (10 t \right ) \\ x \left (0\right ) &= 10 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.582

395

\begin{align*} x^{\prime \prime }+8 x^{\prime }+25 x&=200 \cos \left (t \right )+520 \sin \left (t \right ) \\ x \left (0\right ) &= -30 \\ x^{\prime }\left (0\right ) &= -10 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.536

396

\begin{align*} x^{\prime \prime }+2 x^{\prime }+2 x&=2 \cos \left (\omega t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.392

397

\begin{align*} x^{\prime \prime }+4 x^{\prime }+5 x&=10 \cos \left (\omega t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.315

398

\begin{align*} x^{\prime \prime }+6 x^{\prime }+45 x&=50 \cos \left (\omega t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.372

399

\begin{align*} x^{\prime \prime }+10 x^{\prime }+650 x&=100 \cos \left (\omega t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.374

807

\begin{align*} y^{\prime \prime }-y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.087

808

\begin{align*} y^{\prime \prime }-9 y&=0 \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 15 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.112

809

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 8 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.139

810

\begin{align*} y^{\prime \prime }+25 y&=0 \\ y \left (0\right ) &= 10 \\ y^{\prime }\left (0\right ) &= -10 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.680

811

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.305

812

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=0 \\ y \left (0\right ) &= 7 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.300

813

\begin{align*} y^{\prime \prime }+y^{\prime }&=0 \\ y \left (0\right ) &= -2 \\ y^{\prime }\left (0\right ) &= 8 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.874

814

\begin{align*} y^{\prime \prime }-3 y^{\prime }&=0 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.907

815

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.380

816

\begin{align*} y^{\prime \prime }-10 y^{\prime }+25 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 13 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.381

817

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.380

818

\begin{align*} y^{\prime \prime }+6 y^{\prime }+13 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.406

823

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.175

824

\begin{align*} y^{\prime \prime }+2 y^{\prime }-15 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.184

825

\begin{align*} y^{\prime \prime }+5 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.694

826

\begin{align*} 2 y^{\prime \prime }+3 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.705

827

\begin{align*} 2 y^{\prime \prime }-y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.187

828

\begin{align*} 4 y^{\prime \prime }+8 y^{\prime }+3 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.182

829

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.241

830

\begin{align*} 9 y^{\prime \prime }-12 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.246

831

\begin{align*} 6 y^{\prime \prime }-7 y^{\prime }-20 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.194

832

\begin{align*} 35 y^{\prime \prime }-y^{\prime }-12 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.194

838

\begin{align*} y^{\prime \prime }+y&=3 x \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.463

839

\begin{align*} y^{\prime \prime }-4 y&=12 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 10 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.191

840

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=6 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 11 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.398

841

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=2 x \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 8 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.461

842

\begin{align*} y^{\prime \prime }+2 y&=4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.934

843

\begin{align*} y^{\prime \prime }+2 y&=6 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.337

844

\begin{align*} y^{\prime \prime }+2 y&=6 x +4 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.356

845

\begin{align*} y^{\prime \prime }-4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.724

846

\begin{align*} 2 y^{\prime \prime }-3 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.705

847

\begin{align*} y^{\prime \prime }+3 y^{\prime }-10 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.184

848

\begin{align*} 2 y^{\prime \prime }-7 y^{\prime }+3 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.190

849

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.233

850

\begin{align*} y^{\prime \prime }+5 y^{\prime }+5 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.228

851

\begin{align*} 4 y^{\prime \prime }-12 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.247

852

\begin{align*} y^{\prime \prime }-6 y^{\prime }+13 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.223

853

\begin{align*} y^{\prime \prime }+8 y^{\prime }+25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.243

854

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=0 \\ y \left (0\right ) &= 7 \\ y^{\prime }\left (0\right ) &= 11 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.302

855

\begin{align*} 9 y^{\prime \prime }+6 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.430

856

\begin{align*} y^{\prime \prime }-6 y^{\prime }+25 y&=0 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.395

857

\begin{align*} y^{\prime \prime }-2 i y^{\prime }+3 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.207

858

\begin{align*} y^{\prime \prime }-i y^{\prime }+6 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.227

862

\begin{align*} \frac {x^{\prime \prime }}{2}+3 x^{\prime }+4 x&=0 \\ x \left (0\right ) &= 2 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.325

863

\begin{align*} 3 x^{\prime \prime }+30 x^{\prime }+63 x&=0 \\ x \left (0\right ) &= 2 \\ x^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.312

864

\begin{align*} x^{\prime \prime }+8 x^{\prime }+16 x&=0 \\ x \left (0\right ) &= 5 \\ x^{\prime }\left (0\right ) &= -10 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.412

865

\begin{align*} 2 x^{\prime \prime }+12 x^{\prime }+50 x&=0 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= -8 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.372

866

\begin{align*} 4 x^{\prime \prime }+20 x^{\prime }+169 x&=0 \\ x \left (0\right ) &= 4 \\ x^{\prime }\left (0\right ) &= 16 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.421

867

\begin{align*} 2 x^{\prime \prime }+16 x^{\prime }+40 x&=0 \\ x \left (0\right ) &= 5 \\ x^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.379

868

\begin{align*} x^{\prime \prime }+10 x^{\prime }+125 x&=0 \\ x \left (0\right ) &= 6 \\ x^{\prime }\left (0\right ) &= 50 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.420

869

\begin{align*} y^{\prime \prime }+16 y&={\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.332

870

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=3 x +4 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.332

871

\begin{align*} y^{\prime \prime }-y^{\prime }-6 y&=2 \sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.372

872

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime }+y&=3 x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.409

873

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=\sin \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.484

874

\begin{align*} 2 y^{\prime \prime }+4 y^{\prime }+7 y&=x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.429

875

\begin{align*} y^{\prime \prime }-4 y&=\sinh \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.523

876

\begin{align*} y^{\prime \prime }-4 y&=\cosh \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.598

877

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&=1+x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.454

878

\begin{align*} y^{\prime \prime }+9 y&=2 \cos \left (3 x \right )+3 \sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.540

879

\begin{align*} y^{\prime \prime }+9 y&=2 x^{2} {\mathrm e}^{3 x}+5 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.388

880

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&={\mathrm e}^{x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.345

881

\begin{align*} 4 y+y^{\prime \prime }&=3 x \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.494

882

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=x \left ({\mathrm e}^{-x}-{\mathrm e}^{-2 x}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.507

883

\begin{align*} y^{\prime \prime }-6 y^{\prime }+13 y&=x \,{\mathrm e}^{3 x} \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.492

884

\begin{align*} 4 y+y^{\prime \prime }&=2 x \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.483

885

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.447

886

\begin{align*} y^{\prime \prime }+9 y&=\sin \left (2 x \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.537

887

\begin{align*} y^{\prime \prime }+y&=\cos \left (x \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.519

888

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=x +1 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.460

889

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=\sin \left (x \right ) \sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.522

890

\begin{align*} y^{\prime \prime }+9 y&=\sin \left (x \right )^{4} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.660

891

\begin{align*} y^{\prime \prime }+y&=\cos \left (x \right )^{3} x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.819

892

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=4 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.323

893

\begin{align*} y^{\prime \prime }-2 y^{\prime }-8 y&=3 \,{\mathrm e}^{-2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.333

894

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=2 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.390

895

\begin{align*} y^{\prime \prime }-4 y&=\sinh \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.602

896

\begin{align*} 4 y+y^{\prime \prime }&=\cos \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.372

897

\begin{align*} y^{\prime \prime }+9 y&=\sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.384

898

\begin{align*} y^{\prime \prime }+9 y&=2 \sec \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.638

899

\begin{align*} y^{\prime \prime }+y&=\csc \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.478

900

\begin{align*} 4 y+y^{\prime \prime }&=\sin \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.450

901

\begin{align*} y^{\prime \prime }-4 y&=x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.342

908

\begin{align*} x^{\prime \prime }+9 x&=10 \cos \left (2 t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.539

909

\begin{align*} x^{\prime \prime }+4 x&=5 \sin \left (3 t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.556

910

\begin{align*} x^{\prime \prime }+100 x&=225 \cos \left (5 t \right )+300 \sin \left (5 t \right ) \\ x \left (0\right ) &= 375 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.773

911

\begin{align*} x^{\prime \prime }+25 x&=90 \cos \left (4 t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 90 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.553

912

\begin{align*} m x^{\prime \prime }+k x&=F_{0} \cos \left (\omega t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.595

913

\begin{align*} x^{\prime \prime }+4 x^{\prime }+4 x&=10 \cos \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.503

914

\begin{align*} x^{\prime \prime }+3 x^{\prime }+5 x&=-4 \cos \left (5 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.494

915

\begin{align*} 2 x^{\prime \prime }+2 x^{\prime }+x&=3 \sin \left (10 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.447

916

\begin{align*} x^{\prime \prime }+3 x^{\prime }+3 x&=8 \cos \left (10 t \right )+6 \sin \left (10 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.514

917

\begin{align*} x^{\prime \prime }+4 x^{\prime }+5 x&=10 \cos \left (3 t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.678

918

\begin{align*} x^{\prime \prime }+6 x^{\prime }+13 x&=10 \sin \left (5 t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.604

919

\begin{align*} x^{\prime \prime }+6 x^{\prime }+13 x&=10 \sin \left (5 t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.510

920

\begin{align*} x^{\prime \prime }+2 x^{\prime }+26 x&=600 \cos \left (10 t \right ) \\ x \left (0\right ) &= 10 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.678

921

\begin{align*} x^{\prime \prime }+8 x^{\prime }+25 x&=200 \cos \left (t \right )+520 \sin \left (t \right ) \\ x \left (0\right ) &= -30 \\ x^{\prime }\left (0\right ) &= -10 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.601

1249

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.195

1250

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.194

1251

\begin{align*} 6 y^{\prime \prime }-y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.202

1252

\begin{align*} 2 y^{\prime \prime }-3 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.194

1253

\begin{align*} y^{\prime \prime }+5 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.819

1254

\begin{align*} 4 y^{\prime \prime }-9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.988

1255

\begin{align*} y^{\prime \prime }-9 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.237

1256

\begin{align*} y^{\prime \prime }-2 y^{\prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.228

1257

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.309

1258

\begin{align*} y^{\prime \prime }+4 y^{\prime }+3 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.343

1259

\begin{align*} 6 y^{\prime \prime }-5 y^{\prime }+y&=0 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.322

1260

\begin{align*} y^{\prime \prime }+3 y^{\prime }&=0 \\ y \left (0\right ) &= -2 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.996

1261

\begin{align*} y^{\prime \prime }+5 y^{\prime }+3 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.402

1262

\begin{align*} 2 y^{\prime \prime }+y^{\prime }-4 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.373

1263

\begin{align*} y^{\prime \prime }+8 y^{\prime }-9 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.332

1264

\begin{align*} 4 y^{\prime \prime }-y&=0 \\ y \left (-2\right ) &= 1 \\ y^{\prime }\left (-2\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.177

1265

\begin{align*} y^{\prime \prime }-y&=0 \\ y \left (0\right ) &= {\frac {5}{4}} \\ y^{\prime }\left (0\right ) &= -{\frac {3}{4}} \\ \end{align*}

[[_2nd_order, _missing_x]]

1.099

1266

\begin{align*} 2 y^{\prime \prime }-3 y^{\prime }+y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= {\frac {1}{2}} \\ \end{align*}

[[_2nd_order, _missing_x]]

0.309

1267

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=0 \\ y \left (0\right ) &= \alpha \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.290

1268

\begin{align*} 4 y^{\prime \prime }-y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= \beta \\ \end{align*}

[[_2nd_order, _missing_x]]

0.750

1269

\begin{align*} y^{\prime \prime }-\left (2 \alpha -1\right ) y^{\prime }+\alpha \left (\alpha -1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.233

1270

\begin{align*} y^{\prime \prime }+\left (3-\alpha \right ) y^{\prime }-2 \left (\alpha -1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.292

1271

\begin{align*} 2 y^{\prime \prime }+3 y^{\prime }-2 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -\beta \\ \end{align*}

[[_2nd_order, _missing_x]]

0.277

1272

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= \beta \\ \end{align*}

[[_2nd_order, _missing_x]]

0.286

1273

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.292

1274

\begin{align*} y^{\prime \prime }-2 y^{\prime }+6 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.298

1275

\begin{align*} y^{\prime \prime }+2 y^{\prime }-8 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.224

1276

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.301

1277

\begin{align*} y^{\prime \prime }+6 y^{\prime }+13 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.241

1278

\begin{align*} 4 y^{\prime \prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.036

1279

\begin{align*} y^{\prime \prime }+2 y^{\prime }+\frac {5 y}{4}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.246

1280

\begin{align*} 9 y^{\prime \prime }+9 y^{\prime }-4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.207

1281

\begin{align*} y^{\prime \prime }+y^{\prime }+\frac {5 y}{4}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.239

1282

\begin{align*} y^{\prime \prime }+4 y^{\prime }+\frac {25 y}{4}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.259

1283

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.690

1284

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.475

1285

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=0 \\ y \left (\frac {\pi }{2}\right ) &= 0 \\ y^{\prime }\left (\frac {\pi }{2}\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.372

1286

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (\frac {\pi }{3}\right ) &= 2 \\ y^{\prime }\left (\frac {\pi }{3}\right ) &= -4 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.309

1287

\begin{align*} y^{\prime \prime }+y^{\prime }+\frac {5 y}{4}&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.354

1288

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=0 \\ y \left (\frac {\pi }{4}\right ) &= 2 \\ y^{\prime }\left (\frac {\pi }{4}\right ) &= -2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.379

1289

\begin{align*} u^{\prime \prime }-u^{\prime }+2 u&=0 \\ u \left (0\right ) &= 2 \\ u^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.461

1290

\begin{align*} 5 u^{\prime \prime }+2 u^{\prime }+7 u&=0 \\ u \left (0\right ) &= 2 \\ u^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.458

1291

\begin{align*} y^{\prime \prime }+2 y^{\prime }+6 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= \alpha \\ \end{align*}

[[_2nd_order, _missing_x]]

0.384

1292

\begin{align*} y^{\prime \prime }+2 a y^{\prime }+\left (a^{2}+1\right ) y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.509

1303

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.249

1304

\begin{align*} 9 y^{\prime \prime }+6 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.257

1305

\begin{align*} 4 y^{\prime \prime }-4 y^{\prime }-3 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.194

1306

\begin{align*} 4 y^{\prime \prime }+12 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.252

1307

\begin{align*} y^{\prime \prime }-2 y^{\prime }+10 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.255

1308

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.250

1309

\begin{align*} 4 y^{\prime \prime }+17 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.200

1310

\begin{align*} 16 y^{\prime \prime }+24 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.260

1311

\begin{align*} 25 y^{\prime \prime }-20 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.249

1312

\begin{align*} 2 y^{\prime \prime }+2 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.237

1313

\begin{align*} 9 y^{\prime \prime }-12 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.404

1314

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.427

1315

\begin{align*} 9 y^{\prime \prime }+6 y^{\prime }+82 y&=0 \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.415

1316

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\ y \left (-1\right ) &= 2 \\ y^{\prime }\left (-1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.413

1317

\begin{align*} 4 y^{\prime \prime }+12 y^{\prime }+9 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.393

1318

\begin{align*} y^{\prime \prime }-y^{\prime }+\frac {y}{4}&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= b \\ \end{align*}

[[_2nd_order, _missing_x]]

0.330

1333

\begin{align*} y^{\prime \prime }-5 y^{\prime }+6 y&=2 \,{\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.330

1334

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=2 \,{\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.349

1335

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=3 \,{\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.413

1336

\begin{align*} 4 y^{\prime \prime }-4 y^{\prime }+y&=16 \,{\mathrm e}^{\frac {t}{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.418

1337

\begin{align*} y^{\prime \prime }+y&=\tan \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.455

1338

\begin{align*} y^{\prime \prime }+9 y&=9 \sec \left (3 t \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.049

1339

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{-2 t}}{t^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.515

1340

\begin{align*} y^{\prime \prime }+4 y&=3 \csc \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.643

1341

\begin{align*} y^{\prime \prime }+y&=2 \sec \left (\frac {t}{2}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.526

1342

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=\frac {{\mathrm e}^{t}}{t^{2}+1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.491

1343

\begin{align*} y^{\prime \prime }-5 y^{\prime }+6 y&=g \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.514

1344

\begin{align*} y^{\prime \prime }+4 y&=g \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.509

1355

\begin{align*} u^{\prime \prime }+2 u&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.243

1356

\begin{align*} u^{\prime \prime }+\frac {u^{\prime }}{4}+2 u&=0 \\ u \left (0\right ) &= 0 \\ u^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.421

1357

\begin{align*} u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u&=3 \cos \left (\frac {t}{4}\right ) \\ u \left (0\right ) &= 2 \\ u^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.636

1358

\begin{align*} u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u&=3 \cos \left (2 t \right ) \\ u \left (0\right ) &= 2 \\ u^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.576

1359

\begin{align*} u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u&=3 \cos \left (6 t \right ) \\ u \left (0\right ) &= 2 \\ u^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.615

1517

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=f \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.710

1736

\begin{align*} y^{\prime \prime }-7 y^{\prime }+10 y&=0 \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.325

1737

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.368

1738

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\ y \left (0\right ) &= k_{0} \\ y^{\prime }\left (0\right ) &= k_{1} \\ \end{align*}

[[_2nd_order, _missing_x]]

0.290

1739

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 7 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.394

1740

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= k_{0} \\ y^{\prime }\left (0\right ) &= k_{1} \\ \end{align*}

[[_2nd_order, _missing_x]]

0.349

1742

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.192

1743

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.252

1744

\begin{align*} y^{\prime \prime }-2 a y^{\prime }+a^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.230

1804

\begin{align*} y^{\prime \prime }+9 y&=\tan \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.763

1805

\begin{align*} 4 y+y^{\prime \prime }&=\sin \left (2 x \right ) \sec \left (2 x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.876

1806

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=\frac {4}{1+{\mathrm e}^{-x}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.456

1807

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=3 \,{\mathrm e}^{x} \sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.485

1808

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=14 x^{{3}/{2}} {\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.546

1809

\begin{align*} y^{\prime \prime }-y&=\frac {4 \,{\mathrm e}^{-x}}{1-{\mathrm e}^{-2 x}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.521

2363

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.357

2364

\begin{align*} 6 y^{\prime \prime }-7 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.214

2365

\begin{align*} y^{\prime \prime }-3 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.251

2366

\begin{align*} 3 y^{\prime \prime }+6 y^{\prime }+3 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.257

2367

\begin{align*} y^{\prime \prime }-3 y^{\prime }-4 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.316

2368

\begin{align*} 2 y^{\prime \prime }+y^{\prime }-10 y&=0 \\ y \left (1\right ) &= 5 \\ y^{\prime }\left (1\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.358

2369

\begin{align*} 5 y^{\prime \prime }+5 y^{\prime }-y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.402

2370

\begin{align*} y^{\prime \prime }-6 y^{\prime }+y&=0 \\ y \left (2\right ) &= 1 \\ y^{\prime }\left (2\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.458

2371

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= v \\ \end{align*}

[[_2nd_order, _missing_x]]

0.295

2375

\begin{align*} y^{\prime \prime }+2 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.468

2376

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.293

2377

\begin{align*} 2 y^{\prime \prime }+3 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.304

2378

\begin{align*} y^{\prime \prime }+2 y^{\prime }+3 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.299

2379

\begin{align*} 4 y^{\prime \prime }-y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.312

2380

\begin{align*} y^{\prime \prime }+y^{\prime }+2 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.470

2381

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.378

2382

\begin{align*} 2 y^{\prime \prime }-y^{\prime }+3 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.626

2383

\begin{align*} 3 y^{\prime \prime }-2 y^{\prime }+4 y&=0 \\ y \left (2\right ) &= 1 \\ y^{\prime }\left (2\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.654

2386

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.257

2387

\begin{align*} 4 y^{\prime \prime }-12 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.260

2388

\begin{align*} 9 y^{\prime \prime }+6 y^{\prime }+y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.392

2389

\begin{align*} 4 y^{\prime \prime }-4 y^{\prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.408

2390

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=0 \\ y \left (2\right ) &= 1 \\ y^{\prime }\left (2\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.381

2391

\begin{align*} 9 y^{\prime \prime }-12 y^{\prime }+4 y&=0 \\ y \left (\pi \right ) &= 0 \\ y^{\prime }\left (\pi \right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.445

2401

\begin{align*} y^{\prime \prime }+y&=\sec \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.422

2402

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 t} t \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.454

2403

\begin{align*} 2 y^{\prime \prime }-3 y^{\prime }+y&=\left (t^{2}+1\right ) {\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.468

2404

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&=t \,{\mathrm e}^{3 t}+1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.381

2405

\begin{align*} 3 y^{\prime \prime }+4 y^{\prime }+y&=\sin \left (t \right ) {\mathrm e}^{-t} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.575

2406

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=t^{{5}/{2}} {\mathrm e}^{-2 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.786

2407

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&=\sqrt {t +1} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.773

2408

\begin{align*} y^{\prime \prime }-y&=f \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.636

2411

\begin{align*} m y^{\prime \prime }+c y^{\prime }+k y&=F_{0} \cos \left (\omega t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.930

2544

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.108

2545

\begin{align*} 6 y^{\prime \prime }-7 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.190

2546

\begin{align*} y^{\prime \prime }-3 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.226

2547

\begin{align*} 3 y^{\prime \prime }+6 y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.230

2548

\begin{align*} y^{\prime \prime }-3 y^{\prime }-4 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.302

2549

\begin{align*} 2 y^{\prime \prime }+y^{\prime }-10 y&=0 \\ y \left (1\right ) &= 5 \\ y^{\prime }\left (1\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.345

2550

\begin{align*} 5 y^{\prime \prime }+5 y^{\prime }-y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.372

2551

\begin{align*} y^{\prime \prime }-6 y^{\prime }+y&=0 \\ y \left (2\right ) &= 1 \\ y^{\prime }\left (2\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.407

2552

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= v \\ \end{align*}

[[_2nd_order, _missing_x]]

0.269

2555

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.278

2556

\begin{align*} 2 y^{\prime \prime }+3 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.286

2557

\begin{align*} y^{\prime \prime }+2 y^{\prime }+3 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.281

2558

\begin{align*} 4 y^{\prime \prime }-y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.286

2559

\begin{align*} y^{\prime \prime }+y^{\prime }+2 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.441

2560

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.369

2561

\begin{align*} 2 y^{\prime \prime }-y^{\prime }+3 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.569

2562

\begin{align*} 3 y^{\prime \prime }-2 y^{\prime }+4 y&=0 \\ y \left (2\right ) &= 1 \\ y^{\prime }\left (2\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.588

2563

\begin{align*} y^{\prime \prime }+w^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.032

2566

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.255

2567

\begin{align*} 4 y^{\prime \prime }-12 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.253

2568

\begin{align*} 9 y^{\prime \prime }+6 y^{\prime }+y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.374

2569

\begin{align*} 4 y^{\prime \prime }-4 y^{\prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.381

2570

\begin{align*} 6 y^{\prime \prime }+2 y^{\prime }+y&=0 \\ y \left (2\right ) &= 1 \\ y^{\prime }\left (2\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.619

2571

\begin{align*} 9 y^{\prime \prime }-12 y^{\prime }+4 y&=0 \\ y \left (\pi \right ) &= 0 \\ y^{\prime }\left (\pi \right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.411

2582

\begin{align*} y^{\prime \prime }+y&=\sec \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.471

2583

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 t} t \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.428

2584

\begin{align*} 2 y^{\prime \prime }-3 y^{\prime }+y&=\left (t^{2}+1\right ) {\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.451

2585

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&=t \,{\mathrm e}^{3 t}+1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.364

2586

\begin{align*} 3 y^{\prime \prime }+4 y^{\prime }+y&=\sin \left (t \right ) {\mathrm e}^{-t} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.540

2587

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=t^{{5}/{2}} {\mathrm e}^{-2 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.701

2588

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&=\sqrt {t +1} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.712

2589

\begin{align*} y^{\prime \prime }-y&=f \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.567

2593

\begin{align*} y^{\prime \prime }+3 y&=t^{3}-1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.384

2594

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=t \,{\mathrm e}^{\alpha t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.451

2595

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{t} t^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.399

2596

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=t^{2}+t +1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.365

2597

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.398

2598

\begin{align*} y^{\prime \prime }+5 y^{\prime }+4 y&=t^{2} {\mathrm e}^{7 t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.365

2599

\begin{align*} y^{\prime \prime }+4 y&=t \sin \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.516

2600

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=\left (3 t^{7}-5 t^{4}\right ) {\mathrm e}^{3 t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.708

2601

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=2 \cos \left (t \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.444

2602

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=2 \cos \left (t \right )^{2} {\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.429

2603

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=\sin \left (t \right )+{\mathrm e}^{2 t} t \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.691

2604

\begin{align*} y^{\prime \prime }+y^{\prime }+4 y&=t^{2}+\left (2 t +3\right ) \left (1+\cos \left (t \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.492

2605

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&={\mathrm e}^{t}+{\mathrm e}^{2 t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.382

2606

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=1+t^{2}+{\mathrm e}^{-2 t} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.008

2607

\begin{align*} y^{\prime \prime }+y&=\cos \left (t \right ) \cos \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.703

2608

\begin{align*} y^{\prime \prime }+y&=\cos \left (t \right ) \cos \left (2 t \right ) \cos \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.108

2609

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=t^{{3}/{2}} {\mathrm e}^{3 t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.504

2834

\begin{align*} y^{\prime \prime }+\lambda y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (L \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.546

2835

\begin{align*} y^{\prime \prime }+\lambda y&=0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime }\left (L \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.108

2836

\begin{align*} y^{\prime \prime }-\lambda y&=0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime }\left (L \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.056

2837

\begin{align*} y^{\prime \prime }+\lambda y&=0 \\ y^{\prime }\left (0\right ) &= 0 \\ y \left (L \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.945

2838

\begin{align*} y^{\prime \prime }-2 y^{\prime }+\left (1+\lambda \right ) y&=0 \\ y \left (0\right ) &= 0 \\ y \left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.354

2839

\begin{align*} y^{\prime \prime }+\lambda y&=0 \\ y \left (0\right ) &= 0 \\ y \left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.967

3058

\begin{align*} y^{\prime \prime }-4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.068

3059

\begin{align*} y^{\prime \prime }+7 y^{\prime }+12 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.209

3060

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.206

3061

\begin{align*} y^{\prime \prime }-7 y^{\prime }+6 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.217

3062

\begin{align*} 2 y^{\prime \prime }+3 y^{\prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.209

3063

\begin{align*} y^{\prime \prime }-2 y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.239

3064

\begin{align*} y^{\prime \prime }-2 y^{\prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.234

3065

\begin{align*} y^{\prime \prime }-3 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.257

3066

\begin{align*} 2 y^{\prime \prime }+2 y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.241

3087

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.289

3088

\begin{align*} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.796

3099

\begin{align*} y^{\prime \prime }-2 y^{\prime }+3 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.333

3110

\begin{align*} y^{\prime \prime }-4 y&=3 \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.442

3111

\begin{align*} y^{\prime \prime }+y&=\sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.430

3112

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.420

3113

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{-2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.356

3114

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.493

3115

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.391

3116

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=x \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.371

3118

\begin{align*} y^{\prime \prime }-4 y&=x +{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.480

3119

\begin{align*} y^{\prime \prime }-9 y&={\mathrm e}^{3 x}+\sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.812

3120

\begin{align*} y^{\prime \prime }-y^{\prime }-6 y&=x^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.374

3121

\begin{align*} -2 y^{\prime \prime }+3 y&=x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.404

3122

\begin{align*} 4 y+y^{\prime \prime }&=x \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.569

3124

\begin{align*} y^{\prime \prime }+y^{\prime }+y&={\mathrm e}^{x} \sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.460

3127

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=x^{3} {\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.503

3130

\begin{align*} y^{\prime \prime }+2 n y^{\prime }+n^{2} y&=5 \cos \left (6 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.685

3131

\begin{align*} y^{\prime \prime }+9 y&=\left (1+\sin \left (3 x \right )\right ) \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.552

3132

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&=2 x -{\mathrm e}^{-4 x}+\sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.768

3134

\begin{align*} 4 y+y^{\prime \prime }&=8 \sin \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.569

3136

\begin{align*} y^{\prime \prime }-5 y^{\prime }-6 y&={\mathrm e}^{3 x} \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.484

3137

\begin{align*} 4 y+y^{\prime \prime }&=12 \cos \left (x \right )^{2} \\ y \left (\frac {\pi }{2}\right ) &= 0 \\ y^{\prime }\left (\frac {\pi }{2}\right ) &= \frac {\pi }{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.765

3138

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=x \,{\mathrm e}^{-x} \\ y \left (0\right ) &= {\frac {1}{9}} \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.503

3139

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{x} \sin \left (x \right ) \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.658

3140

\begin{align*} 2 y^{\prime \prime }+y^{\prime }&=8 \sin \left (2 x \right )+{\mathrm e}^{-x} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.811

3141

\begin{align*} y^{\prime \prime }+y&=3 x \sin \left (x \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.701

3142

\begin{align*} 2 y^{\prime \prime }+5 y^{\prime }-3 y&=\sin \left (x \right )-8 x \\ y \left (0\right ) &= {\frac {1}{2}} \\ y^{\prime }\left (0\right ) &= {\frac {1}{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.775

3143

\begin{align*} 8 y^{\prime \prime }-y&=x \,{\mathrm e}^{-\frac {x}{2}} \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.605

3144

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.431

3145

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.416

3146

\begin{align*} 4 y+y^{\prime \prime }&=x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.369

3147

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.405

3148

\begin{align*} y^{\prime \prime }+y&=4 \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.405

3149

\begin{align*} 4 y+y^{\prime \prime }&=2 x -2 \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.617

3150

\begin{align*} y^{\prime \prime }-y&=3 x +5 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.474

3151

\begin{align*} y^{\prime \prime }+9 y&={\mathrm e}^{x}+\sin \left (4 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.659

3154

\begin{align*} y^{\prime \prime }+y&=\tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.462

3159

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{\left (1-x \right )^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.447

3160

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=\sin \left ({\mathrm e}^{-x}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.552

3161

\begin{align*} 4 y+y^{\prime \prime }&=\sec \left (x \right ) \tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.616

3162

\begin{align*} -2 y+y^{\prime \prime }&=\sin \left (2 x \right ) {\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.635

3163

\begin{align*} y^{\prime \prime }+9 y&=\sec \left (x \right ) \csc \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.817

3164

\begin{align*} y^{\prime \prime }+9 y&=\csc \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.737

3165

\begin{align*} y^{\prime \prime }+y&=\tan \left (\frac {x}{3}\right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.908

3167

\begin{align*} 4 y^{\prime \prime }-4 y^{\prime }+y&={\mathrm e}^{\frac {x}{2}} \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.579

3169

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.439

3171

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.359

3172

\begin{align*} 4 y+y^{\prime \prime }&=2 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.388

3173

\begin{align*} y^{\prime \prime }+3 y&=3 \,{\mathrm e}^{-4 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.471

3174

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{x}}{2}+\frac {{\mathrm e}^{-x}}{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.866

3175

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&={\mathrm e}^{-2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.358

3176

\begin{align*} y^{\prime \prime }+2 y&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.464

3177

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{3 x}}{2}-\frac {{\mathrm e}^{-3 x}}{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.678

3178

\begin{align*} y^{\prime \prime }+3 y^{\prime }-2 y&=\sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.445

3179

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.396

3183

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{3 x} \left (1+\sin \left (2 x \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.735

3184

\begin{align*} y^{\prime \prime }+2 n^{2} y^{\prime }+n^{4} y&=\sin \left (k x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.637

3185

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{2}+\frac {{\mathrm e}^{-x}}{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.565

3186

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=x \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.352

3187

\begin{align*} 4 y+y^{\prime \prime }&=x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.397

3188

\begin{align*} y^{\prime \prime }+2 y&=x^{2} {\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.439

3189

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=x^{2}-8 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.356

3204

\begin{align*} 4 y+y^{\prime \prime }&=x \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.464

3205

\begin{align*} y^{\prime \prime }+y&=x^{2} \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.770

3206

\begin{align*} y^{\prime \prime }-y&=x^{2} \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.651

3209

\begin{align*} 2 y^{\prime \prime }+3 y^{\prime }-2 y&={\mathrm e}^{x} x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.384

3213

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=x^{2} \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.653

3214

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=x^{2} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.661

3215

\begin{align*} y^{\prime \prime }-y&=\sin \left (2 x \right ) x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.578

3216

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=x^{3} \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.812

3217

\begin{align*} y^{\prime \prime }-y^{\prime }&={\mathrm e}^{2 x} \sin \left (x \right ) x \\ \end{align*}

[[_2nd_order, _missing_y]]

1.589

3218

\begin{align*} y^{\prime \prime }-4 y&={\mathrm e}^{2 x} \cos \left (x \right ) x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.700

3219

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=x^{2} {\mathrm e}^{-x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.851

3243

\begin{align*} y^{\prime \prime }&=\cos \left (t \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

1.019

3244

\begin{align*} y^{\prime \prime }&=k^{2} y \\ \end{align*}

[[_2nd_order, _missing_x]]

2.597

3245

\begin{align*} x^{\prime \prime }+k^{2} x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.885

3265

\begin{align*} y^{\prime \prime }&=y \\ \end{align*}

[[_2nd_order, _missing_x]]

1.273

3271

\begin{align*} y^{\prime \prime }&=\sec \left (x \right ) \tan \left (x \right ) \\ y \left (0\right ) &= \frac {\pi }{4} \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _quadrature]]

2.006

3281

\begin{align*} x^{\prime \prime }-k^{2} x&=0 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= v_{0} \\ \end{align*}

[[_2nd_order, _missing_x]]

2.207

3483

\begin{align*} x^{\prime \prime }+\omega _{0}^{2} x&=a \cos \left (\omega t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.370

3484

\begin{align*} f^{\prime \prime }+2 f^{\prime }+5 f&=0 \\ f \left (0\right ) &= 1 \\ f^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.512

3485

\begin{align*} f^{\prime \prime }+2 f^{\prime }+5 f&={\mathrm e}^{-t} \cos \left (3 t \right ) \\ f \left (0\right ) &= 0 \\ f^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.615

3486

\begin{align*} f^{\prime \prime }+6 f^{\prime }+9 f&={\mathrm e}^{-t} \\ f \left (0\right ) &= 0 \\ f^{\prime }\left (0\right ) &= \lambda \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.605

3487

\begin{align*} f^{\prime \prime }+8 f^{\prime }+12 f&=12 \,{\mathrm e}^{-4 t} \\ f \left (0\right ) &= 0 \\ f^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.570

3488

\begin{align*} f^{\prime \prime }+8 f^{\prime }+12 f&=12 \,{\mathrm e}^{-4 t} \\ f \left (0\right ) &= 0 \\ f^{\prime }\left (0\right ) &= -2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.575

3489

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.506

3495

\begin{align*} y^{\prime \prime }-y&=x^{n} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.652

3496

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=2 x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.500

3557

\begin{align*} y^{\prime \prime }-25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.157

3558

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.827

3559

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.158

3562

\begin{align*} 5 y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.213

3563

\begin{align*} y^{\prime \prime }-9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.699

3569

\begin{align*} y^{\prime \prime }-\left (a +b \right ) y^{\prime }+a b y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.256

3570

\begin{align*} y^{\prime \prime }-2 a y^{\prime }+a^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.181

3571

\begin{align*} y^{\prime \prime }-2 a y^{\prime }+\left (a^{2}+b^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.263

3572

\begin{align*} y^{\prime \prime }-y^{\prime }-6 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.160

3573

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.200

3583

\begin{align*} y^{\prime \prime }&=x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _quadrature]]

0.573

3584

\begin{align*} y^{\prime \prime }&=x^{n} \\ \end{align*}

[[_2nd_order, _quadrature]]

0.640

3586

\begin{align*} y^{\prime \prime }&=\cos \left (x \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _quadrature]]

2.842

3588

\begin{align*} y^{\prime \prime }&=x \,{\mathrm e}^{x} \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.817

3589

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.147

3695

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.153

3696

\begin{align*} y^{\prime \prime }+7 y^{\prime }+10 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.155

3697

\begin{align*} y^{\prime \prime }-36 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.026

3698

\begin{align*} y^{\prime \prime }+4 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.642

3710

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=18 \,{\mathrm e}^{5 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.276

3711

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=4 x^{2}+5 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.269

3715

\begin{align*} y^{\prime \prime }+y&=6 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.333

3716

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=5 \,{\mathrm e}^{-2 x} x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.358

3717

\begin{align*} 4 y+y^{\prime \prime }&=8 \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.341

3718

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=5 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.343

3719

\begin{align*} 5 y+2 y^{\prime }+y^{\prime \prime }&=3 \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.355

3723

\begin{align*} y^{\prime \prime }+9 y&=5 \cos \left (2 x \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.477

3724

\begin{align*} y^{\prime \prime }-y&=9 x \,{\mathrm e}^{2 x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 7 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.414

3725

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=-10 \sin \left (x \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.408

3726

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=4 \cos \left (x \right )-2 \sin \left (x \right ) \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.421

3728

\begin{align*} y^{\prime \prime }-4 y^{\prime }+6 y&=7 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.376

3731

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&=\sin \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.346

3732

\begin{align*} y^{\prime \prime }+6 y&=\cos \left (x \right )^{2} \sin \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.546

3733

\begin{align*} y^{\prime \prime }-16 y&=20 \cos \left (4 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.359

3734

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=50 \sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.415

3735

\begin{align*} y^{\prime \prime }-y&=10 \,{\mathrm e}^{2 x} \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.434

3736

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=169 \sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.409

3737

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=40 \sin \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.342

3738

\begin{align*} y^{\prime \prime }+y&=3 \,{\mathrm e}^{x} \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.411

3739

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=2 \,{\mathrm e}^{-x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.346

3740

\begin{align*} y^{\prime \prime }-4 y&=100 \,{\mathrm e}^{x} \sin \left (x \right ) x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.460

3741

\begin{align*} 5 y+2 y^{\prime }+y^{\prime \prime }&=4 \cos \left (2 x \right ) {\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.341

3742

\begin{align*} y^{\prime \prime }-2 y^{\prime }+10 y&=24 \,{\mathrm e}^{x} \cos \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.392

3743

\begin{align*} y^{\prime \prime }+16 y&=34 \,{\mathrm e}^{x}+16 \cos \left (4 x \right )-8 \sin \left (4 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.728

3744

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=4 \,{\mathrm e}^{3 x} \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.447

3745

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{-2 x}}{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.400

3746

\begin{align*} y^{\prime \prime }+9 y&=18 \sec \left (3 x \right )^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.603

3747

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=\frac {2 \,{\mathrm e}^{-3 x}}{x^{2}+1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.435

3748

\begin{align*} y^{\prime \prime }-4 y&=\frac {8}{{\mathrm e}^{2 x}+1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.441

3749

\begin{align*} y^{\prime \prime }-4 y^{\prime }+5 y&={\mathrm e}^{2 x} \tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.435

3750

\begin{align*} y^{\prime \prime }+9 y&=\frac {36}{4-\cos \left (3 x \right )^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.664

3751

\begin{align*} y^{\prime \prime }-10 y^{\prime }+25 y&=\frac {2 \,{\mathrm e}^{5 x}}{x^{2}+4} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.441

3752

\begin{align*} y^{\prime \prime }-6 y^{\prime }+13 y&=4 \,{\mathrm e}^{3 x} \sec \left (2 x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.508

3753

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right )+4 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.458

3754

\begin{align*} y^{\prime \prime }+y&=\csc \left (x \right )+2 x^{2}+5 x +1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.467

3755

\begin{align*} y^{\prime \prime }-y&=2 \tanh \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.430

3756

\begin{align*} y^{\prime \prime }-2 m y^{\prime }+m^{2} y&=\frac {{\mathrm e}^{m x}}{x^{2}+1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.442

3757

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {4 \,{\mathrm e}^{x} \ln \left (x \right )}{x^{3}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.436

3758

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{-x}}{\sqrt {-x^{2}+4}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.455

3759

\begin{align*} y^{\prime \prime }+2 y^{\prime }+17 y&=\frac {64 \,{\mathrm e}^{-x}}{3+\sin \left (4 x \right )^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.571

3760

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {4 \,{\mathrm e}^{-2 x}}{x^{2}+1}+2 x^{2}-1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.499

3761

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=15 \,{\mathrm e}^{-2 x} \ln \left (x \right )+25 \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.572

3766

\begin{align*} y^{\prime \prime }-9 y&=F \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.412

3767

\begin{align*} y^{\prime \prime }+5 y^{\prime }+4 y&=F \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.439

3768

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=F \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.418

3769

\begin{align*} y^{\prime \prime }+4 y^{\prime }-12 y&=F \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.453

3770

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=5 x \,{\mathrm e}^{2 x} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.514

3771

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.559

3796

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{-3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.344

3797

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{-2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.327

3801

\begin{align*} y^{\prime \prime }-4 y&=5 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.274

3802

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=2 x \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.354

3803

\begin{align*} y^{\prime \prime }-y&=4 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.316

3805

\begin{align*} 4 y+y^{\prime \prime }&=\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.498

3806

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&=5 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.335

3807

\begin{align*} y^{\prime \prime }+y&=\tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.367

3808

\begin{align*} y^{\prime \prime }+y&=4 \cos \left (2 x \right )+3 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.470

4117

\begin{align*} y^{\prime \prime }+8 y^{\prime }+15 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.158

4118

\begin{align*} y^{\prime \prime }+2 y^{\prime }-15 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.155

4119

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.195

4120

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.195

4121

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.155

4122

\begin{align*} y^{\prime \prime }-4 y^{\prime }+13 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.208

4123

\begin{align*} 2 y^{\prime \prime }+3 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.721

4124

\begin{align*} y^{\prime \prime }+25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.805

4125

\begin{align*} 4 y^{\prime \prime }+y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.270

4126

\begin{align*} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.545

4127

\begin{align*} y^{\prime \prime }-6 y^{\prime }+5 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 7 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.264

4128

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.240

4129

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=-2 x^{2}+2 x +2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.273

4130

\begin{align*} y^{\prime \prime }+y&=x^{3}+x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.271

4131

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.308

4132

\begin{align*} y^{\prime \prime }+2 y&=x +{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.358

4133

\begin{align*} y^{\prime \prime }+2 y&={\mathrm e}^{x}+2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.320

4134

\begin{align*} y^{\prime \prime }-y&=2 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.324

4135

\begin{align*} y^{\prime \prime }+y&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.324

4136

\begin{align*} y^{\prime \prime }-y&=4 x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.338

4137

\begin{align*} y^{\prime \prime }-2 y^{\prime }+3 y&=x^{3}+\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.534

4140

\begin{align*} y^{\prime \prime }+2 n y^{\prime }+n^{2} y&=A \cos \left (p x \right ) \\ y \left (0\right ) &= 9 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.691

4151

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.327

4152

\begin{align*} y^{\prime \prime }+2 y^{\prime }-2 y&=x^{2}+1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.309

4153

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{2}+\frac {y}{8}&=\frac {\sin \left (x \right )}{8}-\frac {\cos \left (x \right )}{4} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.380

4154

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{x}-2 \,{\mathrm e}^{2 x}+\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.441

4155

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=x^{3} {\mathrm e}^{2 x}+x \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.410

4156

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=\sin \left (2 x \right ) x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.421

4157

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.404

4160

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.261

4161

\begin{align*} y^{\prime \prime }+9 y&=8 \sin \left (x \right ) \\ y \left (\frac {\pi }{2}\right ) &= -1 \\ y^{\prime }\left (\frac {\pi }{2}\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.503

4162

\begin{align*} 25 y^{\prime \prime }-30 y^{\prime }+9 y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.352

4163

\begin{align*} 9 y^{\prime \prime }-6 y^{\prime }+y&=\left (4 x^{2}+24 x +18\right ) {\mathrm e}^{x} \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.547

4455

\begin{align*} y^{\prime \prime }+6 y^{\prime }+10 y&=3 x \,{\mathrm e}^{-3 x}-2 \,{\mathrm e}^{3 x} \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.725

4456

\begin{align*} y^{\prime \prime }-8 y^{\prime }+17 y&={\mathrm e}^{4 x} \left (x^{2}-3 x \sin \left (x \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.665

4457

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=\left (x +{\mathrm e}^{x}\right ) \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.019

4458

\begin{align*} 4 y+y^{\prime \prime }&=\sinh \left (x \right ) \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.792

4459

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=\cosh \left (x \right ) \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.560

4469

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=36 x \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.388

4473

\begin{align*} y^{\prime \prime }+3 y^{\prime }+5 y&=5 \sin \left (2 x \right ) {\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.509

4475

\begin{align*} 4 y+y^{\prime \prime }&=8 \sin \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.478

4478

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{x} \left (x +1\right )+2 \,{\mathrm e}^{2 x}+3 \,{\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.638

4479

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=4 \,{\mathrm e}^{x} \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.418

4480

\begin{align*} 4 y+y^{\prime \prime }&=4 \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.373

4481

\begin{align*} y^{\prime \prime }-y&=12 \,{\mathrm e}^{x} x^{2}+3 \,{\mathrm e}^{2 x}+10 \cos \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.688

4482

\begin{align*} y^{\prime \prime }+y&=2 \sin \left (x \right )-3 \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.674

4483

\begin{align*} y^{\prime \prime }-y^{\prime }&={\mathrm e}^{x} \left (x^{2}+10\right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

0.869

4484

\begin{align*} y^{\prime \prime }-4 y&=96 x^{2} {\mathrm e}^{2 x}+4 \,{\mathrm e}^{-2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.585

4485

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=5 \cos \left (x \right )+10 \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.499

4486

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=4 x -2+2 \,{\mathrm e}^{x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.655

4487

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=4 x \,{\mathrm e}^{2 x} \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.561

4496

\begin{align*} y^{\prime \prime }-y&=\frac {1}{x}-\frac {2}{x^{3}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.417

4497

\begin{align*} y^{\prime \prime }-y&=\frac {1}{\sinh \left (x \right )} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.431

4498

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.427

4499

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=\sin \left ({\mathrm e}^{x}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.461

4500

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=\sin \left ({\mathrm e}^{-x}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.473

4501

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right )^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.583

4502

\begin{align*} y^{\prime \prime }-y&=\frac {1}{\sqrt {1-{\mathrm e}^{2 x}}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.417

4503

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{-2 x} \sin \left ({\mathrm e}^{-x}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.734

4504

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=15 \,{\mathrm e}^{-x} \sqrt {x +1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.481

4505

\begin{align*} 4 y+y^{\prime \prime }&=2 \tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.421

4506

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{2 x}}{\left ({\mathrm e}^{x}+1\right )^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.415

4507

\begin{align*} y^{\prime \prime }+y^{\prime }&=\frac {1}{{\mathrm e}^{x}+1} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.895

5710

\begin{align*} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.551

5711

\begin{align*} y^{\prime \prime }&=x +\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

0.803

5712

\begin{align*} y^{\prime \prime }&=\operatorname {c1} \cos \left (a x \right )+\operatorname {c2} \sin \left (b x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

1.023

5713

\begin{align*} y^{\prime \prime }&=x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _quadrature]]

0.737

5714

\begin{align*} y^{\prime \prime }&=\operatorname {c1} \,{\mathrm e}^{a x}+\operatorname {c2} \,{\mathrm e}^{-b x} \\ \end{align*}

[[_2nd_order, _quadrature]]

0.948

5715

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.102

5716

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.223

5717

\begin{align*} y^{\prime \prime }+y&=a x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.299

5718

\begin{align*} y^{\prime \prime }+y&=a \cos \left (b x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.404

5719

\begin{align*} y^{\prime \prime }+y&=8 \cos \left (x \right ) \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.580

5720

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.395

5721

\begin{align*} y^{\prime \prime }+y&=a \sin \left (b x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.389

5722

\begin{align*} y^{\prime \prime }+y&=\sin \left (a x \right ) \sin \left (b x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.704

5723

\begin{align*} y^{\prime \prime }+y&=4 x \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.444

5724

\begin{align*} y^{\prime \prime }+y&=x \left (\cos \left (x \right )-x \sin \left (x \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.577

5725

\begin{align*} y^{\prime \prime }+y&=\tan \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.570

5726

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.309

5727

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{x} \left (x^{2}-1\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.364

5728

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{x} \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.446

5729

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{2 x} \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.483

5730

\begin{align*} -2 y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.283

5731

\begin{align*} -2 y+y^{\prime \prime }&=4 x^{2} {\mathrm e}^{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.339

5732

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.989

5733

\begin{align*} 4 y+y^{\prime \prime }&=x \sin \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.665

5734

\begin{align*} 4 y+y^{\prime \prime }&=2 \tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.503

5735

\begin{align*} 4 y+y^{\prime \prime }&=2 \tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.402

5736

\begin{align*} y^{\prime \prime }-a^{2} y&=x +1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.322

5737

\begin{align*} y^{\prime \prime }&=a x +b y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.413

5738

\begin{align*} y^{\prime \prime }+a^{2} y&=x^{2}+x +1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.501

5739

\begin{align*} y^{\prime \prime }+a^{2} y&=\cos \left (b x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.539

5741

\begin{align*} y^{\prime \prime }+a^{2} y&=\sin \left (b x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.530

5768

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.223

5769

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\left (x -6\right ) x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.367

5770

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.351

5771

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \left (3 x^{2}+2 x +1\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.462

5772

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.372

5773

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=3 \,{\mathrm e}^{2 x}+x^{2}-\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.647

5774

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=8 x^{2} {\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.393

5775

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=50 \cos \left (x \right ) \cosh \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.589

5776

\begin{align*} 3 y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.304

5777

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.407

5778

\begin{align*} 5 y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.260

5779

\begin{align*} 5 y+2 y^{\prime }+y^{\prime \prime }&=8 \sinh \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.587

5780

\begin{align*} \csc \left (a \right )^{2} y-2 \tan \left (a \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

10.135

5781

\begin{align*} \csc \left (a \right )^{2} y-2 \tan \left (a \right ) y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x \tan \left (a \right )} x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

8.352

5782

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.190

5783

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=\cos \left (a x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.350

5784

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{x}+\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.408

5785

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{-x}+x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.503

5786

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{a x} x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.330

5787

\begin{align*} -4 y-3 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.174

5788

\begin{align*} -4 y-3 y^{\prime }+y^{\prime \prime }&=10 \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.349

5789

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.221

5790

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 x} \cos \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.494

5791

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.364

5792

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.352

5793

\begin{align*} y^{\prime \prime }-4 y^{\prime }+13 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.260

5794

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.172

5795

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{x} x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.324

5796

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{a x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.296

5797

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.221

5798

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=\cosh \left (x \right ) {\mathrm e}^{-3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.483

5799

\begin{align*} 12 y-7 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.171

5800

\begin{align*} 12 y-7 y^{\prime }+y^{\prime \prime }&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.279

5801

\begin{align*} 16 y+8 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.226

5802

\begin{align*} 16 y+8 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{x}-{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.457

5803

\begin{align*} 20 y-9 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.173

5804

\begin{align*} 20 y-9 y^{\prime }+y^{\prime \prime }&=x^{2} {\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.321

5805

\begin{align*} b^{2} y+2 a y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.444

5806

\begin{align*} b^{2} y+2 a y^{\prime }+y^{\prime \prime }&=c \sin \left (k x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.590

5807

\begin{align*} y^{\prime \prime }-2 a y^{\prime }+a^{2} y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.349

5808

\begin{align*} \left (a^{2}+b^{2}\right )^{2} y-4 a b y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.331

5809

\begin{align*} b y+a y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.423

5810

\begin{align*} b y+a y^{\prime }+y^{\prime \prime }&=f \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.023

5882

\begin{align*} 3 y-10 y^{\prime }+3 y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.184

5885

\begin{align*} 3 y-8 y^{\prime }+4 y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.181

5946

\begin{align*} y+2 y^{\prime }+4 y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.326

5947

\begin{align*} -y-2 y^{\prime }+4 y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.228

6297

\begin{align*} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.690

6298

\begin{align*} y^{\prime \prime }&=a y \\ \end{align*}

[[_2nd_order, _missing_x]]

2.932

7040

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.849

7041

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.171

7042

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.534

7043

\begin{align*} 6 y^{\prime \prime }-11 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.181

7044

\begin{align*} y^{\prime \prime }+2 y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.211

7049

\begin{align*} y^{\prime \prime }-2 k y^{\prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.258

7050

\begin{align*} y^{\prime \prime }+4 k y^{\prime }-12 k^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.256

7052

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.226

7055

\begin{align*} y^{\prime \prime }-2 a y^{\prime }+a^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.225

7061

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.257

7062

\begin{align*} y^{\prime \prime }-y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.284

7064

\begin{align*} y^{\prime \prime }-4 y^{\prime }+20 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.251

7069

\begin{align*} y^{\prime \prime }&=0 \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= -1 \\ \end{align*}

[[_2nd_order, _quadrature]]

1.846

7070

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.368

7071

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.362

7072

\begin{align*} y^{\prime \prime }-4 y^{\prime }+20 y&=0 \\ y \left (\frac {\pi }{2}\right ) &= 1 \\ y^{\prime }\left (\frac {\pi }{2}\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.384

7074

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.266

7075

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=12 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.301

7076

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{i x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.346

7077

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.316

7078

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.320

7079

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=8+6 \,{\mathrm e}^{x}+2 \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.470

7080

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.407

7081

\begin{align*} y^{\prime \prime }-2 y^{\prime }-8 y&=9 x \,{\mathrm e}^{x}+10 \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.428

7082

\begin{align*} y^{\prime \prime }-3 y^{\prime }&=2 \,{\mathrm e}^{2 x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.187

7083

\begin{align*} y^{\prime \prime }+y^{\prime }&=x^{2}+2 x \\ \end{align*}

[[_2nd_order, _missing_y]]

0.776

7084

\begin{align*} y^{\prime \prime }+y^{\prime }&=x +\sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.167

7085

\begin{align*} y^{\prime \prime }+y&=4 x \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.489

7086

\begin{align*} 4 y+y^{\prime \prime }&=\sin \left (2 x \right ) x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.539

7087

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=x^{2} {\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.408

7088

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{-2 x}+x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.346

7089

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=x \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.321

7090

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=x +{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.423

7091

\begin{align*} y^{\prime \prime }+y&=\sin \left (x \right )+{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.582

7092

\begin{align*} y^{\prime \prime }+y&=\sin \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.457

7093

\begin{align*} y^{\prime \prime }+y&=\sin \left (2 x \right ) \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.883

7094

\begin{align*} y^{\prime \prime }-5 y^{\prime }-6 y&={\mathrm e}^{3 x} \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.425

7095

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=5 \sin \left (x \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.462

7096

\begin{align*} y^{\prime \prime }+9 y&=8 \cos \left (x \right ) \\ y \left (\frac {\pi }{2}\right ) &= -1 \\ y^{\prime }\left (\frac {\pi }{2}\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.572

7097

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \left (2 x -3\right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.438

7098

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.411

7099

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.399

7100

\begin{align*} y^{\prime \prime }+y&=\cot \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.454

7101

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.447

7102

\begin{align*} y^{\prime \prime }-y&=\sin \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.454

7103

\begin{align*} y^{\prime \prime }+y&=\sin \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.367

7104

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=12 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.299

7105

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=x^{2} {\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.396

7106

\begin{align*} y^{\prime \prime }+y&=4 x \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.391

7107

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.481

7108

\begin{align*} y^{\prime \prime }+y&=\csc \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.399

7109

\begin{align*} y^{\prime \prime }+y&=\tan \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.589

7110

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{-x}}{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.442

7111

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \csc \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.602

7112

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.442

7113

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=\cos \left ({\mathrm e}^{-x}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.474

7259

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.163

7260

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.217

7261

\begin{align*} y^{\prime \prime }+9 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.859

7262

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.204

7263

\begin{align*} y^{\prime \prime }-2 y^{\prime }+6 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.283

7264

\begin{align*} y^{\prime \prime }+16 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.501

7265

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.161

7266

\begin{align*} y^{\prime \prime }+5 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.820

7267

\begin{align*} y^{\prime \prime }-4 y^{\prime }+13 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.240

7268

\begin{align*} 2 y^{\prime \prime }+y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.168

7269

\begin{align*} y^{\prime \prime }+\left (1+2 i\right ) y^{\prime }+\left (-1+i\right ) y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.170

7270

\begin{align*} y^{\prime \prime }+\left (1+2 i\right ) y^{\prime }+\left (-1+i\right ) y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.154

7275

\begin{align*} y^{\prime \prime }-4 y^{\prime }&=10 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.923

7276

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=16 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.316

7277

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&={\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.268

7278

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=24 \,{\mathrm e}^{-3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.290

7279

\begin{align*} y^{\prime \prime }+y&=2 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.302

7280

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=12 \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.374

7281

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=3 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.345

7282

\begin{align*} y^{\prime \prime }-16 y&=40 \,{\mathrm e}^{4 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.368

7283

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.358

7284

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=6 \,{\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.372

7285

\begin{align*} y^{\prime \prime }+2 y^{\prime }+10 y&=100 \cos \left (4 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.403

7286

\begin{align*} y^{\prime \prime }+4 y^{\prime }+12 y&=80 \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.453

7287

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=2 \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.387

7288

\begin{align*} y^{\prime \prime }+8 y^{\prime }+25 y&=120 \sin \left (5 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.390

7289

\begin{align*} 5 y^{\prime \prime }+12 y^{\prime }+20 y&=120 \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.405

7290

\begin{align*} y^{\prime \prime }+9 y&=30 \sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.382

7291

\begin{align*} y^{\prime \prime }+16 y&=16 \cos \left (4 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.379

7292

\begin{align*} y^{\prime \prime }+2 y^{\prime }+17 y&=60 \,{\mathrm e}^{-4 x} \sin \left (5 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.427

7293

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime }+5 y&=40 \,{\mathrm e}^{-\frac {3 x}{2}} \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.427

7294

\begin{align*} y^{\prime \prime }+4 y^{\prime }+8 y&=30 \,{\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {5 x}{2}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.418

7295

\begin{align*} 5 y^{\prime \prime }+6 y^{\prime }+2 y&=x^{2}+6 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.379

7296

\begin{align*} 2 y^{\prime \prime }+y^{\prime }&=2 x \\ \end{align*}

[[_2nd_order, _missing_y]]

0.925

7297

\begin{align*} y^{\prime \prime }+y&=2 x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.325

7298

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=12 x \,{\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.386

7299

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=16 x^{2} {\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.321

7300

\begin{align*} y^{\prime \prime }+y&=8 x \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.448

7301

\begin{align*} y^{\prime \prime }+y&=x^{3}-1+2 \cos \left (x \right )+\left (2-4 x \right ) {\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.708

7302

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{x}+6 x -5 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.313

7303

\begin{align*} y^{\prime \prime }-y&=\sinh \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.444

7304

\begin{align*} y^{\prime \prime }+y&=2 \sin \left (x \right )+4 \cos \left (x \right ) x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.569

7305

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{x}+\left (1-x \right ) \left ({\mathrm e}^{2 x}-1\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.606

7306

\begin{align*} y^{\prime \prime }-2 y^{\prime }&=9 x \,{\mathrm e}^{-x}-6 x^{2}+4 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.187

7335

\begin{align*} r^{\prime \prime }-6 r^{\prime }+9 r&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.241

7337

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=10 \,{\mathrm e}^{x}+6 \,{\mathrm e}^{-x} \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.513

7344

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&=26 \,{\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.335

7345

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&=2 \cos \left (x \right ) {\mathrm e}^{-2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.352

7346

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=6 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.362

7347

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.280

7351

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=5 x +4 \,{\mathrm e}^{x} \left (1+\sin \left (2 x \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.480

7358

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=6 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.367

7367

\begin{align*} y^{\prime \prime }&=-4 y \\ \end{align*}

[[_2nd_order, _missing_x]]

1.178

7369

\begin{align*} y^{\prime \prime }&=y \\ \end{align*}

[[_2nd_order, _missing_x]]

1.026

7371

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.210

7570

\begin{align*} m y^{\prime \prime }+k y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.179

7571

\begin{align*} m y^{\prime \prime }+b y^{\prime }+k y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.822

7572

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.264

7573

\begin{align*} 2 y^{\prime \prime }+18 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.905

7574

\begin{align*} y^{\prime \prime }+6 y^{\prime }+12 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.319

7575

\begin{align*} y^{\prime \prime }+4 y&=2 \cos \left (2 t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.550

7576

\begin{align*} y^{\prime \prime }+2 y^{\prime }+4 y&=5 \sin \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.463

7577

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=-50 \sin \left (5 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.452

7578

\begin{align*} y^{\prime \prime }+2 y^{\prime }+4 y&=6 \cos \left (2 t \right )+8 \sin \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.414

7579

\begin{align*} m y^{\prime \prime }+b y^{\prime }+k y&=\cos \left (\omega t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.936

7580

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{10}+25 y&=\cos \left (\omega t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.520

7581

\begin{align*} y^{\prime \prime }+25 y&=\cos \left (\omega t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.422

7582

\begin{align*} 2 y^{\prime \prime }+7 y^{\prime }-4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.195

7583

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.233

7584

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.184

7585

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.178

7586

\begin{align*} y^{\prime \prime }+8 y^{\prime }+16 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.234

7587

\begin{align*} y^{\prime \prime }-5 y^{\prime }+6 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.180

7588

\begin{align*} 6 y^{\prime \prime }+y^{\prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.185

7589

\begin{align*} z^{\prime \prime }+z^{\prime }-z&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.217

7590

\begin{align*} 4 y^{\prime \prime }-4 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.239

7591

\begin{align*} y^{\prime \prime }-y^{\prime }-11 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.223

7592

\begin{align*} 4 w^{\prime \prime }+20 w^{\prime }+25 w&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.245

7593

\begin{align*} 3 y^{\prime \prime }+11 y^{\prime }-7 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.241

7594

\begin{align*} y^{\prime \prime }+2 y^{\prime }-8 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= -12 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.290

7595

\begin{align*} y^{\prime \prime }+y^{\prime }&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.188

7596

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= {\frac {1}{3}} \\ \end{align*}

[[_2nd_order, _missing_x]]

0.304

7597

\begin{align*} y^{\prime \prime }-4 y^{\prime }-5 y&=0 \\ y \left (-1\right ) &= 3 \\ y^{\prime }\left (-1\right ) &= 9 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.332

7598

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= {\frac {25}{3}} \\ \end{align*}

[[_2nd_order, _missing_x]]

0.379

7599

\begin{align*} z^{\prime \prime }-2 z^{\prime }-2 z&=0 \\ z \left (0\right ) &= 0 \\ z^{\prime }\left (0\right ) &= -3 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.366

7600

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -3 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.365

7601

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.417

7606

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 2 \\ y \left (\frac {\pi }{2}\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.255

7608

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 2 \\ y \left (\pi \right ) &= -2 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.048

7619

\begin{align*} y^{\prime \prime }-y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.073

7620

\begin{align*} y^{\prime \prime }-y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.576

7621

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -{\frac {17}{2}} \\ \end{align*}

[[_2nd_order, _missing_x]]

0.305

7665

\begin{align*} x^{\prime \prime }-\omega ^{2} x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.651

7667

\begin{align*} x^{\prime \prime }+42 x^{\prime }+x&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.447

7670

\begin{align*} x^{\prime \prime }+2 \gamma x^{\prime }+\omega _{0} x&=F \cos \left (\omega t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.851

7671

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{2 x} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.511

7672

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=2 \cos \left (x \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.560

7673

\begin{align*} y^{\prime \prime }+16 y&=16 \cos \left (4 x \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.527

7674

\begin{align*} y^{\prime \prime }-y&=\cosh \left (x \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.579

7755

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=8 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.273

7756

\begin{align*} y^{\prime \prime }-4 y&=10 \,{\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.331

7757

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.387

7758

\begin{align*} y^{\prime \prime }+25 y&=5 x^{2}+x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.364

7759

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=4 \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.439

7760

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{-2 x} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.500

7761

\begin{align*} 3 y^{\prime \prime }-2 y^{\prime }-y&=2 x -3 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.309

7762

\begin{align*} y^{\prime \prime }-6 y^{\prime }+8 y&=8 \,{\mathrm e}^{4 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.399

7763

\begin{align*} 2 y^{\prime \prime }-7 y^{\prime }-4 y&={\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.313

7764

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=54 x +18 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.388

7765

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=100 \sin \left (4 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.359

7766

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=4 \sinh \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.526

7767

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=2 \cosh \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.497

7768

\begin{align*} y^{\prime \prime }-y^{\prime }+10 y&=20-{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.477

7769

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=2 \cos \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.559

7770

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=x +{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.330

7771

\begin{align*} y^{\prime \prime }-2 y^{\prime }+3 y&=x^{2}-1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.457

7772

\begin{align*} y^{\prime \prime }-9 y&={\mathrm e}^{3 x}+\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.710

7773

\begin{align*} x^{\prime \prime }+4 x^{\prime }+3 x&={\mathrm e}^{-3 t} \\ x \left (0\right ) &= {\frac {1}{2}} \\ x^{\prime }\left (0\right ) &= -2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.517

7774

\begin{align*} y^{\prime \prime }+4 y^{\prime }+5 y&=6 \sin \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.377

7775

\begin{align*} x^{\prime \prime }-3 x^{\prime }+2 x&=\sin \left (t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.478

7776

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=3 \sin \left (x \right ) \\ y \left (0\right ) &= -{\frac {9}{10}} \\ y^{\prime }\left (0\right ) &= -{\frac {7}{10}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.483

7777

\begin{align*} y^{\prime \prime }+6 y^{\prime }+10 y&=50 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.361

7778

\begin{align*} x^{\prime \prime }+2 x^{\prime }+2 x&=85 \sin \left (3 t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= -20 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.609

7779

\begin{align*} y^{\prime \prime }&=3 \sin \left (x \right )-4 y \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (\frac {\pi }{2}\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.490

7780

\begin{align*} \frac {x^{\prime \prime }}{2}&=-48 x \\ x \left (0\right ) &= {\frac {1}{6}} \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.414

7781

\begin{align*} x^{\prime \prime }+5 x^{\prime }+6 x&=\cos \left (t \right ) \\ x \left (0\right ) &= {\frac {1}{10}} \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.488

7782

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=4 x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.305

7783

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.293

7784

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=\sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.348

7785

\begin{align*} y^{\prime \prime }-6 y^{\prime }+25 y&=2 \sin \left (\frac {t}{2}\right )-\cos \left (\frac {t}{2}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.449

7786

\begin{align*} y^{\prime \prime }-6 y^{\prime }+25 y&=64 \,{\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.362

7787

\begin{align*} y^{\prime \prime }-6 y^{\prime }+25 y&=50 t^{3}-36 t^{2}-63 t +18 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.381

7789

\begin{align*} y^{\prime \prime }&=9 x^{2}+2 x -1 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.964

7790

\begin{align*} y^{\prime \prime }-5 y&=2 \,{\mathrm e}^{5 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.363

7794

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x^{2}-1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.381

7795

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.383

7796

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=4 \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.435

7797

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=3 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.386

7798

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.390

7805

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.431

7806

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.288

7807

\begin{align*} x^{\prime \prime }+4 x&=\sin \left (2 t \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.576

7811

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x^{5}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.435

7812

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.346

7813

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.290

7814

\begin{align*} y^{\prime \prime }-60 y^{\prime }-900 y&=5 \,{\mathrm e}^{10 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.372

7815

\begin{align*} y^{\prime \prime }-7 y^{\prime }&=-3 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.129

7849

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.239

7851

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.282

7852

\begin{align*} y^{\prime \prime }-y&=4-x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.284

7853

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.175

7854

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{x} \left (1-x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.346

7967

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.194

7969

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{5 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.305

7970

\begin{align*} y^{\prime \prime }+9 y&=\cos \left (x \right ) x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.559

7977

\begin{align*} y^{\prime \prime }+2 y^{\prime }-15 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.186

7979

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.257

7981

\begin{align*} y^{\prime \prime }-4 y^{\prime }+13 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.271

7982

\begin{align*} y^{\prime \prime }+25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.103

7987

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.287

7988

\begin{align*} y^{\prime \prime }-4 y^{\prime }&=5 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.179

7992

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.381

7993

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=-2 x^{2}+2 x +2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.318

7994

\begin{align*} y^{\prime \prime }-y&=4 x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.392

7995

\begin{align*} y^{\prime \prime }-y&=\sin \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.413

7996

\begin{align*} y^{\prime \prime }-y&=\frac {1}{\left (1+{\mathrm e}^{-x}\right )^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.532

7997

\begin{align*} y^{\prime \prime }+y&=\csc \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.351

7998

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=\sin \left ({\mathrm e}^{-x}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.478

7999

\begin{align*} y^{\prime \prime }+y&=\csc \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.352

8000

\begin{align*} 4 y+y^{\prime \prime }&=4 \sec \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.553

8001

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=\frac {1}{1+{\mathrm e}^{-x}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.532

8002

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{-x} \sin \left ({\mathrm e}^{-x}\right )+\cos \left ({\mathrm e}^{-x}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.117

8003

\begin{align*} y^{\prime \prime }-y&=\frac {1}{\left (1+{\mathrm e}^{-x}\right )^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.487

8004

\begin{align*} y^{\prime \prime }+2 y&={\mathrm e}^{x}+2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.326

8005

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{x} \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.349

8006

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=x^{2}+\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.353

8007

\begin{align*} y^{\prime \prime }-9 y&=x +{\mathrm e}^{2 x}-\sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.507

8009

\begin{align*} y^{\prime \prime }+y&=-2 \sin \left (x \right )+4 \cos \left (x \right ) x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.450

8011

\begin{align*} y^{\prime \prime }+y^{\prime }+y&={\mathrm e}^{3 x}+6 \,{\mathrm e}^{x}-3 \,{\mathrm e}^{-2 x}+5 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.428

8012

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.270

8013

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{x}+x \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.356

8016

\begin{align*} 4 y+y^{\prime \prime }&=\sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.285

8017

\begin{align*} y^{\prime \prime }+5 y&=\cos \left (\sqrt {5}\, x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.372

8019

\begin{align*} y^{\prime \prime }-y&=x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.218

8020

\begin{align*} y^{\prime \prime }+2 y&=x^{3}+x^{2}+{\mathrm e}^{-2 x}+\cos \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.943

8021

\begin{align*} y^{\prime \prime }-2 y^{\prime }-y&={\mathrm e}^{x} \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.283

8022

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=\frac {{\mathrm e}^{2 x}}{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.454

8023

\begin{align*} y^{\prime \prime }-y&=x \,{\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.257

8024

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&={\mathrm e}^{-2 x} \sec \left (x \right )^{2} \left (1+2 \tan \left (x \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.464

8163

\begin{align*} y^{\prime \prime }-6 y^{\prime }+13 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.235

8164

\begin{align*} y^{\prime \prime }+y&=\tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.411

8173

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.204

8183

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.179

8184

\begin{align*} 2 y^{\prime \prime }+7 y^{\prime }-4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.179

8192

\begin{align*} y^{\prime \prime }+4 y^{\prime }+6 y&=10 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.356

8200

\begin{align*} y^{\prime \prime }+2 y^{\prime }+4 y&=5 \sin \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.408

8202

\begin{align*} y^{\prime \prime }&=f \left (x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

0.829

8214

\begin{align*} x^{\prime \prime }+x&=0 \\ x \left (0\right ) &= -1 \\ x^{\prime }\left (0\right ) &= 8 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.351

8215

\begin{align*} x^{\prime \prime }+x&=0 \\ x \left (\frac {\pi }{2}\right ) &= 0 \\ x^{\prime }\left (\frac {\pi }{2}\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.596

8216

\begin{align*} x^{\prime \prime }+x&=0 \\ x \left (\frac {\pi }{6}\right ) &= {\frac {1}{2}} \\ x^{\prime }\left (\frac {\pi }{6}\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.861

8217

\begin{align*} x^{\prime \prime }+x&=0 \\ x \left (\frac {\pi }{4}\right ) &= \sqrt {2} \\ x^{\prime }\left (\frac {\pi }{4}\right ) &= 2 \sqrt {2} \\ \end{align*}

[[_2nd_order, _missing_x]]

0.980

8218

\begin{align*} y^{\prime \prime }-y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.062

8219

\begin{align*} y^{\prime \prime }-y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= {\mathrm e} \\ \end{align*}

[[_2nd_order, _missing_x]]

0.547

8220

\begin{align*} y^{\prime \prime }-y&=0 \\ y \left (-1\right ) &= 5 \\ y^{\prime }\left (-1\right ) &= -5 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.612

8221

\begin{align*} y^{\prime \prime }-y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.538

8247

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (\pi \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.677

8248

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime }\left (\frac {\pi }{6}\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.639

8249

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (\pi \right ) &= 5 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.947

8250

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (\pi \right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.552

8261

\begin{align*} y^{\prime \prime }+9 y&=18 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.999

8263

\begin{align*} y^{\prime \prime }&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_x]]

0.600

8271

\begin{align*} y^{\prime \prime }+y&=2 \cos \left (x \right )-2 \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.519

8272

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.395

8278

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.523

8283

\begin{align*} y^{\prime \prime }+9 y&=5 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.973

8285

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=6 x +4 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.431

8286

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=6 x +4 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -3 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.411

8287

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=6 x +4 \\ y \left (1\right ) &= 4 \\ y^{\prime }\left (1\right ) &= -2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.419

8288

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=6 x +4 \\ y \left (-1\right ) &= 0 \\ y^{\prime }\left (-1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.451

8753

\begin{align*} y^{\prime \prime }+2 y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.238

8792

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.178

8793

\begin{align*} s^{\prime \prime }+2 s^{\prime }+s&=0 \\ s \left (0\right ) &= 4 \\ s^{\prime }\left (0\right ) &= -2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.394

8794

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.239

8795

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=1+3 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.289

8796

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=x \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.375

8797

\begin{align*} y^{\prime \prime }+y&=4 \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.380

8811

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=50 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.379

8812

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=50 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.402

8813

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=\cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.357

8815

\begin{align*} 4 y+y^{\prime \prime }&=x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.321

8816

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=x^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.322

8856

\begin{align*} y^{\prime \prime }&=2+x \\ \end{align*}

[[_2nd_order, _quadrature]]

1.016

8860

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.207

8861

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.007

8862

\begin{align*} y^{\prime \prime }+k^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.275

8864

\begin{align*} y^{\prime \prime }&=1+3 x \\ \end{align*}

[[_2nd_order, _quadrature]]

1.039

8887

\begin{align*} y^{\prime \prime }-4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.637

8888

\begin{align*} 3 y^{\prime \prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.881

8889

\begin{align*} y^{\prime \prime }+16 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.093

8890

\begin{align*} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.496

8891

\begin{align*} y^{\prime \prime }+2 i y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.240

8892

\begin{align*} y^{\prime \prime }-4 y^{\prime }+5 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.206

8893

\begin{align*} y^{\prime \prime }+\left (-1+3 i\right ) y^{\prime }-3 i y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.187

8894

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.283

8895

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.273

8896

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 1 \\ y \left (\frac {\pi }{2}\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.961

8897

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y \left (\pi \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.543

8898

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (\frac {\pi }{2}\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.588

8899

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y \left (\frac {\pi }{2}\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.545

8900

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.286

8901

\begin{align*} y^{\prime \prime }+\left (1+4 i\right ) y^{\prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.332

8902

\begin{align*} y^{\prime \prime }+\left (-1+3 i\right ) y^{\prime }-3 i y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.260

8903

\begin{align*} y^{\prime \prime }+10 y&=0 \\ y \left (0\right ) &= \pi \\ y^{\prime }\left (0\right ) &= \pi ^{2} \\ \end{align*}

[[_2nd_order, _missing_x]]

4.563

8904

\begin{align*} 4 y+y^{\prime \prime }&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.355

8905

\begin{align*} y^{\prime \prime }+9 y&=\sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.378

8906

\begin{align*} y^{\prime \prime }+y&=\tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.415

8907

\begin{align*} y^{\prime \prime }+2 i y^{\prime }+y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.292

8908

\begin{align*} y^{\prime \prime }-4 y^{\prime }+5 y&=3 \,{\mathrm e}^{-x}+2 x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.362

8909

\begin{align*} y^{\prime \prime }-7 y^{\prime }+6 y&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.317

8910

\begin{align*} y^{\prime \prime }+y&=2 \sin \left (2 x \right ) \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.662

8911

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.376

8912

\begin{align*} 4 y^{\prime \prime }-y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.268

8913

\begin{align*} 6 y^{\prime \prime }+5 y^{\prime }-6 y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.293

8925

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.620

8926

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.763

8932

\begin{align*} y^{\prime \prime }-2 i y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.188

8939

\begin{align*} y^{\prime \prime }-2 i y^{\prime }-y&={\mathrm e}^{i x}-2 \,{\mathrm e}^{-i x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.466

8940

\begin{align*} 4 y+y^{\prime \prime }&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.288

8941

\begin{align*} 4 y+y^{\prime \prime }&=\sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.365

8942

\begin{align*} y^{\prime \prime }-4 y&=3 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.454

8943

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=x^{2}+\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.410

8944

\begin{align*} y^{\prime \prime }+9 y&=x^{2} {\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.355

8945

\begin{align*} y^{\prime \prime }+y&=x \,{\mathrm e}^{x} \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.565

8946

\begin{align*} y^{\prime \prime }+i y^{\prime }+2 y&=2 \cosh \left (2 x \right )+{\mathrm e}^{-2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.447

9034

\begin{align*} y^{\prime \prime }+y^{\prime }&=1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.819

9037

\begin{align*} y^{\prime \prime }+k^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.856

9052

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.869

9053

\begin{align*} y^{\prime \prime }-4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.850

9079

\begin{align*} y^{\prime \prime }-5 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.174

9182

\begin{align*} y^{\prime \prime }-k^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.799

9212

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.176

9213

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.237

9214

\begin{align*} y^{\prime \prime }+8 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.213

9215

\begin{align*} 2 y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.209

9216

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.243

9217

\begin{align*} 20 y-9 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.186

9218

\begin{align*} 2 y^{\prime \prime }+2 y^{\prime }+3 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.314

9219

\begin{align*} 4 y^{\prime \prime }-12 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.247

9220

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.756

9221

\begin{align*} y^{\prime \prime }-6 y^{\prime }+25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.258

9222

\begin{align*} 4 y^{\prime \prime }+20 y^{\prime }+25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.254

9223

\begin{align*} 3 y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.296

9224

\begin{align*} y^{\prime \prime }&=4 y \\ \end{align*}

[[_2nd_order, _missing_x]]

1.073

9225

\begin{align*} 4 y^{\prime \prime }-8 y^{\prime }+7 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.299

9226

\begin{align*} 2 y^{\prime \prime }+y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.181

9227

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.223

9228

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.198

9229

\begin{align*} y^{\prime \prime }+4 y^{\prime }-5 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.191

9230

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (1\right ) &= {\mathrm e}^{2} \\ y^{\prime }\left (1\right ) &= 3 \,{\mathrm e}^{2} \\ \end{align*}

[[_2nd_order, _missing_x]]

0.328

9231

\begin{align*} y^{\prime \prime }-6 y^{\prime }+5 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 11 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.336

9232

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.388

9233

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.352

9234

\begin{align*} y^{\prime \prime }+4 y^{\prime }+2 y&=0 \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 2+3 \sqrt {2} \\ \end{align*}

[[_2nd_order, _missing_x]]

0.402

9235

\begin{align*} y^{\prime \prime }+8 y^{\prime }-9 y&=0 \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.341

9245

\begin{align*} y^{\prime \prime }+3 y^{\prime }-10 y&=6 \,{\mathrm e}^{4 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.325

9246

\begin{align*} 4 y+y^{\prime \prime }&=3 \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.392

9247

\begin{align*} y^{\prime \prime }+10 y^{\prime }+25 y&=14 \,{\mathrm e}^{-5 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.415

9248

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=25 x^{2}+12 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.385

9249

\begin{align*} y^{\prime \prime }-y^{\prime }-6 y&=20 \,{\mathrm e}^{-2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.339

9250

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=14 \sin \left (2 x \right )-18 \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.374

9251

\begin{align*} y^{\prime \prime }+y&=2 \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.374

9252

\begin{align*} y^{\prime \prime }-2 y^{\prime }&=12 x -10 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.839

9253

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=6 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.389

9254

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&={\mathrm e}^{x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.353

9255

\begin{align*} y^{\prime \prime }+y^{\prime }&=10 x^{4}+2 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.872

9256

\begin{align*} 4 y+y^{\prime \prime }&=4 \cos \left (2 x \right )+6 \cos \left (x \right )+8 x^{2}-4 x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.965

9257

\begin{align*} y^{\prime \prime }+9 y&=2 \sin \left (3 x \right )+4 \sin \left (x \right )-26 \,{\mathrm e}^{-2 x}+27 x^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.263

9258

\begin{align*} y^{\prime \prime }-3 y&={\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.339

9260

\begin{align*} 4 y+y^{\prime \prime }&=\tan \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.592

9261

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.497

9262

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=64 x \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.348

9263

\begin{align*} 5 y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \sec \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.547

9264

\begin{align*} 2 y^{\prime \prime }+3 y^{\prime }+y&={\mathrm e}^{-3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.300

9265

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=\frac {1}{1+{\mathrm e}^{-x}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.392

9266

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.362

9267

\begin{align*} y^{\prime \prime }+y&=\cot \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.519

9268

\begin{align*} y^{\prime \prime }+y&=\cot \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.685

9269

\begin{align*} y^{\prime \prime }+y&=\cos \left (x \right ) x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.451

9270

\begin{align*} y^{\prime \prime }+y&=\tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.372

9271

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.476

9272

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \csc \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.582

9273

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=2 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.350

9274

\begin{align*} y^{\prime \prime }-y^{\prime }-6 y&={\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.287

9314

\begin{align*} y^{\prime \prime }-3 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.225

9315

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.283

9316

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.233

9317

\begin{align*} y^{\prime \prime }-y^{\prime }+6 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.284

9318

\begin{align*} y^{\prime \prime }-2 y^{\prime }-5 y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.348

9319

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.294

9320

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.359

9321

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.280

9322

\begin{align*} y^{\prime \prime }+9 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.345

9323

\begin{align*} y^{\prime \prime }-y^{\prime }+4 y&=x \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.766

9324

\begin{align*} 5 y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.493

9325

\begin{align*} y^{\prime \prime }+3 y^{\prime }+4 y&=\sin \left (x \right ) \\ y \left (\frac {\pi }{2}\right ) &= 1 \\ y^{\prime }\left (\frac {\pi }{2}\right ) &= -1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.107

9326

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{-x} \\ y \left (2\right ) &= 0 \\ y^{\prime }\left (2\right ) &= -2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.536

9327

\begin{align*} y^{\prime \prime }-y&=\cos \left (x \right ) \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (2\right ) &= 2 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.569

9328

\begin{align*} y^{\prime \prime }&=\tan \left (x \right ) \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= -1 \\ \end{align*}

[[_2nd_order, _quadrature]]

3.684

9329

\begin{align*} y^{\prime \prime }-2 y^{\prime }&=\ln \left (x \right ) \\ y \left (1\right ) &= {\mathrm e} \\ y^{\prime }\left (1\right ) &= {\mathrm e}^{-1} \\ \end{align*}

[[_2nd_order, _missing_y]]

2.770

9330

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=2 x -1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.295

9331

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.289

9332

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.317

9333

\begin{align*} y^{\prime \prime }+2 y^{\prime }-y&={\mathrm e}^{x} \sin \left (x \right ) x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.467

9334

\begin{align*} y^{\prime \prime }+9 y&=\sec \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.772

9335

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=x \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.586

9337

\begin{align*} 4 y+y^{\prime \prime }&=\tan \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.527

9340

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=x^{2}+2 x +2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.364

9341

\begin{align*} y^{\prime \prime }+y^{\prime }&=\frac {x -1}{x^{2}} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.956

9343

\begin{align*} y^{\prime \prime }+9 y&=-3 \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.388

9345

\begin{align*} y^{\prime \prime }&=-3 y \\ y \left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.592

9494

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.787

9496

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.948

9498

\begin{align*} y^{\prime \prime }-y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.739

9500

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.878

9582

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.720

9774

\begin{align*} y^{\prime \prime }+\beta ^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.548

9803

\begin{align*} y^{\prime \prime }+y&=-\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.390

9804

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.424

9805

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=12 x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.352

9806

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=x^{2}+2 x +1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.355

9979

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=5 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.477

9980

\begin{align*} y^{\prime \prime }+16 y&=4 \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.502

9981

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=9 x^{2}+4 \\ y \left (0\right ) &= 6 \\ y^{\prime }\left (0\right ) &= 8 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.526

9982

\begin{align*} y^{\prime \prime }+y&=\tan \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.693

10026

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.246

10027

\begin{align*} 5 y^{\prime \prime }+2 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.452

10028

\begin{align*} y^{\prime \prime }+y^{\prime }+4 y&=1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.379

10029

\begin{align*} y^{\prime \prime }+y^{\prime }+4 y&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.386

10040

\begin{align*} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.476

10041

\begin{align*} y^{\prime \prime }&=1 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.888

10042

\begin{align*} y^{\prime \prime }&=f \left (t \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

0.879

10043

\begin{align*} y^{\prime \prime }&=k \\ \end{align*}

[[_2nd_order, _quadrature]]

0.952

10046

\begin{align*} y^{\prime \prime }&=4 \sin \left (x \right )-4 \\ \end{align*}

[[_2nd_order, _quadrature]]

1.100

10069

\begin{align*} z^{\prime \prime }+3 z^{\prime }+2 z&=24 \,{\mathrm e}^{-3 t}-24 \,{\mathrm e}^{-4 t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.378

10074

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=0 \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.282

10075

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.246

10076

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=0 \\ y^{\prime }\left (0\right ) &= 0 \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.334

10133

\begin{align*} y^{\prime \prime }+c y^{\prime }+k y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.353

10135

\begin{align*} y^{\prime \prime }+y&=\sin \left (x \right ) \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.470

10136

\begin{align*} y^{\prime \prime }+y&=\sin \left (x \right ) \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.395

10137

\begin{align*} y^{\prime \prime }+y&=\sin \left (x \right ) \\ y^{\prime }\left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.505

10138

\begin{align*} y^{\prime \prime }+y&=\sin \left (x \right ) \\ y \left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.447

10139

\begin{align*} y^{\prime \prime }+y&=\sin \left (x \right ) \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.431

10140

\begin{align*} y^{\prime \prime }+y&=\sin \left (x \right ) \\ y^{\prime }\left (1\right ) &= 0 \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.467

10141

\begin{align*} y^{\prime \prime }+y&=\sin \left (x \right ) \\ y^{\prime }\left (1\right ) &= 0 \\ y \left (2\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.563

10142

\begin{align*} y^{\prime \prime }+y&=\sin \left (x \right ) \\ y^{\prime }\left (1\right ) &= 0 \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.419

10143

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=\sin \left (x \right ) \\ y^{\prime }\left (1\right ) &= 0 \\ y \left (2\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.763

10144

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=\sin \left (x \right ) \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.861

10145

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=\sin \left (x \right ) \\ y^{\prime }\left (1\right ) &= 0 \\ y \left (2\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.802

10234

\begin{align*} y^{\prime \prime }+20 y^{\prime }+500 y&=100000 \cos \left (100 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.419

10251

\begin{align*} y^{\prime \prime }+2 y^{\prime }-24 y&=16-\left (2+x \right ) {\mathrm e}^{4 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.477

10360

\begin{align*} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.556

10363

\begin{align*} a y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.612

10366

\begin{align*} y^{\prime \prime }&=1 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.668

10368

\begin{align*} y^{\prime \prime }&=x \\ \end{align*}

[[_2nd_order, _quadrature]]

0.712

10371

\begin{align*} y^{\prime \prime }+y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.692

10374

\begin{align*} y^{\prime \prime }+y^{\prime }&=1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.780

10377

\begin{align*} y^{\prime \prime }+y^{\prime }&=x \\ \end{align*}

[[_2nd_order, _missing_y]]

0.734

10380

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.272

10383

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.346

10384

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.355

10385

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=x +1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.367

10386

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=x^{2}+x +1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.371

10387

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=x^{3}+x^{2}+x +1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.395

10388

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.372

10389

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.374

10390

\begin{align*} y^{\prime \prime }+y^{\prime }&=1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.781

10391

\begin{align*} y^{\prime \prime }+y^{\prime }&=x \\ \end{align*}

[[_2nd_order, _missing_y]]

0.733

10392

\begin{align*} y^{\prime \prime }+y^{\prime }&=x +1 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.772

10393

\begin{align*} y^{\prime \prime }+y^{\prime }&=x^{2}+x +1 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.790

10394

\begin{align*} y^{\prime \prime }+y^{\prime }&=x^{3}+x^{2}+x +1 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.843

10395

\begin{align*} y^{\prime \prime }+y^{\prime }&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

0.855

10396

\begin{align*} y^{\prime \prime }+y^{\prime }&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

0.805

10397

\begin{align*} y^{\prime \prime }+y&=1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.902

10398

\begin{align*} y^{\prime \prime }+y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.312

10399

\begin{align*} y^{\prime \prime }+y&=x +1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.315

10400

\begin{align*} y^{\prime \prime }+y&=x^{2}+x +1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.326

10401

\begin{align*} y^{\prime \prime }+y&=x^{3}+x^{2}+x +1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.339

10402

\begin{align*} y^{\prime \prime }+y&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.332

10403

\begin{align*} y^{\prime \prime }+y&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.386

12281

\begin{align*} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _quadrature]]

1.470

12282

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

4.415

12283

\begin{align*} y^{\prime \prime }+y-\sin \left (n x \right )&=0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.779

12284

\begin{align*} y^{\prime \prime }+y-a \cos \left (b x \right )&=0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.969

12285

\begin{align*} y^{\prime \prime }+y-\sin \left (a x \right ) \sin \left (b x \right )&=0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.467

12286

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

5.482

12287

\begin{align*} y^{\prime \prime }-2 y-4 x^{2} {\mathrm e}^{x^{2}}&=0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.522

12289

\begin{align*} y^{\prime \prime }+l y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

5.053

12310

\begin{align*} b y+a y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.264

12311

\begin{align*} y^{\prime \prime }+a y^{\prime }+b y-f \left (x \right )&=0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

3.003

12339

\begin{align*} y^{\prime \prime }+a y^{\prime }+\tan \left (x \right )+b y&=0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

3.440

13662

\begin{align*} y^{\prime \prime }+a y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.173

13672

\begin{align*} b y+a y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.649

14087

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.178

14088

\begin{align*} y^{\prime \prime }-6 y^{\prime }+25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.234

14098

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{{\mathrm e}^{x}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.382

14100

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{\left (1-x \right )^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.388

14101

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.274

14103

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.438

14105

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.359

14106

\begin{align*} y^{\prime \prime }+y&=\tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.438

14107

\begin{align*} 4 y+y^{\prime \prime }&=x^{2}+\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.470

14108

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=2 x \,{\mathrm e}^{2 x}-\sin \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.681

14109

\begin{align*} y^{\prime \prime }+y&=2 \,{\mathrm e}^{x}+x^{3}-x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.372

14110

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=3 \,{\mathrm e}^{2 x}-\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.507

14114

\begin{align*} y^{\prime \prime }-2 y^{\prime }&={\mathrm e}^{2 x}+1 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.852

14120

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=\cos \left (x \right )-{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.388

14122

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=2 x^{3}-x \,{\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.455

14127

\begin{align*} 4 y+y^{\prime \prime }&=\sin \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.470

14128

\begin{align*} 4 y+y^{\prime \prime }&=\sec \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.550

14130

\begin{align*} y^{\prime \prime }+y&=\cos \left (x \right ) x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.439

14159

\begin{align*} y^{\prime \prime }&=x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _quadrature]]

1.693

14195

\begin{align*} x^{\prime \prime }+2 x^{\prime }+2 x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.243

14200

\begin{align*} 2 x^{\prime \prime }-5 x^{\prime }-3 x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.181

14205

\begin{align*} x^{\prime \prime }&=-3 \sqrt {t} \\ x \left (1\right ) &= 4 \\ x^{\prime }\left (1\right ) &= 2 \\ \end{align*}

[[_2nd_order, _quadrature]]

3.294

14263

\begin{align*} x^{\prime \prime }+x^{\prime }&=3 t \\ \end{align*}

[[_2nd_order, _missing_y]]

0.760

14279

\begin{align*} x^{\prime \prime }-4 x^{\prime }+4 x&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.376

14280

\begin{align*} x^{\prime \prime }-2 x^{\prime }&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.765

14281

\begin{align*} \frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2}&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.407

14282

\begin{align*} x^{\prime \prime }+4 x^{\prime }+3 x&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.306

14283

\begin{align*} x^{\prime \prime }-4 x^{\prime }+4 x&=0 \\ x \left (0\right ) &= -1 \\ x^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.364

14284

\begin{align*} x^{\prime \prime }-2 x^{\prime }&=0 \\ x \left (0\right ) &= -1 \\ x^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.831

14285

\begin{align*} \frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2}&=0 \\ x \left (0\right ) &= -1 \\ x^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.355

14286

\begin{align*} x^{\prime \prime }+4 x^{\prime }+3 x&=0 \\ x \left (0\right ) &= -1 \\ x^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.277

14287

\begin{align*} x^{\prime \prime }+x^{\prime }+4 x&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.463

14288

\begin{align*} x^{\prime \prime }-4 x^{\prime }+6 x&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.431

14289

\begin{align*} x^{\prime \prime }+9 x&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

6.264

14290

\begin{align*} x^{\prime \prime }-12 x&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.530

14291

\begin{align*} 2 x^{\prime \prime }+3 x^{\prime }+3 x&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.450

14292

\begin{align*} \frac {x^{\prime \prime }}{2}+\frac {5 x^{\prime }}{6}+\frac {2 x}{9}&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.307

14293

\begin{align*} x^{\prime \prime }+x^{\prime }+x&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.431

14294

\begin{align*} x^{\prime \prime }+\frac {x^{\prime }}{8}+x&=0 \\ x \left (0\right ) &= 2 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.454

14295

\begin{align*} x^{\prime \prime }+x^{\prime }+x&=3 t^{3}-1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.380

14296

\begin{align*} x^{\prime \prime }+x^{\prime }+x&=3 \cos \left (t \right )-2 \sin \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.384

14297

\begin{align*} x^{\prime \prime }+x^{\prime }+x&=12 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.309

14298

\begin{align*} x^{\prime \prime }+x^{\prime }+x&=t^{2} {\mathrm e}^{3 t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.391

14299

\begin{align*} x^{\prime \prime }+x^{\prime }+x&=5 \sin \left (7 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.412

14300

\begin{align*} x^{\prime \prime }+x^{\prime }+x&={\mathrm e}^{2 t} \cos \left (t \right )+t^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.973

14301

\begin{align*} x^{\prime \prime }+x^{\prime }+x&=t \,{\mathrm e}^{-t} \sin \left (\pi t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.581

14302

\begin{align*} x^{\prime \prime }+x^{\prime }+x&=\left (t +2\right ) \sin \left (\pi t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.550

14303

\begin{align*} x^{\prime \prime }+x^{\prime }+x&=4 t +5 \,{\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.391

14304

\begin{align*} x^{\prime \prime }+x^{\prime }+x&=5 \sin \left (2 t \right )+{\mathrm e}^{t} t \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.747

14305

\begin{align*} x^{\prime \prime }+x^{\prime }+x&=t^{3}+1-4 t \cos \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.279

14306

\begin{align*} x^{\prime \prime }+x^{\prime }+x&=-6+2 \,{\mathrm e}^{2 t} \sin \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.476

14307

\begin{align*} x^{\prime \prime }+7 x&=t \,{\mathrm e}^{3 t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.418

14308

\begin{align*} x^{\prime \prime }-x^{\prime }&=6+{\mathrm e}^{2 t} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.833

14309

\begin{align*} x^{\prime \prime }+x&=t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.306

14310

\begin{align*} x^{\prime \prime }-3 x^{\prime }-4 x&=2 t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.310

14311

\begin{align*} x^{\prime \prime }+x&=9 \,{\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.325

14312

\begin{align*} x^{\prime \prime }-4 x&=\cos \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.400

14313

\begin{align*} x^{\prime \prime }+x^{\prime }+2 x&=t \sin \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.558

14314

\begin{align*} x^{\prime \prime }-b x^{\prime }+x&=\sin \left (2 t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.800

14315

\begin{align*} x^{\prime \prime }-3 x^{\prime }-40 x&=2 \,{\mathrm e}^{-t} \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.462

14316

\begin{align*} x^{\prime \prime }-2 x^{\prime }&=4 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.998

14317

\begin{align*} x^{\prime \prime }+2 x&=\cos \left (t \sqrt {2}\right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.622

14318

\begin{align*} x^{\prime \prime }+\frac {x^{\prime }}{100}+4 x&=\cos \left (2 t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.596

14319

\begin{align*} x^{\prime \prime }+w^{2} x&=\cos \left (\beta t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.703

14320

\begin{align*} x^{\prime \prime }+3025 x&=\cos \left (45 t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.863

14330

\begin{align*} x^{\prime \prime }+x&=\tan \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.438

14331

\begin{align*} x^{\prime \prime }-x&={\mathrm e}^{t} t \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.389

14332

\begin{align*} x^{\prime \prime }-x&=\frac {1}{t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.364

14334

\begin{align*} x^{\prime \prime }+x&=\frac {1}{t +1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.460

14335

\begin{align*} x^{\prime \prime }-2 x^{\prime }+x&=\frac {{\mathrm e}^{t}}{2 t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.469

14338

\begin{align*} x^{\prime \prime }-x&=\frac {{\mathrm e}^{t}}{1+{\mathrm e}^{t}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.441

14414

\begin{align*} 12 y-7 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.194

14415

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=4 x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.312

14421

\begin{align*} y^{\prime \prime }-2 y^{\prime }-8 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.194

14426

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=-8 \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.461

14428

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=0 \\ y \left (0\right ) &= 6 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.308

14431

\begin{align*} y^{\prime \prime }-y^{\prime }-12 y&=0 \\ y \left (0\right ) &= 5 \\ y^{\prime }\left (0\right ) &= 6 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.306

14434

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (\pi \right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.981

14556

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&={\mathrm e}^{x} \\ y \left (0\right ) &= 5 \\ y^{\prime }\left (0\right ) &= 7 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.474

14557

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&={\mathrm e}^{x} \\ y \left (0\right ) &= 5 \\ y^{\prime }\left (1\right ) &= 7 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.434

14559

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.191

14560

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.398

14563

\begin{align*} y^{\prime \prime }-5 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.193

14572

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=4 x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.333

14573

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=2-12 x +6 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.366

14574

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.184

14575

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.191

14576

\begin{align*} 4 y^{\prime \prime }-12 y^{\prime }+5 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.197

14577

\begin{align*} 3 y^{\prime \prime }-14 y^{\prime }-5 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.204

14580

\begin{align*} y^{\prime \prime }-8 y^{\prime }+16 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.251

14581

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.253

14582

\begin{align*} y^{\prime \prime }-4 y^{\prime }+13 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.295

14583

\begin{align*} y^{\prime \prime }+6 y^{\prime }+25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.272

14584

\begin{align*} y^{\prime \prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.098

14585

\begin{align*} 4 y^{\prime \prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.139

14598

\begin{align*} y^{\prime \prime }-y^{\prime }-12 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.314

14599

\begin{align*} y^{\prime \prime }+7 y^{\prime }+10 y&=0 \\ y \left (0\right ) &= -4 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.336

14600

\begin{align*} y^{\prime \prime }-6 y^{\prime }+8 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 6 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.335

14601

\begin{align*} 3 y^{\prime \prime }+4 y^{\prime }-4 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.313

14602

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -3 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.412

14603

\begin{align*} 4 y^{\prime \prime }-12 y^{\prime }+9 y&=0 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 9 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.415

14604

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 7 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.416

14605

\begin{align*} 9 y^{\prime \prime }-6 y^{\prime }+y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.415

14606

\begin{align*} y^{\prime \prime }-4 y^{\prime }+29 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.421

14607

\begin{align*} y^{\prime \prime }+6 y^{\prime }+58 y&=0 \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.449

14608

\begin{align*} y^{\prime \prime }+6 y^{\prime }+13 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.421

14609

\begin{align*} 5 y+2 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 6 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.409

14610

\begin{align*} 9 y^{\prime \prime }+6 y^{\prime }+5 y&=0 \\ y \left (0\right ) &= 6 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.424

14611

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime }+37 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.426

14618

\begin{align*} y^{\prime \prime }-3 y^{\prime }+8 y&=4 x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.486

14619

\begin{align*} y^{\prime \prime }-2 y^{\prime }-8 y&=4 \,{\mathrm e}^{2 x}-21 \,{\mathrm e}^{-3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.450

14620

\begin{align*} 5 y+2 y^{\prime }+y^{\prime \prime }&=6 \sin \left (2 x \right )+7 \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.414

14621

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=10 \sin \left (4 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.410

14622

\begin{align*} y^{\prime \prime }+2 y^{\prime }+4 y&=\cos \left (4 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.510

14623

\begin{align*} -4 y-3 y^{\prime }+y^{\prime \prime }&=16 x -12 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.373

14624

\begin{align*} y^{\prime \prime }+6 y^{\prime }+5 y&=2 \,{\mathrm e}^{x}+10 \,{\mathrm e}^{5 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.439

14625

\begin{align*} y^{\prime \prime }+2 y^{\prime }+10 y&=5 \,{\mathrm e}^{-2 x} x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.427

14630

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=10 \,{\mathrm e}^{2 x}-18 \,{\mathrm e}^{3 x}-6 x -11 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.602

14631

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=6 \,{\mathrm e}^{-2 x}+3 \,{\mathrm e}^{x}-4 x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.650

14638

\begin{align*} y^{\prime \prime }+y&=x \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.487

14639

\begin{align*} 4 y+y^{\prime \prime }&=12 x^{2}-16 x \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.757

14642

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=9 x^{2}+4 \\ y \left (0\right ) &= 6 \\ y^{\prime }\left (0\right ) &= 8 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.482

14643

\begin{align*} y^{\prime \prime }+5 y^{\prime }+4 y&=16 x +20 \,{\mathrm e}^{x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.525

14644

\begin{align*} y^{\prime \prime }-8 y^{\prime }+15 y&=9 x \,{\mathrm e}^{2 x} \\ y \left (0\right ) &= 5 \\ y^{\prime }\left (0\right ) &= 10 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.504

14645

\begin{align*} y^{\prime \prime }+7 y^{\prime }+10 y&=4 x \,{\mathrm e}^{-3 x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.509

14646

\begin{align*} 16 y+8 y^{\prime }+y^{\prime \prime }&=8 \,{\mathrm e}^{-2 x} \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.541

14647

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=27 \,{\mathrm e}^{-6 x} \\ y \left (0\right ) &= -2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.549

14648

\begin{align*} y^{\prime \prime }+4 y^{\prime }+13 y&=18 \,{\mathrm e}^{-2 x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.592

14649

\begin{align*} y^{\prime \prime }-10 y^{\prime }+29 y&=8 \,{\mathrm e}^{5 x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 8 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.546

14650

\begin{align*} y^{\prime \prime }-4 y^{\prime }+13 y&=8 \sin \left (3 x \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.624

14651

\begin{align*} y^{\prime \prime }-y^{\prime }-6 y&=8 \,{\mathrm e}^{2 x}-5 \,{\mathrm e}^{3 x} \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.701

14652

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=2 x \,{\mathrm e}^{2 x}+6 \,{\mathrm e}^{x} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.786

14653

\begin{align*} y^{\prime \prime }-y&=3 \,{\mathrm e}^{x} x^{2} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.593

14654

\begin{align*} y^{\prime \prime }+y&=3 x^{2}-4 \sin \left (x \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.738

14655

\begin{align*} 4 y+y^{\prime \prime }&=8 \sin \left (2 x \right ) \\ y \left (0\right ) &= 6 \\ y^{\prime }\left (0\right ) &= 8 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.594

14658

\begin{align*} y^{\prime \prime }-6 y^{\prime }+8 y&=x^{3}+x +{\mathrm e}^{-2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.397

14659

\begin{align*} y^{\prime \prime }+9 y&={\mathrm e}^{3 x}+{\mathrm e}^{-3 x}+{\mathrm e}^{3 x} \sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.308

14660

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-2 x} \left (\cos \left (x \right )+1\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.516

14661

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{x} x^{4}+x^{3} {\mathrm e}^{2 x}+x^{2} {\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.954

14662

\begin{align*} y^{\prime \prime }+6 y^{\prime }+13 y&=x \,{\mathrm e}^{-3 x} \sin \left (2 x \right )+x^{2} {\mathrm e}^{-2 x} \sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.391

14672

\begin{align*} y^{\prime \prime }+y&=\cot \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.454

14673

\begin{align*} y^{\prime \prime }+y&=\tan \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.599

14674

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.372

14675

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right )^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.476

14676

\begin{align*} 4 y+y^{\prime \prime }&=\sec \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.464

14677

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.503

14678

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-2 x} \sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.493

14679

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&={\mathrm e}^{x} \tan \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.571

14680

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{-3 x}}{x^{3}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.503

14681

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x \,{\mathrm e}^{x} \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.525

14682

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \csc \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.632

14683

\begin{align*} y^{\prime \prime }+y&=\tan \left (x \right )^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.525

14684

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=\frac {1}{{\mathrm e}^{x}+1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.410

14685

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=\frac {1}{{\mathrm e}^{2 x}+1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.440

14686

\begin{align*} y^{\prime \prime }+y&=\frac {1}{1+\sin \left (x \right )} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.644

14687

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \arcsin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.555

14688

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=\frac {{\mathrm e}^{-x}}{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.425

14689

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.638

14845

\begin{align*} y^{\prime \prime }+\lambda y&=0 \\ y \left (0\right ) &= 0 \\ y \left (\frac {\pi }{2}\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.948

14846

\begin{align*} y^{\prime \prime }+\lambda y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (\pi \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.960

14847

\begin{align*} y^{\prime \prime }+\lambda y&=0 \\ y \left (0\right ) &= 0 \\ y \left (L \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.967

14848

\begin{align*} y^{\prime \prime }+\lambda y&=0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime }\left (L \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.094

14917

\begin{align*} x^{\prime \prime }-3 x^{\prime }+2 x&=0 \\ x \left (0\right ) &= 2 \\ x^{\prime }\left (0\right ) &= 6 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.355

14918

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.464

14919

\begin{align*} z^{\prime \prime }-4 z^{\prime }+13 z&=0 \\ z \left (0\right ) &= 7 \\ z^{\prime }\left (0\right ) &= 42 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.484

14920

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=0 \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 8 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.345

14921

\begin{align*} y^{\prime \prime }-4 y^{\prime }&=0 \\ y \left (0\right ) &= 13 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.947

14922

\begin{align*} \theta ^{\prime \prime }+4 \theta &=0 \\ \theta \left (0\right ) &= 0 \\ \theta ^{\prime }\left (0\right ) &= 10 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.134

14923

\begin{align*} y^{\prime \prime }+2 y^{\prime }+10 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.433

14924

\begin{align*} 2 z^{\prime \prime }+7 z^{\prime }-4 z&=0 \\ z \left (0\right ) &= 0 \\ z^{\prime }\left (0\right ) &= 9 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.358

14925

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.414

14926

\begin{align*} x^{\prime \prime }+6 x^{\prime }+10 x&=0 \\ x \left (0\right ) &= 3 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.401

14927

\begin{align*} 4 x^{\prime \prime }-20 x^{\prime }+21 x&=0 \\ x \left (0\right ) &= -4 \\ x^{\prime }\left (0\right ) &= -12 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.351

14928

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=0 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= -4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.333

14929

\begin{align*} y^{\prime \prime }-4 y&=0 \\ y \left (0\right ) &= 10 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.771

14930

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 27 \\ y^{\prime }\left (0\right ) &= -54 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.405

14931

\begin{align*} y^{\prime \prime }+\omega ^{2} y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.611

14932

\begin{align*} x^{\prime \prime }-4 x&=t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.333

14933

\begin{align*} x^{\prime \prime }-4 x^{\prime }&=t^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.997

14934

\begin{align*} x^{\prime \prime }+x^{\prime }-2 x&=3 \,{\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.351

14935

\begin{align*} x^{\prime \prime }+x^{\prime }-2 x&={\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.396

14936

\begin{align*} x^{\prime \prime }+2 x^{\prime }+x&={\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.419

14937

\begin{align*} x^{\prime \prime }+\omega ^{2} x&=\sin \left (\alpha t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.671

14939

\begin{align*} x^{\prime \prime }+2 x^{\prime }+10 x&={\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.384

14940

\begin{align*} x^{\prime \prime }+2 x^{\prime }+10 x&={\mathrm e}^{-t} \cos \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.442

14941

\begin{align*} x^{\prime \prime }+6 x^{\prime }+10 x&={\mathrm e}^{-2 t} \cos \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.415

14942

\begin{align*} x^{\prime \prime }+4 x^{\prime }+4 x&={\mathrm e}^{2 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.405

14943

\begin{align*} x^{\prime \prime }+x^{\prime }-2 x&=12 \,{\mathrm e}^{-t}-6 \,{\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.526

14944

\begin{align*} x^{\prime \prime }+4 x&=289 t \,{\mathrm e}^{t} \sin \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.676

14945

\begin{align*} x^{\prime \prime }+\omega ^{2} x&=\cos \left (\alpha t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.833

14957

\begin{align*} y^{\prime \prime }-y^{\prime }-6 y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.333

14958

\begin{align*} x^{\prime \prime }-x&=\frac {1}{t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.383

14959

\begin{align*} 4 y+y^{\prime \prime }&=\cot \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.743

14961

\begin{align*} x^{\prime \prime }-4 x^{\prime }&=\tan \left (t \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.759

14973

\begin{align*} a y^{\prime \prime }+\left (b -a \right ) y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.190

15067

\begin{align*} y^{\prime \prime }-6 y^{\prime }+10 y&=100 \\ y \left (0\right ) &= 10 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.520

15068

\begin{align*} x^{\prime \prime }+x&=\sin \left (t \right )-\cos \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.609

15070

\begin{align*} y^{\prime \prime }+y&=\frac {1}{\sin \left (x \right )^{3}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.503

15072

\begin{align*} y^{\prime \prime }+y&=\cosh \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.456

15074

\begin{align*} x^{\prime \prime }-4 x^{\prime }+4 x&={\mathrm e}^{t}+{\mathrm e}^{2 t}+1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.432

15085

\begin{align*} y^{\prime \prime }+y&=1-\frac {1}{\sin \left (x \right )} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.425

15089

\begin{align*} x^{\prime \prime }+9 x&=t \sin \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.500

15090

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=\sinh \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.796

15092

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&={\mathrm e}^{x} \cos \left (x \right ) x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.415

15102

\begin{align*} x^{\prime \prime }+10 x^{\prime }+25 x&=2^{t}+t \,{\mathrm e}^{-5 t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.565

15108

\begin{align*} y^{\prime \prime }+y&=\sin \left (3 x \right ) \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.713

15140

\begin{align*} y^{\prime \prime }&=y+x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.291

15147

\begin{align*} y^{\prime \prime }+4 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.218

15149

\begin{align*} 2 y^{\prime \prime }-3 y^{\prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.188

15259

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.329

15260

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&={\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.376

15261

\begin{align*} y^{\prime \prime }-3 y^{\prime }-7 y&=4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.320

15263

\begin{align*} 3 y^{\prime \prime }+5 y^{\prime }-2 y&=3 t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.324

15299

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x^{{3}/{2}} {\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.466

15300

\begin{align*} 4 y+y^{\prime \prime }&=2 \sec \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.651

15302

\begin{align*} y^{\prime \prime }+y&=f \left (x \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.694

15316

\begin{align*} y^{\prime \prime }+\alpha ^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.006

15317

\begin{align*} y^{\prime \prime }-\alpha ^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.309

15318

\begin{align*} y^{\prime \prime }+\beta y^{\prime }+\gamma y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.376

15332

\begin{align*} y^{\prime \prime }-2 k y^{\prime }+k^{2} y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.369

15401

\begin{align*} y^{\prime \prime }&=a^{2} y \\ \end{align*}

[[_2nd_order, _missing_x]]

1.631

15410

\begin{align*} y^{\prime \prime }&=9 y \\ \end{align*}

[[_2nd_order, _missing_x]]

1.386

15411

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.955

15412

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.099

15413

\begin{align*} y^{\prime \prime }+12 y&=7 y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_x]]

0.207

15414

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.242

15415

\begin{align*} y^{\prime \prime }+2 y^{\prime }+10 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.286

15416

\begin{align*} y^{\prime \prime }+3 y^{\prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.240

15417

\begin{align*} 4 y^{\prime \prime }-12 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.263

15418

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.316

15427

\begin{align*} 12 y-7 y^{\prime }+y^{\prime \prime }&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.319

15428

\begin{align*} s^{\prime \prime }-a^{2} s&=t +1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.375

15429

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=8 \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.373

15430

\begin{align*} y^{\prime \prime }-y&=2+5 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.303

15431

\begin{align*} y^{\prime \prime }-2 a y^{\prime }+a^{2} y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.381

15432

\begin{align*} y^{\prime \prime }+6 y^{\prime }+5 y&={\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.313

15433

\begin{align*} y^{\prime \prime }+9 y&=6 \,{\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.472

15434

\begin{align*} y^{\prime \prime }-3 y^{\prime }&=2-6 x \\ \end{align*}

[[_2nd_order, _missing_y]]

0.862

15435

\begin{align*} y^{\prime \prime }-2 y^{\prime }+3 y&={\mathrm e}^{-x} \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.487

15436

\begin{align*} 4 y+y^{\prime \prime }&=2 \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.511

15440

\begin{align*} y^{\prime \prime }+2 h y^{\prime }+n^{2} y&=0 \\ y \left (0\right ) &= a \\ y^{\prime }\left (0\right ) &= c \\ \end{align*}

[[_2nd_order, _missing_x]]

0.573

15441

\begin{align*} y^{\prime \prime }+n^{2} y&=h \sin \left (r x \right ) \\ y \left (0\right ) &= a \\ y^{\prime }\left (0\right ) &= c \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.882

15442

\begin{align*} y^{\prime \prime }-7 y^{\prime }+6 y&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.355

15443

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.526

15444

\begin{align*} y^{\prime \prime }+y&=\frac {1}{\cos \left (2 x \right )^{{3}/{2}}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.756

15451

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.476

15454

\begin{align*} y^{\prime \prime }-4 y&=\sin \left (2 x \right ) {\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.541

15486

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.197

15496

\begin{align*} y^{\prime \prime }-3 y^{\prime }-10 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.206

15497

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.250

15508

\begin{align*} y^{\prime \prime }-y^{\prime }-6 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.197

15510

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.296

15513

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -5 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.331

15514

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=0 \\ y \left (1\right ) &= 3 \\ y^{\prime }\left (1\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.332

15515

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=0 \\ y \left (0\right ) &= 1 \\ y \left (2\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.341

15516

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (2\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.267

15653

\begin{align*} 3 y^{\prime \prime }-2 y^{\prime }+4 y&=x \\ y \left (-1\right ) &= 2 \\ y^{\prime }\left (-1\right ) &= 3 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.894

15659

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.851

15660

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.954

15663

\begin{align*} y^{\prime \prime }-y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.610

15666

\begin{align*} y^{\prime \prime }-4 y&=31 \\ y \left (0\right ) &= -9 \\ y^{\prime }\left (0\right ) &= 6 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.772

15667

\begin{align*} y^{\prime \prime }+9 y&=27 x +18 \\ y \left (0\right ) &= 23 \\ y^{\prime }\left (0\right ) &= 21 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.523

15669

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime }-3 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.194

15679

\begin{align*} y^{\prime \prime }+\alpha y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.645

16035

\begin{align*} y^{\prime \prime }-6 y^{\prime }-7 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.200

16036

\begin{align*} y^{\prime \prime }-y^{\prime }-12 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.178

16066

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.313

16067

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.375

16068

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.327

16069

\begin{align*} y^{\prime \prime }+2 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= -\sqrt {2} \\ \end{align*}

[[_2nd_order, _missing_x]]

2.035

16070

\begin{align*} y^{\prime \prime }-y^{\prime }-6 y&={\mathrm e}^{4 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.302

16071

\begin{align*} y^{\prime \prime }+6 y^{\prime }+8 y&=2 \,{\mathrm e}^{-3 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.325

16072

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=5 \,{\mathrm e}^{3 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.323

16073

\begin{align*} y^{\prime \prime }+4 y^{\prime }+13 y&={\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.369

16074

\begin{align*} y^{\prime \prime }+4 y^{\prime }+13 y&=-3 \,{\mathrm e}^{-2 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.330

16075

\begin{align*} y^{\prime \prime }+7 y^{\prime }+10 y&={\mathrm e}^{-2 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.413

16076

\begin{align*} y^{\prime \prime }-5 y^{\prime }+4 y&={\mathrm e}^{4 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.375

16077

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=4 \,{\mathrm e}^{-3 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.335

16078

\begin{align*} y^{\prime \prime }+6 y^{\prime }+8 y&={\mathrm e}^{-t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.423

16079

\begin{align*} y^{\prime \prime }+7 y^{\prime }+12 y&=3 \,{\mathrm e}^{-t} \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.441

16080

\begin{align*} y^{\prime \prime }+4 y^{\prime }+13 y&=-3 \,{\mathrm e}^{-2 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.470

16081

\begin{align*} y^{\prime \prime }+7 y^{\prime }+10 y&={\mathrm e}^{-2 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.675

16082

\begin{align*} y^{\prime \prime }+4 y^{\prime }+3 y&={\mathrm e}^{-\frac {t}{2}} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.430

16083

\begin{align*} y^{\prime \prime }+4 y^{\prime }+3 y&={\mathrm e}^{-2 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.414

16084

\begin{align*} y^{\prime \prime }+4 y^{\prime }+3 y&={\mathrm e}^{-4 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.415

16085

\begin{align*} y^{\prime \prime }+4 y^{\prime }+20 y&={\mathrm e}^{-\frac {t}{2}} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.539

16086

\begin{align*} y^{\prime \prime }+4 y^{\prime }+20 y&={\mathrm e}^{-2 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.451

16087

\begin{align*} y^{\prime \prime }+4 y^{\prime }+20 y&={\mathrm e}^{-4 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.493

16088

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.354

16089

\begin{align*} y^{\prime \prime }-5 y^{\prime }+4 y&=5 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.402

16090

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&=2 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.395

16091

\begin{align*} y^{\prime \prime }+2 y^{\prime }+10 y&=10 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.487

16092

\begin{align*} y^{\prime \prime }+4 y^{\prime }+6 y&=-8 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.523

16093

\begin{align*} y^{\prime \prime }+9 y&={\mathrm e}^{-t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.472

16094

\begin{align*} y^{\prime \prime }+4 y&=2 \,{\mathrm e}^{-2 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.490

16095

\begin{align*} y^{\prime \prime }+2 y&=-3 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.820

16096

\begin{align*} y^{\prime \prime }+4 y&={\mathrm e}^{t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.441

16097

\begin{align*} y^{\prime \prime }+9 y&=6 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.806

16098

\begin{align*} y^{\prime \prime }+2 y&=-{\mathrm e}^{t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.485

16099

\begin{align*} y^{\prime \prime }+4 y&=-3 t^{2}+2 t +3 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.454

16100

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=3 t +2 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.302

16101

\begin{align*} y^{\prime \prime }+4 y^{\prime }&=3 t +2 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.336

16102

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=t^{2} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.438

16103

\begin{align*} y^{\prime \prime }+4 y&=t -\frac {1}{20} t^{2} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.467

16104

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&=4+{\mathrm e}^{-t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.444

16105

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{-t}-4 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.455

16106

\begin{align*} y^{\prime \prime }+6 y^{\prime }+8 y&=2 t +{\mathrm e}^{-t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.463

16107

\begin{align*} y^{\prime \prime }+6 y^{\prime }+8 y&=2 t +{\mathrm e}^{t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.454

16108

\begin{align*} y^{\prime \prime }+4 y&=t +{\mathrm e}^{-t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.486

16109

\begin{align*} y^{\prime \prime }+4 y&=6+t^{2}+{\mathrm e}^{t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.519

16110

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=\cos \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.328

16111

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=5 \cos \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.335

16112

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=\sin \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.326

16113

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=2 \sin \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.346

16114

\begin{align*} y^{\prime \prime }+6 y^{\prime }+8 y&=\cos \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.333

16115

\begin{align*} y^{\prime \prime }+6 y^{\prime }+8 y&=-4 \cos \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.378

16116

\begin{align*} y^{\prime \prime }+4 y^{\prime }+13 y&=3 \cos \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.379

16117

\begin{align*} y^{\prime \prime }+4 y^{\prime }+20 y&=-\cos \left (5 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.396

16118

\begin{align*} y^{\prime \prime }+4 y^{\prime }+20 y&=-3 \sin \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.382

16119

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=\cos \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.469

16120

\begin{align*} y^{\prime \prime }+6 y^{\prime }+8 y&=\cos \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.480

16121

\begin{align*} y^{\prime \prime }+6 y^{\prime }+8 y&=2 \cos \left (3 t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.524

16122

\begin{align*} y^{\prime \prime }+6 y^{\prime }+20 y&=-3 \sin \left (2 t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.642

16123

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=2 \cos \left (2 t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.651

16124

\begin{align*} y^{\prime \prime }+3 y^{\prime }+y&=\cos \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.398

16125

\begin{align*} y^{\prime \prime }+4 y^{\prime }+20 y&=3+2 \cos \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.402

16126

\begin{align*} y^{\prime \prime }+4 y^{\prime }+20 y&={\mathrm e}^{-t} \cos \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.365

16127

\begin{align*} y^{\prime \prime }+9 y&=\cos \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.378

16128

\begin{align*} y^{\prime \prime }+9 y&=5 \sin \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.381

16129

\begin{align*} y^{\prime \prime }+4 y&=-\cos \left (\frac {t}{2}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.377

16130

\begin{align*} y^{\prime \prime }+4 y&=3 \cos \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.388

16131

\begin{align*} y^{\prime \prime }+9 y&=2 \cos \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.403

16157

\begin{align*} y^{\prime \prime }&=\frac {x +1}{x -1} \\ \end{align*}

[[_2nd_order, _quadrature]]

0.980

16160

\begin{align*} y^{\prime \prime }+3 y^{\prime }+8 y&={\mathrm e}^{-x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.305

16171

\begin{align*} y^{\prime \prime }&=\sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

0.924

16172

\begin{align*} y^{\prime \prime }-3&=x \\ \end{align*}

[[_2nd_order, _quadrature]]

0.891

16384

\begin{align*} y^{\prime \prime }&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_x]]

0.661

16385

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=8 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.898

16394

\begin{align*} y^{\prime \prime }&=2 y^{\prime }-6 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.897

16396

\begin{align*} y^{\prime \prime }+4 y^{\prime }&=9 \,{\mathrm e}^{-3 x} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.939

16404

\begin{align*} y^{\prime \prime }&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_x]]

0.671

16414

\begin{align*} y^{\prime \prime }+4 y^{\prime }&=9 \,{\mathrm e}^{-3 x} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.901

16418

\begin{align*} y^{\prime \prime }&=y^{\prime } \\ y \left (0\right ) &= 8 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.921

16419

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=8 \,{\mathrm e}^{2 x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.216

16442

\begin{align*} y^{\prime \prime }&=2 y^{\prime }-5 y+30 \,{\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.422

16469

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 6 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.334

16470

\begin{align*} y^{\prime \prime }-4 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 12 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.114

16471

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=0 \\ y \left (0\right ) &= 8 \\ y^{\prime }\left (0\right ) &= -9 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.308

16472

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 6 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.398

16482

\begin{align*} y^{\prime \prime }-4 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.859

16483

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.320

16484

\begin{align*} y^{\prime \prime }-10 y^{\prime }+9 y&=0 \\ y \left (0\right ) &= 8 \\ y^{\prime }\left (0\right ) &= -24 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.325

16485

\begin{align*} y^{\prime \prime }+5 y^{\prime }&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.851

16488

\begin{align*} y^{\prime \prime }-7 y^{\prime }+10 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.197

16489

\begin{align*} y^{\prime \prime }+2 y^{\prime }-24 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.197

16490

\begin{align*} y^{\prime \prime }-25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.094

16491

\begin{align*} y^{\prime \prime }+3 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.779

16492

\begin{align*} 4 y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.019

16493

\begin{align*} 3 y^{\prime \prime }+7 y^{\prime }-6 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.219

16494

\begin{align*} y^{\prime \prime }-8 y^{\prime }+15 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.339

16495

\begin{align*} y^{\prime \prime }-8 y^{\prime }+15 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.319

16496

\begin{align*} y^{\prime \prime }-8 y^{\prime }+15 y&=0 \\ y \left (0\right ) &= 5 \\ y^{\prime }\left (0\right ) &= 19 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.322

16497

\begin{align*} y^{\prime \prime }-9 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.359

16498

\begin{align*} y^{\prime \prime }-9 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.634

16499

\begin{align*} y^{\prime \prime }-9 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= -3 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.804

16500

\begin{align*} y^{\prime \prime }-10 y^{\prime }+25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.252

16501

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.247

16502

\begin{align*} 4 y^{\prime \prime }-4 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.252

16503

\begin{align*} 25 y^{\prime \prime }-10 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.251

16504

\begin{align*} 16 y^{\prime \prime }-24 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.254

16505

\begin{align*} 9 y^{\prime \prime }+12 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.251

16506

\begin{align*} y^{\prime \prime }-8 y^{\prime }+16 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.410

16507

\begin{align*} y^{\prime \prime }-8 y^{\prime }+16 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.401

16508

\begin{align*} y^{\prime \prime }-8 y^{\prime }+16 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 14 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.408

16509

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime }+y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.398

16510

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.389

16511

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime }+y&=0 \\ y \left (0\right ) &= 6 \\ y^{\prime }\left (0\right ) &= -5 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.398

16512

\begin{align*} y^{\prime \prime }+25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.775

16513

\begin{align*} 5 y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.250

16514

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.211

16515

\begin{align*} y^{\prime \prime }-4 y^{\prime }+29 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.266

16516

\begin{align*} 9 y^{\prime \prime }+18 y^{\prime }+10 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.259

16517

\begin{align*} 4 y^{\prime \prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.765

16518

\begin{align*} y^{\prime \prime }+16 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

14.247

16519

\begin{align*} y^{\prime \prime }+16 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.708

16520

\begin{align*} y^{\prime \prime }+16 y&=0 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 12 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.112

16521

\begin{align*} y^{\prime \prime }-4 y^{\prime }+13 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.436

16522

\begin{align*} y^{\prime \prime }-4 y^{\prime }+13 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.346

16523

\begin{align*} y^{\prime \prime }-4 y^{\prime }+13 y&=0 \\ y \left (0\right ) &= 5 \\ y^{\prime }\left (0\right ) &= 31 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.380

16524

\begin{align*} y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= {\frac {1}{2}} \\ \end{align*}

[[_2nd_order, _missing_x]]

0.437

16525

\begin{align*} y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -{\frac {1}{2}} \\ \end{align*}

[[_2nd_order, _missing_x]]

0.439

16584

\begin{align*} 4 y+y^{\prime \prime }&=24 \,{\mathrm e}^{2 x} \\ y \left (0\right ) &= 6 \\ y^{\prime }\left (0\right ) &= 6 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.483

16585

\begin{align*} 4 y+y^{\prime \prime }&=24 \,{\mathrm e}^{2 x} \\ y \left (0\right ) &= -2 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.468

16586

\begin{align*} y^{\prime \prime }+2 y^{\prime }-8 y&=8 x^{2}-3 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.440

16587

\begin{align*} y^{\prime \prime }+2 y^{\prime }-8 y&=8 x^{2}-3 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -3 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.418

16588

\begin{align*} y^{\prime \prime }-9 y&=36 \\ y \left (0\right ) &= 8 \\ y^{\prime }\left (0\right ) &= 6 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.188

16589

\begin{align*} y^{\prime \prime }-3 y^{\prime }-10 y&=-6 \,{\mathrm e}^{4 x} \\ y \left (0\right ) &= 6 \\ y^{\prime }\left (0\right ) &= 8 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.441

16590

\begin{align*} y^{\prime \prime }-3 y^{\prime }-10 y&=7 \,{\mathrm e}^{5 x} \\ y \left (0\right ) &= 12 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.510

16591

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=169 \sin \left (2 x \right ) \\ y \left (0\right ) &= -10 \\ y^{\prime }\left (0\right ) &= 9 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.678

16594

\begin{align*} y^{\prime \prime }-3 y^{\prime }-10 y&={\mathrm e}^{4 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.293

16595

\begin{align*} y^{\prime \prime }-3 y^{\prime }-10 y&={\mathrm e}^{5 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.390

16596

\begin{align*} y^{\prime \prime }-3 y^{\prime }-10 y&=-18 \,{\mathrm e}^{4 x}+14 \,{\mathrm e}^{5 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.477

16597

\begin{align*} y^{\prime \prime }-3 y^{\prime }-10 y&=35 \,{\mathrm e}^{5 x}+12 \,{\mathrm e}^{4 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.470

16605

\begin{align*} y^{\prime \prime }+9 y&=52 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.352

16606

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=27 \,{\mathrm e}^{6 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.386

16607

\begin{align*} y^{\prime \prime }+4 y^{\prime }-5 y&=30 \,{\mathrm e}^{-4 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.313

16608

\begin{align*} y^{\prime \prime }+3 y^{\prime }&={\mathrm e}^{\frac {x}{2}} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.843

16609

\begin{align*} y^{\prime \prime }-3 y^{\prime }-10 y&=-5 \,{\mathrm e}^{3 x} \\ y \left (0\right ) &= 5 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.440

16610

\begin{align*} y^{\prime \prime }+9 y&=10 \cos \left (2 x \right )+15 \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.466

16611

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=25 \sin \left (6 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.497

16612

\begin{align*} y^{\prime \prime }+3 y^{\prime }&=26 \cos \left (\frac {x}{3}\right )-12 \sin \left (\frac {x}{3}\right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.088

16613

\begin{align*} y^{\prime \prime }+4 y^{\prime }-5 y&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.317

16614

\begin{align*} y^{\prime \prime }-3 y^{\prime }-10 y&=-4 \cos \left (x \right )+7 \sin \left (x \right ) \\ y \left (0\right ) &= 8 \\ y^{\prime }\left (0\right ) &= -5 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.477

16615

\begin{align*} y^{\prime \prime }-3 y^{\prime }-10 y&=-200 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.261

16616

\begin{align*} y^{\prime \prime }+4 y^{\prime }-5 y&=x^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.305

16617

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=18 x^{2}+3 x +4 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.369

16618

\begin{align*} y^{\prime \prime }+9 y&=9 x^{4}-9 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.326

16619

\begin{align*} y^{\prime \prime }+9 y&=x^{3} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.441

16620

\begin{align*} y^{\prime \prime }+9 y&=25 x \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.458

16621

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{2 x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.422

16622

\begin{align*} y^{\prime \prime }+9 y&=54 x^{2} {\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.356

16623

\begin{align*} y^{\prime \prime }&=6 \,{\mathrm e}^{x} \sin \left (x \right ) x \\ \end{align*}

[[_2nd_order, _quadrature]]

1.056

16624

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\left (-6 x -8\right ) \cos \left (2 x \right )+\left (8 x -11\right ) \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.733

16625

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\left (12 x -4\right ) {\mathrm e}^{-5 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.389

16626

\begin{align*} y^{\prime \prime }+9 y&=39 x \,{\mathrm e}^{2 x} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.540

16627

\begin{align*} y^{\prime \prime }-3 y^{\prime }-10 y&=-3 \,{\mathrm e}^{-2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.329

16628

\begin{align*} y^{\prime \prime }+4 y^{\prime }&=20 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.891

16629

\begin{align*} y^{\prime \prime }+4 y^{\prime }&=x^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.874

16630

\begin{align*} y^{\prime \prime }+9 y&=3 \sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.388

16631

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=10 \,{\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.385

16632

\begin{align*} y^{\prime \prime }-3 y^{\prime }-10 y&=\left (72 x^{2}-1\right ) {\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.360

16633

\begin{align*} y^{\prime \prime }-3 y^{\prime }-10 y&=4 x \,{\mathrm e}^{6 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.336

16634

\begin{align*} y^{\prime \prime }-10 y^{\prime }+25 y&=6 \,{\mathrm e}^{5 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.392

16635

\begin{align*} y^{\prime \prime }-10 y^{\prime }+25 y&=6 \,{\mathrm e}^{-5 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.413

16636

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&=24 \sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.375

16637

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&=8 \,{\mathrm e}^{-3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.339

16638

\begin{align*} y^{\prime \prime }-4 y^{\prime }+5 y&={\mathrm e}^{2 x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.363

16639

\begin{align*} y^{\prime \prime }-4 y^{\prime }+5 y&={\mathrm e}^{-x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.349

16640

\begin{align*} y^{\prime \prime }-4 y^{\prime }+5 y&=100 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.283

16641

\begin{align*} y^{\prime \prime }-4 y^{\prime }+5 y&={\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.320

16642

\begin{align*} y^{\prime \prime }-4 y^{\prime }+5 y&=10 x^{2}+4 x +8 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.326

16643

\begin{align*} y^{\prime \prime }+9 y&={\mathrm e}^{2 x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.472

16644

\begin{align*} y^{\prime \prime }+y&=6 \cos \left (x \right )-3 \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.530

16645

\begin{align*} y^{\prime \prime }+y&=6 \cos \left (2 x \right )-3 \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.457

16646

\begin{align*} y^{\prime \prime }-4 y^{\prime }+5 y&=x^{3} {\mathrm e}^{-x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.663

16647

\begin{align*} y^{\prime \prime }-4 y^{\prime }+5 y&=x^{3} {\mathrm e}^{2 x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.663

16648

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=x^{2} {\mathrm e}^{-7 x}+2 \,{\mathrm e}^{-7 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.372

16649

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.301

16650

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{-8 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.310

16651

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.321

16652

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=x^{2} {\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.345

16653

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=\cos \left (2 x \right ) x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.689

16654

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=x^{2} {\mathrm e}^{3 x} \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.717

16655

\begin{align*} y^{\prime \prime }-4 y^{\prime }+20 y&={\mathrm e}^{4 x} \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.422

16656

\begin{align*} y^{\prime \prime }-4 y^{\prime }+20 y&={\mathrm e}^{2 x} \sin \left (4 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.386

16657

\begin{align*} y^{\prime \prime }-4 y^{\prime }+20 y&=x^{3} \sin \left (4 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.697

16658

\begin{align*} y^{\prime \prime }-10 y^{\prime }+25 y&=3 x^{2} {\mathrm e}^{5 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.404

16659

\begin{align*} y^{\prime \prime }-10 y^{\prime }+25 y&=3 x^{4} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.411

16674

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=27 \,{\mathrm e}^{6 x}+25 \sin \left (6 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.660

16675

\begin{align*} y^{\prime \prime }+9 y&=25 x \cos \left (2 x \right )+3 \sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.845

16676

\begin{align*} y^{\prime \prime }-4 y^{\prime }+5 y&=5 \sin \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.397

16677

\begin{align*} y^{\prime \prime }-4 y^{\prime }+5 y&=20 \sinh \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.550

16687

\begin{align*} y^{\prime \prime }+y&=\cot \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.450

16688

\begin{align*} 4 y+y^{\prime \prime }&=\csc \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.605

16689

\begin{align*} y^{\prime \prime }-7 y^{\prime }+10 y&=6 \,{\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.328

16690

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=\left (24 x^{2}+2\right ) {\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.440

16691

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{-2 x}}{x^{2}+1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.491

16701

\begin{align*} y^{\prime \prime }-y^{\prime }-6 y&=12 \,{\mathrm e}^{2 x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 8 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.450

16708

\begin{align*} y^{\prime \prime }+36 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.732

16709

\begin{align*} y^{\prime \prime }-12 y^{\prime }+36 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.211

16711

\begin{align*} y^{\prime \prime }-36 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.888

16712

\begin{align*} y^{\prime \prime }-9 y^{\prime }+14 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.184

16716

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.234

16717

\begin{align*} y^{\prime \prime }+3 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.906

16722

\begin{align*} y^{\prime \prime }-6 y^{\prime }+25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.256

16725

\begin{align*} y^{\prime \prime }-8 y^{\prime }+25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.248

16727

\begin{align*} y^{\prime \prime }+y^{\prime }-30 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.181

16728

\begin{align*} 16 y^{\prime \prime }-8 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.244

16734

\begin{align*} 2 y^{\prime \prime }-7 y^{\prime }+3&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.946

16735

\begin{align*} y^{\prime \prime }+20 y^{\prime }+100 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.240

16737

\begin{align*} y^{\prime \prime }-5 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.756

16738

\begin{align*} y^{\prime \prime }-9 y^{\prime }+14 y&=98 x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.326

16739

\begin{align*} y^{\prime \prime }-12 y^{\prime }+36 y&=25 \sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.509

16740

\begin{align*} y^{\prime \prime }-9 y^{\prime }+14 y&=576 x^{2} {\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.365

16741

\begin{align*} y^{\prime \prime }-12 y^{\prime }+36 y&=81 \,{\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.401

16743

\begin{align*} y^{\prime \prime }-12 y^{\prime }+36 y&=3 x \,{\mathrm e}^{6 x}-2 \,{\mathrm e}^{6 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.460

16744

\begin{align*} y^{\prime \prime }+36 y&=6 \sec \left (6 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.815

16746

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=10 \,{\mathrm e}^{-3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.416

16748

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=2 \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.498

16752

\begin{align*} 4 y^{\prime \prime }-12 y^{\prime }+9 y&=x \,{\mathrm e}^{\frac {3 x}{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.447

16753

\begin{align*} 3 y^{\prime \prime }+8 y^{\prime }-3 y&=123 \sin \left (3 x \right ) x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.519

16954

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=x^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.351

16966

\begin{align*} y^{\prime \prime }-y^{\prime }-12 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.187

16967

\begin{align*} y^{\prime \prime }+9 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.818

16968

\begin{align*} x^{\prime \prime }+2 x^{\prime }-10 x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.230

16969

\begin{align*} x^{\prime \prime }+x&=t \cos \left (t \right )-\cos \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.528

16970

\begin{align*} y^{\prime \prime }-12 y^{\prime }+40 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.264

16995

\begin{align*} y^{\prime \prime }-y^{\prime }-12 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.312

16996

\begin{align*} y^{\prime \prime }+9 y^{\prime }&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.954

17008

\begin{align*} 16 y^{\prime \prime }+24 y^{\prime }+153 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.251

17017

\begin{align*} y^{\prime \prime }+4 y^{\prime }-5 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.187

17018

\begin{align*} y^{\prime \prime }-6 y^{\prime }+45 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.258

17021

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.373

17022

\begin{align*} 12 y-7 y^{\prime }+y^{\prime \prime }&=2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.295

17030

\begin{align*} y^{\prime \prime }+4 y&=t \\ y \left (\frac {\pi }{4}\right ) &= 1 \\ y^{\prime }\left (\frac {\pi }{4}\right ) &= \frac {\pi }{16} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.517

17350

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.731

17351

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.278

17353

\begin{align*} y^{\prime \prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.709

17354

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=0 \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= -5 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.385

17355

\begin{align*} y^{\prime \prime }+9 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -3 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.239

17358

\begin{align*} y^{\prime \prime }+y&=2 \cos \left (t \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.611

17359

\begin{align*} y^{\prime \prime }+10 y^{\prime }+24 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.217

17360

\begin{align*} y^{\prime \prime }+16 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.427

17361

\begin{align*} y^{\prime \prime }+6 y^{\prime }+18 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.290

17373

\begin{align*} a y^{\prime \prime }+b y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.994

17379

\begin{align*} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.787

17380

\begin{align*} y^{\prime \prime }-4 y^{\prime }-12 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.207

17381

\begin{align*} y^{\prime \prime }+y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.145

17382

\begin{align*} y^{\prime \prime }+3 y^{\prime }-4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.214

17383

\begin{align*} y^{\prime \prime }+8 y^{\prime }+12 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.211

17384

\begin{align*} y^{\prime \prime }+5 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.253

17385

\begin{align*} 8 y^{\prime \prime }+6 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.219

17386

\begin{align*} 4 y^{\prime \prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.108

17387

\begin{align*} y^{\prime \prime }+16 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.132

17388

\begin{align*} y^{\prime \prime }+8 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.263

17389

\begin{align*} y^{\prime \prime }+7 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.293

17390

\begin{align*} 4 y^{\prime \prime }+21 y^{\prime }+5 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.215

17391

\begin{align*} 7 y^{\prime \prime }+4 y^{\prime }-3 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.216

17392

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.286

17393

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.281

17394

\begin{align*} y^{\prime \prime }-y^{\prime }&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.151

17395

\begin{align*} 3 y^{\prime \prime }-y^{\prime }&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 7 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.316

17396

\begin{align*} y^{\prime \prime }+y^{\prime }-12 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 7 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.351

17397

\begin{align*} y^{\prime \prime }-7 y^{\prime }+12 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.362

17398

\begin{align*} 2 y^{\prime \prime }-7 y^{\prime }-4 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.406

17399

\begin{align*} y^{\prime \prime }-7 y^{\prime }+10 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.342

17400

\begin{align*} y^{\prime \prime }+36 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -6 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.599

17401

\begin{align*} y^{\prime \prime }+100 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 10 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.503

17402

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=0 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.445

17403

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.459

17404

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.453

17405

\begin{align*} y^{\prime \prime }+4 y^{\prime }+20 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.455

17406

\begin{align*} y^{\prime \prime }+y^{\prime }-y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.454

17407

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.492

17408

\begin{align*} y^{\prime \prime }-y^{\prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.449

17409

\begin{align*} y^{\prime \prime }-y^{\prime }-y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.404

17410

\begin{align*} 6 y^{\prime \prime }+5 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.250

17411

\begin{align*} 9 y^{\prime \prime }+6 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.280

17412

\begin{align*} y^{\prime \prime }+4 y^{\prime }+20 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.240

17415

\begin{align*} a y^{\prime \prime }+2 b y^{\prime }+c y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.920

17416

\begin{align*} y^{\prime \prime }+6 y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.264

17417

\begin{align*} y^{\prime \prime }-5 y^{\prime }+6 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.216

17418

\begin{align*} y^{\prime \prime }-6 y^{\prime }-16 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.236

17419

\begin{align*} y^{\prime \prime }-16 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.287

17420

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (\frac {\pi }{2}\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.244

17423

\begin{align*} y^{\prime \prime }+4 y^{\prime }+3 y&=0 \\ y \left (0\right ) &= a \\ y^{\prime }\left (0\right ) &= b \\ \end{align*}

[[_2nd_order, _missing_x]]

0.329

17424

\begin{align*} y^{\prime \prime }+y&=8 \,{\mathrm e}^{2 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.396

17425

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=-{\mathrm e}^{-9 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.371

17426

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=2 \,{\mathrm e}^{3 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.445

17427

\begin{align*} y^{\prime \prime }-y&=2 t -4 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.374

17428

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.448

17429

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=3-4 t \\ \end{align*}

[[_2nd_order, _missing_y]]

1.148

17430

\begin{align*} y^{\prime \prime }+y&=\cos \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.428

17431

\begin{align*} y^{\prime \prime }+4 y&=4 \cos \left (t \right )-\sin \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.619

17432

\begin{align*} y^{\prime \prime }+4 y&=\cos \left (2 t \right )+t \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.622

17433

\begin{align*} y^{\prime \prime }+4 y&=3 t \,{\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.428

17434

\begin{align*} y^{\prime \prime }&=3 t^{4}-2 t \\ \end{align*}

[[_2nd_order, _quadrature]]

1.069

17435

\begin{align*} y^{\prime \prime }-4 y^{\prime }+13 y&=2 t \,{\mathrm e}^{-2 t} \sin \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.711

17436

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=-1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.339

17437

\begin{align*} 5 y^{\prime \prime }+y^{\prime }-4 y&=-3 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.378

17438

\begin{align*} y^{\prime \prime }-2 y^{\prime }-8 y&=32 t \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.364

17439

\begin{align*} 16 y^{\prime \prime }-8 y^{\prime }-15 y&=75 t \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.369

17440

\begin{align*} y^{\prime \prime }+2 y^{\prime }+26 y&=-338 t \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.439

17441

\begin{align*} y^{\prime \prime }+3 y^{\prime }-4 y&=-32 t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.378

17442

\begin{align*} 8 y^{\prime \prime }+6 y^{\prime }+y&=5 t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.381

17443

\begin{align*} y^{\prime \prime }-6 y^{\prime }+8 y&=-256 t^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.401

17444

\begin{align*} y^{\prime \prime }-2 y^{\prime }&=52 \sin \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.255

17445

\begin{align*} y^{\prime \prime }-6 y^{\prime }+13 y&=25 \sin \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.481

17446

\begin{align*} y^{\prime \prime }-9 y&=54 t \sin \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.631

17447

\begin{align*} y^{\prime \prime }-5 y^{\prime }+6 y&=-78 \cos \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.415

17448

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=-32 t^{2} \cos \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.013

17449

\begin{align*} y^{\prime \prime }-y^{\prime }-20 y&=-2 \,{\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.373

17450

\begin{align*} y^{\prime \prime }-4 y^{\prime }-5 y&=-648 t^{2} {\mathrm e}^{5 t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.507

17451

\begin{align*} y^{\prime \prime }-7 y^{\prime }+12 y&=-2 t^{3} {\mathrm e}^{4 t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.436

17452

\begin{align*} y^{\prime \prime }+4 y^{\prime }&=8 \,{\mathrm e}^{4 t}-4 \,{\mathrm e}^{-4 t} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.307

17453

\begin{align*} y^{\prime \prime }-3 y^{\prime }&=t^{2}-{\mathrm e}^{3 t} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.230

17454

\begin{align*} y^{\prime \prime }+4 y^{\prime }&=-24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.287

17455

\begin{align*} y^{\prime \prime }-3 y^{\prime }&=t^{2}-{\mathrm e}^{3 t} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.133

17456

\begin{align*} y^{\prime \prime }&=t^{2}+{\mathrm e}^{t}+\sin \left (t \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

1.508

17457

\begin{align*} y^{\prime \prime }+3 y^{\prime }&=18 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.388

17458

\begin{align*} y^{\prime \prime }-y&=4 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.509

17459

\begin{align*} y^{\prime \prime }-4 y&=32 t \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 6 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.496

17460

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&=-2 \\ y \left (0\right ) &= {\frac {2}{3}} \\ y^{\prime }\left (0\right ) &= 8 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.483

17461

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=3 t \\ y \left (0\right ) &= {\frac {23}{12}} \\ y^{\prime }\left (0\right ) &= -{\frac {3}{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.484

17462

\begin{align*} y^{\prime \prime }+8 y^{\prime }+16 y&=4 \\ y \left (0\right ) &= {\frac {5}{4}} \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.621

17463

\begin{align*} y^{\prime \prime }+7 y^{\prime }+10 y&=t \,{\mathrm e}^{-t} \\ y \left (0\right ) &= -{\frac {5}{16}} \\ y^{\prime }\left (0\right ) &= {\frac {9}{16}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.523

17464

\begin{align*} y^{\prime \prime }+6 y^{\prime }+25 y&=-1 \\ y \left (0\right ) &= -{\frac {1}{25}} \\ y^{\prime }\left (0\right ) &= 7 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.572

17465

\begin{align*} y^{\prime \prime }-3 y^{\prime }&=-{\mathrm e}^{3 t}-2 t \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= {\frac {8}{9}} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.467

17466

\begin{align*} y^{\prime \prime }-y^{\prime }&=-3 t -4 \,{\mathrm e}^{2 t} t^{2} \\ y \left (0\right ) &= -{\frac {7}{2}} \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.539

17467

\begin{align*} y^{\prime \prime }-2 y^{\prime }&=2 t^{2} \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= {\frac {3}{2}} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.304

17468

\begin{align*} y^{\prime \prime }+4 y^{\prime }&=-24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.585

17469

\begin{align*} y^{\prime \prime }-3 y^{\prime }&={\mathrm e}^{-3 t}-{\mathrm e}^{3 t} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.914

17470

\begin{align*} y^{\prime \prime }+9 y&=\left \{\begin {array}{cc} 2 t & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.712

17471

\begin{align*} y^{\prime \prime }+9 \pi ^{2} y&=\left \{\begin {array}{cc} 2 t & 0\le t <\pi \\ 2 t -2 \pi & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

17.058

17472

\begin{align*} y^{\prime \prime }+4 y&=\left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 10 & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.222

17478

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=f \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= a \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.878

17479

\begin{align*} x^{\prime \prime }+9 x&=\sin \left (3 t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.660

17480

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime }+37 y&=\cos \left (3 t \right ) \\ y \left (0\right ) &= a \\ y^{\prime }\left (\pi \right ) &= a \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.731

17481

\begin{align*} y^{\prime \prime }+4 y&=1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.602

17482

\begin{align*} y^{\prime \prime }+16 y^{\prime }&=t \\ \end{align*}

[[_2nd_order, _missing_y]]

1.126

17483

\begin{align*} y^{\prime \prime }-7 y^{\prime }+10 y&={\mathrm e}^{3 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.377

17484

\begin{align*} y^{\prime \prime }+16 y&=2 \cos \left (4 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.471

17485

\begin{align*} y^{\prime \prime }+4 y^{\prime }+20 y&=2 t \,{\mathrm e}^{-2 t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.433

17486

\begin{align*} y^{\prime \prime }+\frac {y}{4}&=\sec \left (\frac {t}{2}\right )+\csc \left (\frac {t}{2}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.786

17487

\begin{align*} y^{\prime \prime }+16 y&=\csc \left (4 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.008

17488

\begin{align*} y^{\prime \prime }+16 y&=\cot \left (4 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.198

17489

\begin{align*} y^{\prime \prime }+2 y^{\prime }+50 y&={\mathrm e}^{-t} \csc \left (7 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.667

17490

\begin{align*} y^{\prime \prime }+6 y^{\prime }+25 y&={\mathrm e}^{-3 t} \left (\sec \left (4 t \right )+\csc \left (4 t \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.599

17491

\begin{align*} y^{\prime \prime }-2 y^{\prime }+26 y&={\mathrm e}^{t} \left (\sec \left (5 t \right )+\csc \left (5 t \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.727

17492

\begin{align*} y^{\prime \prime }+12 y^{\prime }+37 y&={\mathrm e}^{-6 t} \csc \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.561

17493

\begin{align*} y^{\prime \prime }-6 y^{\prime }+34 y&={\mathrm e}^{3 t} \tan \left (5 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.670

17494

\begin{align*} y^{\prime \prime }-10 y^{\prime }+34 y&={\mathrm e}^{5 t} \cot \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.713

17495

\begin{align*} y^{\prime \prime }-12 y^{\prime }+37 y&={\mathrm e}^{6 t} \sec \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.546

17496

\begin{align*} y^{\prime \prime }-8 y^{\prime }+17 y&={\mathrm e}^{4 t} \sec \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.539

17497

\begin{align*} y^{\prime \prime }-9 y&=\frac {1}{1+{\mathrm e}^{3 t}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.542

17498

\begin{align*} y^{\prime \prime }-25 y&=\frac {1}{1-{\mathrm e}^{5 t}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.606

17499

\begin{align*} y^{\prime \prime }-y&=2 \sinh \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.582

17500

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=\frac {{\mathrm e}^{t}}{t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.536

17501

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=\frac {{\mathrm e}^{2 t}}{t^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.555

17502

\begin{align*} y^{\prime \prime }+8 y^{\prime }+16 y&=\frac {{\mathrm e}^{-4 t}}{t^{4}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.580

17503

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=\frac {{\mathrm e}^{-3 t}}{t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.564

17504

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&={\mathrm e}^{-3 t} \ln \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.582

17505

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=\cos \left ({\mathrm e}^{t}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.620

17506

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&={\mathrm e}^{-2 t} \sqrt {-t^{2}+1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.658

17507

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&={\mathrm e}^{t} \sqrt {-t^{2}+1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.586

17508

\begin{align*} y^{\prime \prime }-10 y^{\prime }+25 y&={\mathrm e}^{5 t} \ln \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.636

17509

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 t} \arctan \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.638

17510

\begin{align*} y^{\prime \prime }+8 y^{\prime }+16 y&=\frac {{\mathrm e}^{-4 t}}{t^{2}+1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.524

17511

\begin{align*} y^{\prime \prime }+y&=\sec \left (\frac {t}{2}\right )+\csc \left (\frac {t}{2}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.862

17512

\begin{align*} y^{\prime \prime }+9 y&=\tan \left (3 t \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.054

17513

\begin{align*} y^{\prime \prime }+9 y&=\sec \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.628

17514

\begin{align*} y^{\prime \prime }+9 y&=\tan \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.714

17515

\begin{align*} y^{\prime \prime }+4 y&=\tan \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.635

17516

\begin{align*} y^{\prime \prime }+16 y&=\tan \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.618

17517

\begin{align*} y^{\prime \prime }+4 y&=\tan \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.552

17518

\begin{align*} y^{\prime \prime }+9 y&=\sec \left (3 t \right ) \tan \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.027

17519

\begin{align*} y^{\prime \prime }+4 y&=\sec \left (2 t \right ) \tan \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.939

17520

\begin{align*} y^{\prime \prime }+9 y&=\frac {\csc \left (3 t \right )}{2} \\ y \left (\frac {\pi }{4}\right ) &= \sqrt {2} \\ y^{\prime }\left (\frac {\pi }{4}\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.584

17521

\begin{align*} y^{\prime \prime }+4 y&=\sec \left (2 t \right )^{2} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.299

17522

\begin{align*} y^{\prime \prime }-16 y&=16 t \,{\mathrm e}^{-4 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.582

17523

\begin{align*} y^{\prime \prime }+y&=\tan \left (t \right )^{2} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.915

17524

\begin{align*} y^{\prime \prime }+4 y&=\sec \left (2 t \right )+\tan \left (2 t \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.240

17525

\begin{align*} y^{\prime \prime }+9 y&=\csc \left (3 t \right ) \\ y \left (\frac {\pi }{12}\right ) &= 0 \\ y^{\prime }\left (\frac {\pi }{12}\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.385

17526

\begin{align*} y^{\prime \prime }+4 y^{\prime }+3 y&=65 \cos \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.417

17530

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime }+y&={\mathrm e}^{-\frac {t}{2}} \\ y \left (0\right ) &= a \\ y^{\prime }\left (0\right ) &= b \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.606

17531

\begin{align*} y^{\prime \prime }+4 y&=f \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.856

17731

\begin{align*} y^{\prime \prime }-7 y^{\prime }+10 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.226

17732

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.212

17733

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.247

17736

\begin{align*} y^{\prime \prime }+7 y^{\prime }+10 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.222

17737

\begin{align*} 6 y^{\prime \prime }+5 y^{\prime }-4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.262

17738

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.289

17739

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.221

17740

\begin{align*} y^{\prime \prime }-10 y^{\prime }+34 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.286

17741

\begin{align*} 2 y^{\prime \prime }-5 y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.217

17742

\begin{align*} 15 y^{\prime \prime }-11 y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.220

17743

\begin{align*} 20 y^{\prime \prime }+y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.217

17744

\begin{align*} 12 y^{\prime \prime }+8 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.218

17748

\begin{align*} y^{\prime \prime }-2 y^{\prime }-8 y&=-t \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.384

17749

\begin{align*} y^{\prime \prime }+5 y^{\prime }&=5 t^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.153

17750

\begin{align*} y^{\prime \prime }-4 y^{\prime }&=-3 \sin \left (t \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.246

17751

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=3 \sin \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.481

17752

\begin{align*} y^{\prime \prime }-9 y&=\frac {1}{1+{\mathrm e}^{3 t}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.507

17753

\begin{align*} y^{\prime \prime }-2 y^{\prime }&=\frac {1}{1+{\mathrm e}^{2 t}} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.537

17754

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&=-4 \,{\mathrm e}^{-2 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.373

17755

\begin{align*} y^{\prime \prime }-6 y^{\prime }+13 y&=3 \,{\mathrm e}^{-2 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.445

17756

\begin{align*} y^{\prime \prime }+9 y^{\prime }+20 y&=-2 \,{\mathrm e}^{t} t \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.401

17757

\begin{align*} y^{\prime \prime }+7 y^{\prime }+12 y&=3 t^{2} {\mathrm e}^{-4 t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.421

17762

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.358

17763

\begin{align*} y^{\prime \prime }+10 y^{\prime }+16 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.377

17764

\begin{align*} y^{\prime \prime }+16 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= -8 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.010

17765

\begin{align*} y^{\prime \prime }+25 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

27.691

17766

\begin{align*} y^{\prime \prime }-4 y&=t \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.504

17767

\begin{align*} y^{\prime \prime }+3 y^{\prime }-4 y&={\mathrm e}^{t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.598

17768

\begin{align*} y^{\prime \prime }+9 y&=\sin \left (3 t \right ) \\ y \left (0\right ) &= 6 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.648

17769

\begin{align*} y^{\prime \prime }+y&=\cos \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.598

17770

\begin{align*} y^{\prime \prime }+4 y&=\tan \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.589

17771

\begin{align*} y^{\prime \prime }+y&=\csc \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.470

17772

\begin{align*} y^{\prime \prime }-8 y^{\prime }+16 y&=\frac {{\mathrm e}^{4 t}}{t^{3}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.468

17773

\begin{align*} y^{\prime \prime }-8 y^{\prime }+16 y&=\frac {{\mathrm e}^{4 t}}{t^{3}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.450

17774

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&={\mathrm e}^{t} \ln \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.506

17775

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&={\mathrm e}^{t} \ln \left (t \right ) \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.834

17777

\begin{align*} y^{\prime \prime }+3 y^{\prime }-4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.213

17778

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.283

17796

\begin{align*} 4 x^{\prime \prime }+9 x&=0 \\ x \left (0\right ) &= -1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.671

17797

\begin{align*} 9 x^{\prime \prime }+4 x&=0 \\ x \left (0\right ) &= -{\frac {1}{2}} \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.722

17798

\begin{align*} x^{\prime \prime }+64 x&=0 \\ x \left (0\right ) &= {\frac {3}{4}} \\ x^{\prime }\left (0\right ) &= -2 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.749

17799

\begin{align*} x^{\prime \prime }+100 x&=0 \\ x \left (0\right ) &= -{\frac {1}{4}} \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.825

17800

\begin{align*} x^{\prime \prime }+x&=0 \\ x \left (0\right ) &= 3 \\ x^{\prime }\left (0\right ) &= -4 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.560

17801

\begin{align*} x^{\prime \prime }+4 x&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.797

17802

\begin{align*} x^{\prime \prime }+16 x&=0 \\ x \left (0\right ) &= -2 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.681

17803

\begin{align*} x^{\prime \prime }+256 x&=0 \\ x \left (0\right ) &= 2 \\ x^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.040

17804

\begin{align*} x^{\prime \prime }+9 x&=0 \\ x \left (0\right ) &= {\frac {1}{3}} \\ x^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.249

17805

\begin{align*} 10 x^{\prime \prime }+\frac {x}{10}&=0 \\ x \left (0\right ) &= -5 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.694

17806

\begin{align*} x^{\prime \prime }+4 x^{\prime }+3 x&=0 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= -4 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.383

17807

\begin{align*} \frac {x^{\prime \prime }}{32}+2 x^{\prime }+x&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.491

17808

\begin{align*} \frac {x^{\prime \prime }}{4}+2 x^{\prime }+x&=0 \\ x \left (0\right ) &= -{\frac {1}{2}} \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.504

17809

\begin{align*} 4 x^{\prime \prime }+2 x^{\prime }+8 x&=0 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.501

17810

\begin{align*} x^{\prime \prime }+4 x^{\prime }+13 x&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.474

17811

\begin{align*} x^{\prime \prime }+4 x^{\prime }+20 x&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.478

17812

\begin{align*} x^{\prime \prime }+x&=\left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.859

17814

\begin{align*} x^{\prime \prime }+x&=\left \{\begin {array}{cc} t & 0\le t <1 \\ 2-t & 1\le t <2 \\ 0 & 2\le t \end {array}\right . \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.919

17815

\begin{align*} x^{\prime \prime }+4 x^{\prime }+13 x&=\left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 1-t & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

8.148

17816

\begin{align*} x^{\prime \prime }+x&=\cos \left (t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.605

17817

\begin{align*} x^{\prime \prime }+x&=\cos \left (t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.527

17818

\begin{align*} x^{\prime \prime }+x&=\cos \left (\frac {9 t}{10}\right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.689

17819

\begin{align*} x^{\prime \prime }+x&=\cos \left (\frac {7 t}{10}\right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.635

17820

\begin{align*} x^{\prime \prime }+\frac {x^{\prime }}{10}+x&=3 \cos \left (2 t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.780

17833

\begin{align*} x^{\prime \prime }-3 x^{\prime }+4 x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.364

17834

\begin{align*} x^{\prime \prime }+6 x^{\prime }+9 x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.303

17835

\begin{align*} x^{\prime \prime }+16 x&=t \sin \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.635

17836

\begin{align*} x^{\prime \prime }+x&={\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.368

18079

\begin{align*} y^{\prime \prime }+y&=2 \cos \left (x \right )+2 \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.622

18084

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.980

18085

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.286

18091

\begin{align*} y^{\prime \prime }&=x \,{\mathrm e}^{x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _quadrature]]

2.092

18092

\begin{align*} y^{\prime \prime }&=2 x \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

0.892

18108

\begin{align*} y^{\prime \prime }+y^{\prime }+2&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.970

18125

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.011

18126

\begin{align*} 3 y^{\prime \prime }-2 y^{\prime }-8 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.201

18128

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.237

18129

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=0 \\ y \left (0\right ) &= 6 \\ y^{\prime }\left (0\right ) &= 10 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.319

18131

\begin{align*} y^{\prime \prime }-2 y^{\prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.237

18133

\begin{align*} 4 y^{\prime \prime }-8 y^{\prime }+5 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.259

18136

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.414

18137

\begin{align*} y^{\prime \prime }-2 y^{\prime }+3 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.464

18147

\begin{align*} y^{\prime \prime }+3 y^{\prime }&=3 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.901

18148

\begin{align*} y^{\prime \prime }-7 y^{\prime }&=\left (x -1\right )^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.921

18149

\begin{align*} y^{\prime \prime }+3 y^{\prime }&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.846

18150

\begin{align*} y^{\prime \prime }+7 y^{\prime }&={\mathrm e}^{-7 x} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.864

18151

\begin{align*} y^{\prime \prime }-8 y^{\prime }+16 y&=\left (1-x \right ) {\mathrm e}^{4 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.449

18152

\begin{align*} y^{\prime \prime }-10 y^{\prime }+25 y&={\mathrm e}^{5 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.415

18153

\begin{align*} 4 y^{\prime \prime }-3 y^{\prime }&=x \,{\mathrm e}^{\frac {3 x}{4}} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.043

18154

\begin{align*} y^{\prime \prime }-4 y^{\prime }&={\mathrm e}^{4 x} x \\ \end{align*}

[[_2nd_order, _missing_y]]

0.939

18155

\begin{align*} y^{\prime \prime }+25 y&=\cos \left (5 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.454

18156

\begin{align*} y^{\prime \prime }+y&=\sin \left (x \right )-\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.479

18157

\begin{align*} y^{\prime \prime }+16 y&=\sin \left (4 x +\alpha \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.678

18158

\begin{align*} y^{\prime \prime }+4 y^{\prime }+8 y&={\mathrm e}^{2 x} \left (\sin \left (2 x \right )+\cos \left (2 x \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.480

18159

\begin{align*} y^{\prime \prime }-4 y^{\prime }+8 y&={\mathrm e}^{2 x} \left (\sin \left (2 x \right )-\cos \left (2 x \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.477

18160

\begin{align*} y^{\prime \prime }+6 y^{\prime }+13 y&={\mathrm e}^{-3 x} \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.445

18162

\begin{align*} y^{\prime \prime }+k^{2} y&=k \\ \end{align*}

[[_2nd_order, _missing_x]]

1.147

18183

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=-2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.349

18184

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=-2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.937

18185

\begin{align*} y^{\prime \prime }+9 y&=9 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.941

18191

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.400

18192

\begin{align*} y^{\prime \prime }+8 y^{\prime }&=8 x \\ \end{align*}

[[_2nd_order, _missing_y]]

0.917

18193

\begin{align*} y^{\prime \prime }-2 k y^{\prime }+k^{2} y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.384

18194

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=8 \,{\mathrm e}^{-2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.435

18195

\begin{align*} y^{\prime \prime }+4 y^{\prime }+3 y&=9 \,{\mathrm e}^{-3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.433

18196

\begin{align*} 7 y^{\prime \prime }-y^{\prime }&=14 x \\ \end{align*}

[[_2nd_order, _missing_y]]

0.882

18197

\begin{align*} y^{\prime \prime }+3 y^{\prime }&=3 x \,{\mathrm e}^{-3 x} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.965

18198

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&=10 \left (1-x \right ) {\mathrm e}^{-2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.382

18199

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=x +1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.352

18200

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=\left (x^{2}+x \right ) {\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.506

18201

\begin{align*} y^{\prime \prime }+4 y^{\prime }-2 y&=8 \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.433

18202

\begin{align*} y^{\prime \prime }+y&=4 \cos \left (x \right ) x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.471

18203

\begin{align*} y^{\prime \prime }-2 m y^{\prime }+m^{2} y&=\sin \left (n x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.530

18204

\begin{align*} 5 y+2 y^{\prime }+y^{\prime \prime }&=\sin \left (2 x \right ) {\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.447

18205

\begin{align*} y^{\prime \prime }+a^{2} y&=2 \cos \left (m x \right )+3 \sin \left (m x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.691

18206

\begin{align*} y^{\prime \prime }-y^{\prime }&={\mathrm e}^{x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.063

18207

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=4 \,{\mathrm e}^{x} \left (\cos \left (x \right )+\sin \left (x \right )\right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.281

18208

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&=10 \cos \left (x \right ) {\mathrm e}^{-2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.435

18209

\begin{align*} 4 y^{\prime \prime }+8 y^{\prime }&=x \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.215

18210

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.349

18211

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&={\mathrm e}^{4 x} x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.377

18212

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=\left (x^{2}+x \right ) {\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.366

18215

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.450

18217

\begin{align*} y^{\prime \prime }+y&=x^{2} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.552

18218

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=x^{2} {\mathrm e}^{-x} \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.599

18222

\begin{align*} y^{\prime \prime }-4 y^{\prime }+5 y&={\mathrm e}^{2 x} \left (2 \cos \left (x \right )+\sin \left (x \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.434

18223

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{x}+{\mathrm e}^{-2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.374

18224

\begin{align*} y^{\prime \prime }+4 y^{\prime }&=x +{\mathrm e}^{-4 x} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.005

18225

\begin{align*} y^{\prime \prime }-y&=x +\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.436

18226

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=\left (1+\sin \left (x \right )\right ) {\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.413

18229

\begin{align*} 4 y+y^{\prime \prime }&=\sin \left (2 x \right ) \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.923

18230

\begin{align*} y^{\prime \prime }-4 y^{\prime }&=2 \cos \left (4 x \right )^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.274

18231

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=4 x -2 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.360

18232

\begin{align*} y^{\prime \prime }-3 y^{\prime }&=18 x -10 \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.165

18233

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=2+{\mathrm e}^{x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.487

18234

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=\left (5 x +4\right ) {\mathrm e}^{x}+{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.425

18235

\begin{align*} 5 y+2 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{-x}+17 \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.510

18236

\begin{align*} 2 y^{\prime \prime }-3 y^{\prime }-2 y&=5 \,{\mathrm e}^{x} \cosh \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.601

18237

\begin{align*} 4 y+y^{\prime \prime }&=x \sin \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.701

18239

\begin{align*} y^{\prime \prime }+y^{\prime }&=\cos \left (x \right )^{2}+{\mathrm e}^{x}+x^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.420

18241

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=10 \sin \left (x \right )+17 \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.556

18242

\begin{align*} y^{\prime \prime }+y^{\prime }&=x^{2}-{\mathrm e}^{-x}+{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.385

18243

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=2 x +{\mathrm e}^{-x}-2 \,{\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.561

18244

\begin{align*} 4 y+y^{\prime \prime }&={\mathrm e}^{x}+4 \sin \left (2 x \right )+2 \cos \left (x \right )^{2}-1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.769

18245

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=6 x \,{\mathrm e}^{-x} \left (1-{\mathrm e}^{-x}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.510

18246

\begin{align*} y^{\prime \prime }+y&=\cos \left (2 x \right )^{2}+\sin \left (\frac {x}{2}\right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.960

18247

\begin{align*} y^{\prime \prime }-4 y^{\prime }+5 y&=1+8 \cos \left (x \right )+{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.454

18248

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&={\mathrm e}^{x} \sin \left (\frac {x}{2}\right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.442

18249

\begin{align*} y^{\prime \prime }-3 y^{\prime }&=1+{\mathrm e}^{x}+\cos \left (x \right )+\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.335

18250

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&={\mathrm e}^{x} \left (1-2 \sin \left (x \right )^{2}\right )+10 x +1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.751

18251

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=4 x +\sin \left (x \right )+\sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.768

18252

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=1+2 \cos \left (x \right )+\cos \left (2 x \right )-\sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.715

18253

\begin{align*} y^{\prime \prime }+y^{\prime }+y+1&=\sin \left (x \right )+x +x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.500

18254

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=18 \,{\mathrm e}^{-3 x}+8 \sin \left (x \right )+6 \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.629

18255

\begin{align*} y^{\prime \prime }+2 y^{\prime }+1&=3 \sin \left (2 x \right )+\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.727

18257

\begin{align*} y^{\prime \prime }+y&=2 \sin \left (2 x \right ) \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.694

18262

\begin{align*} y^{\prime \prime }+y&=-2 x +2 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.412

18263

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=9 x^{2}-12 x +2 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.605

18264

\begin{align*} y^{\prime \prime }+9 y&=36 \,{\mathrm e}^{3 x} \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 6 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.484

18265

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=2 \,{\mathrm e}^{2 x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.576

18266

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=\left (12 x -7\right ) {\mathrm e}^{-x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.502

18267

\begin{align*} y^{\prime \prime }+y^{\prime }&={\mathrm e}^{-x} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.065

18268

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=10 \sin \left (x \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.678

18269

\begin{align*} y^{\prime \prime }+y&=2 \cos \left (x \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.547

18270

\begin{align*} 4 y+y^{\prime \prime }&=\sin \left (x \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.605

18271

\begin{align*} y^{\prime \prime }+y&=4 \cos \left (x \right ) x \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.556

18272

\begin{align*} y^{\prime \prime }-4 y^{\prime }+5 y&=2 \,{\mathrm e}^{x} x^{2} \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.550

18273

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=16 \,{\mathrm e}^{-x}+9 x -6 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.606

18274

\begin{align*} y^{\prime \prime }-y^{\prime }&=-5 \,{\mathrm e}^{-x} \left (\cos \left (x \right )+\sin \left (x \right )\right ) \\ y \left (0\right ) &= -4 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.661

18275

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=4 \,{\mathrm e}^{x} \cos \left (x \right ) \\ y \left (\pi \right ) &= \pi \,{\mathrm e}^{\pi } \\ y^{\prime }\left (\pi \right ) &= {\mathrm e}^{\pi } \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.600

18280

\begin{align*} y^{\prime \prime }-4 y^{\prime }+5 y&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.366

18281

\begin{align*} 5 y+2 y^{\prime }+y^{\prime \prime }&=4 \cos \left (2 x \right )+\sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.480

18282

\begin{align*} y^{\prime \prime }-y&=1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.464

18283

\begin{align*} y^{\prime \prime }-y&=-2 \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.351

18284

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{-x} \\ y \left (\infty \right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.509

18286

\begin{align*} y^{\prime \prime }-y^{\prime }-5 y&=1 \\ y \left (\infty \right ) &= -{\frac {1}{5}} \\ \end{align*}

[[_2nd_order, _missing_x]]

0.524

18288

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{-2 x} \left (9 \sin \left (2 x \right )+4 \cos \left (2 x \right )\right ) \\ y \left (\infty \right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.565

18289

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{-x} \left (9 x^{2}+5 x -12\right ) \\ y \left (\infty \right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.630

18321

\begin{align*} y^{\prime \prime }+y&=\frac {1}{\sin \left (x \right )} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.487

18322

\begin{align*} y^{\prime \prime }+y^{\prime }&=\frac {1}{{\mathrm e}^{x}+1} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.164

18323

\begin{align*} y^{\prime \prime }+y&=\frac {1}{\cos \left (x \right )^{3}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.491

18324

\begin{align*} y^{\prime \prime }+y&=\frac {1}{\sqrt {\sin \left (x \right )^{5} \cos \left (x \right )}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.230

18325

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x^{2}+1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.497

18326

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=\frac {{\mathrm e}^{-x}}{\sin \left (x \right )} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.496

18327

\begin{align*} y^{\prime \prime }+y&=\frac {2}{\sin \left (x \right )^{3}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.544

18328

\begin{align*} y^{\prime \prime }+y^{\prime }&={\mathrm e}^{2 x} \cos \left ({\mathrm e}^{x}\right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.504

18343

\begin{align*} x^{\prime \prime }+x^{\prime }+x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.321

18344

\begin{align*} x^{\prime \prime }+2 x^{\prime }+6 x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.305

18345

\begin{align*} x^{\prime \prime }+2 x^{\prime }+x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.291

18353

\begin{align*} y^{\prime \prime }+\lambda y&=0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime }\left (\pi \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.375

18354

\begin{align*} y^{\prime \prime }+\lambda y&=0 \\ y \left (0\right ) &= 0 \\ y \left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.815

18355

\begin{align*} y^{\prime \prime }-y&=0 \\ y \left (0\right ) &= 0 \\ y \left (2 \pi \right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.060

18358

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y \left (\frac {\pi }{2}\right ) &= \alpha \\ \end{align*}

[[_2nd_order, _missing_x]]

1.091

18359

\begin{align*} y^{\prime \prime }-y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.894

18360

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (\pi \right ) &= {\mathrm e}^{\pi } \\ \end{align*}

[[_2nd_order, _missing_x]]

0.237

18362

\begin{align*} y^{\prime \prime }+\alpha ^{2} y&=1 \\ y^{\prime }\left (0\right ) &= \alpha \\ y^{\prime }\left (\pi \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

7.611

18363

\begin{align*} y^{\prime \prime }+y&=1 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (\pi \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.763

18364

\begin{align*} y^{\prime \prime }+\lambda ^{2} y&=0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime }\left (\pi \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.177

18365

\begin{align*} y^{\prime \prime }+\lambda ^{2} y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (\pi \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.856

18397

\begin{align*} 4 y+y^{\prime \prime }&=\cos \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.518

18398

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=\pi ^{2}-x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.426

18399

\begin{align*} y^{\prime \prime }-4 y&=\cos \left (\pi x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.447

18400

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=\arcsin \left (\sin \left (x \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.517

18401

\begin{align*} y^{\prime \prime }+9 y&=\sin \left (x \right )^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.707

18725

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.349

18726

\begin{align*} y^{\prime \prime }+9 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

8.579

18727

\begin{align*} y^{\prime \prime }+y^{\prime }+16 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.455

18728

\begin{align*} y^{\prime \prime }+3 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.429

18729

\begin{align*} y^{\prime \prime }-y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.445

18740

\begin{align*} y^{\prime \prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.044

18741

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.215

18744

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.174

18756

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.183

18757

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.183

18758

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.226

18759

\begin{align*} 9 y^{\prime \prime }+6 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.225

18760

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.243

18761

\begin{align*} y^{\prime \prime }-2 y^{\prime }+6 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.279

18762

\begin{align*} 4 y^{\prime \prime }-4 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.232

18763

\begin{align*} 2 y^{\prime \prime }-3 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.183

18764

\begin{align*} 6 y^{\prime \prime }-y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.181

18765

\begin{align*} 9 y^{\prime \prime }+12 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.236

18766

\begin{align*} y^{\prime \prime }+2 y^{\prime }-8 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.183

18767

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.241

18768

\begin{align*} y^{\prime \prime }+5 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.640

18769

\begin{align*} 4 y^{\prime \prime }-9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.022

18770

\begin{align*} 25 y^{\prime \prime }-20 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.236

18771

\begin{align*} y^{\prime \prime }-4 y^{\prime }+16 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.303

18772

\begin{align*} y^{\prime \prime }+6 y^{\prime }+13 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.250

18773

\begin{align*} y^{\prime \prime }+2 y^{\prime }+\frac {5 y}{4}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.233

18774

\begin{align*} y^{\prime \prime }-9 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.217

18775

\begin{align*} y^{\prime \prime }-2 y^{\prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.213

18776

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.227

18777

\begin{align*} 9 y^{\prime \prime }-24 y^{\prime }+16 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.229

18778

\begin{align*} 4 y^{\prime \prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.955

18779

\begin{align*} 4 y^{\prime \prime }+9 y^{\prime }-9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.185

18780

\begin{align*} y^{\prime \prime }+y^{\prime }+\frac {5 y}{4}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.233

18781

\begin{align*} y^{\prime \prime }+4 y^{\prime }+\frac {25 y}{4}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.246

18782

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.284

18783

\begin{align*} y^{\prime \prime }+16 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.842

18784

\begin{align*} 9 y^{\prime \prime }-12 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.376

18785

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.297

18786

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.389

18787

\begin{align*} 6 y^{\prime \prime }-5 y^{\prime }+y&=0 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.309

18788

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.378

18789

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=0 \\ y \left (\frac {\pi }{2}\right ) &= 0 \\ y^{\prime }\left (\frac {\pi }{2}\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.388

18790

\begin{align*} y^{\prime \prime }+3 y^{\prime }&=0 \\ y \left (0\right ) &= -2 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.809

18791

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (\frac {\pi }{3}\right ) &= 2 \\ y^{\prime }\left (\frac {\pi }{3}\right ) &= -4 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.427

18792

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\ y \left (-1\right ) &= 2 \\ y^{\prime }\left (-1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.411

18793

\begin{align*} y^{\prime \prime }+6 y^{\prime }+3 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.386

18794

\begin{align*} y^{\prime \prime }+y^{\prime }+\frac {5 y}{4}&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.380

18795

\begin{align*} 2 y^{\prime \prime }+y^{\prime }-4 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.371

18796

\begin{align*} y^{\prime \prime }+8 y^{\prime }-9 y&=0 \\ y \left (1\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.316

18797

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=0 \\ y \left (\frac {\pi }{4}\right ) &= 2 \\ y^{\prime }\left (\frac {\pi }{4}\right ) &= -2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.412

18798

\begin{align*} 4 y^{\prime \prime }-y&=0 \\ y \left (-2\right ) &= 1 \\ y^{\prime }\left (-2\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.815

18812

\begin{align*} y^{\prime \prime }+2 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.921

18813

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{4}+2 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.393

18814

\begin{align*} m y^{\prime \prime }+k y&=0 \\ y \left (0\right ) &= a \\ y^{\prime }\left (0\right ) &= b \\ \end{align*}

[[_2nd_order, _missing_x]]

2.944

18815

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=3 \,{\mathrm e}^{2 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.274

18816

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=3 \sin \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.369

18817

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=-3 t \,{\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.300

18818

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=3+4 \sin \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.059

18819

\begin{align*} y^{\prime \prime }+9 y&=t^{2} {\mathrm e}^{3 t}+6 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.355

18820

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=2 \,{\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.338

18821

\begin{align*} y^{\prime \prime }-5 y^{\prime }+4 y&=2 \,{\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.308

18822

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=2 \,{\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.293

18823

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=3 \,{\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.362

18824

\begin{align*} 4 y^{\prime \prime }-4 y^{\prime }+y&=16 \,{\mathrm e}^{\frac {t}{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.367

18825

\begin{align*} 2 y^{\prime \prime }+3 y^{\prime }+y&=t^{2}+3 \sin \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.406

18826

\begin{align*} y^{\prime \prime }+y&=3 \sin \left (2 t \right )+\cos \left (2 t \right ) t \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.565

18827

\begin{align*} u^{\prime \prime }+w_{0}^{2} u&=\cos \left (t w \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.464

18828

\begin{align*} y^{\prime \prime }+y^{\prime }+4 y&=2 \sinh \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.780

18829

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=\cosh \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.479

18830

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=2 t \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.398

18831

\begin{align*} y^{\prime \prime }+4 y&=t^{2}+3 \,{\mathrm e}^{t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.505

18832

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&={\mathrm e}^{t} t +4 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.524

18833

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=3 \,{\mathrm e}^{2 t} t \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.419

18834

\begin{align*} y^{\prime \prime }+4 y&=3 \sin \left (2 t \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.489

18835

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=4 \,{\mathrm e}^{-t} \cos \left (2 t \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.510

18836

\begin{align*} y^{\prime \prime }+3 y^{\prime }&=2 t^{4}+t^{2} {\mathrm e}^{-3 t}+\sin \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.553

18837

\begin{align*} y^{\prime \prime }+y&=t \left (1+\sin \left (t \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.475

18838

\begin{align*} y^{\prime \prime }-5 y^{\prime }+6 y&={\mathrm e}^{t} \cos \left (2 t \right )+{\mathrm e}^{2 t} \left (3 t +4\right ) \sin \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

3.147

18839

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=3 \,{\mathrm e}^{-t}+2 \,{\mathrm e}^{-t} \cos \left (t \right )+4 \,{\mathrm e}^{-t} t^{2} \sin \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.684

18840

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=2 t^{2}+4 \,{\mathrm e}^{2 t} t +t \sin \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.843

18841

\begin{align*} y^{\prime \prime }+4 y&=t^{2} \sin \left (2 t \right )+\left (6 t +7\right ) \cos \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.925

18842

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{t} \left (t^{2}+1\right ) \sin \left (2 t \right )+3 \,{\mathrm e}^{-t} \cos \left (t \right )+4 \,{\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.948

18843

\begin{align*} y^{\prime \prime }-3 y^{\prime }-4 y&=2 \,{\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.309

18848

\begin{align*} y^{\prime \prime }+y&=\left \{\begin {array}{cc} t & 0\le t \le \pi \\ \pi \,{\mathrm e}^{\pi -t} & \pi <t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.231

18849

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=\left \{\begin {array}{cc} 1 & 0\le t \le \frac {\pi }{2} \\ 0 & \frac {\pi }{2}<t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.544

18850

\begin{align*} y^{\prime \prime }+y&=\left \{\begin {array}{cc} A t & 0\le t \le \pi \\ A \left (2 \pi -t \right ) & \pi <t \le 2 \pi \\ 0 & 2 \pi <t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.992

18851

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{4}+2 y&=2 \cos \left (t w \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.625

18852

\begin{align*} y^{\prime \prime }+y&=2 \cos \left (t w \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.431

18853

\begin{align*} y^{\prime \prime }+y&=3 \cos \left (t w \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.456

18854

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{8}+4 y&=3 \cos \left (\frac {t}{4}\right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.582

18855

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{8}+4 y&=3 \cos \left (2 t \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.526

18856

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{8}+4 y&=3 \cos \left (6 t \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.558

18859

\begin{align*} y^{\prime \prime }-5 y^{\prime }+6 y&=2 \,{\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.271

18860

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=2 \,{\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.296

18861

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=3 \,{\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.357

18862

\begin{align*} 4 y^{\prime \prime }-4 y^{\prime }+y&=16 \,{\mathrm e}^{\frac {t}{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.357

18863

\begin{align*} y^{\prime \prime }+y&=\tan \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.401

18864

\begin{align*} y^{\prime \prime }+4 y&=3 \sec \left (2 t \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.748

18865

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{2 t}}{t^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.503

18866

\begin{align*} y^{\prime \prime }+4 y&=2 \csc \left (\frac {t}{2}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.716

18867

\begin{align*} 4 y^{\prime \prime }+y&=2 \sec \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.931

18868

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=\frac {{\mathrm e}^{t}}{t^{2}+1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.445

18869

\begin{align*} y^{\prime \prime }-5 y^{\prime }+6 y&=g \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.421

18870

\begin{align*} y^{\prime \prime }+4 y&=g \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.437

18881

\begin{align*} y^{\prime \prime }+y&=g \left (t \right ) \\ y \left (0\right ) &= y_{0} \\ y^{\prime }\left (0\right ) &= y_{1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.487

19065

\begin{align*} y^{\prime \prime }&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

0.660

19176

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.024

19178

\begin{align*} y^{\prime \prime }+p_{1} y^{\prime }+p_{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.263

19185

\begin{align*} 2 y^{\prime \prime }+y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.250

19187

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.558

19188

\begin{align*} y^{\prime \prime }-6 y^{\prime }+8 y&={\mathrm e}^{x}+{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.703

19191

\begin{align*} 4 y+y^{\prime \prime }&=\sin \left (2 x \right ) x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.811

19192

\begin{align*} y^{\prime \prime }+y^{\prime }+y&={\mathrm e}^{-\frac {x}{2}} \sin \left (\frac {\sqrt {3}\, x}{2}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.705

19193

\begin{align*} y^{\prime \prime }-y&=\frac {{\mathrm e}^{x}-{\mathrm e}^{-x}}{{\mathrm e}^{x}+{\mathrm e}^{-x}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.635

19194

\begin{align*} -2 y+y^{\prime \prime }&=4 x^{2} {\mathrm e}^{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.506

19195

\begin{align*} y^{\prime \prime }+y&=\sin \left (2 x \right ) \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.219

19196

\begin{align*} y^{\prime \prime }+9 y&=\ln \left (2 \sin \left (\frac {x}{2}\right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.880

19231

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.099

19232

\begin{align*} y^{\prime \prime }-4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.373

19272

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.266

19360

\begin{align*} y^{\prime \prime }-k y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

6.181

19422

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=4 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.453

19424

\begin{align*} y^{\prime \prime }-2 y^{\prime }&=6 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.318

19425

\begin{align*} -2 y+y^{\prime \prime }&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.616

19426

\begin{align*} y^{\prime \prime }&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _quadrature]]

1.755

19427

\begin{align*} y^{\prime \prime }-2 y^{\prime }&=4 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.473

19428

\begin{align*} y^{\prime \prime }-y&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.569

19430

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=6 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.378

19433

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

4.101

19435

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.448

19436

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.374

19438

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=0 \\ y \left (0\right ) &= 8 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.441

19439

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.459

19440

\begin{align*} y^{\prime \prime }+y^{\prime }&=0 \\ y \left (2\right ) &= 0 \\ y^{\prime }\left (2\right ) &= {\mathrm e}^{-2} \\ \end{align*}

[[_2nd_order, _missing_x]]

2.308

19459

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.271

19460

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.376

19461

\begin{align*} y^{\prime \prime }+8 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.653

19462

\begin{align*} 2 y^{\prime \prime }-4 y^{\prime }+8 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.493

19463

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.361

19464

\begin{align*} 20 y-9 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.265

19465

\begin{align*} 2 y^{\prime \prime }+2 y^{\prime }+3 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.465

19466

\begin{align*} 4 y^{\prime \prime }-12 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.386

19467

\begin{align*} y^{\prime \prime }+y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.735

19468

\begin{align*} y^{\prime \prime }-6 y^{\prime }+25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.428

19469

\begin{align*} 4 y^{\prime \prime }+20 y^{\prime }+25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.377

19470

\begin{align*} 3 y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.442

19471

\begin{align*} y^{\prime \prime }&=4 y \\ \end{align*}

[[_2nd_order, _missing_x]]

2.785

19472

\begin{align*} 4 y^{\prime \prime }-8 y^{\prime }+7 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.431

19473

\begin{align*} 2 y^{\prime \prime }+y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.267

19474

\begin{align*} 16 y^{\prime \prime }-8 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.374

19475

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.320

19476

\begin{align*} y^{\prime \prime }+4 y^{\prime }-5 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.275

19477

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (1\right ) &= {\mathrm e}^{2} \\ y^{\prime }\left (1\right ) &= 3 \,{\mathrm e}^{2} \\ \end{align*}

[[_2nd_order, _missing_x]]

0.480

19478

\begin{align*} y^{\prime \prime }-6 y^{\prime }+5 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 11 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.452

19479

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.568

19480

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.437

19481

\begin{align*} y^{\prime \prime }+4 y^{\prime }+2 y&=0 \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 2+3 \sqrt {2} \\ \end{align*}

[[_2nd_order, _missing_x]]

0.553

19482

\begin{align*} y^{\prime \prime }+8 y^{\prime }-9 y&=0 \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.458

19494

\begin{align*} y^{\prime \prime }+3 y^{\prime }-10 y&=6 \,{\mathrm e}^{4 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.512

19495

\begin{align*} 4 y+y^{\prime \prime }&=3 \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.641

19496

\begin{align*} y^{\prime \prime }+10 y^{\prime }+25 y&=14 \,{\mathrm e}^{-5 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.649

19497

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=25 x^{2}+12 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.585

19498

\begin{align*} y^{\prime \prime }-y^{\prime }-6 y&=20 \,{\mathrm e}^{-2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.505

19499

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=14 \sin \left (2 x \right )-18 \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.572

19500

\begin{align*} y^{\prime \prime }+y&=2 \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.584

19501

\begin{align*} y^{\prime \prime }-2 y^{\prime }&=12 x -10 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.761

19502

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=6 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.631

19503

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&={\mathrm e}^{x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.551

19504

\begin{align*} y^{\prime \prime }+y^{\prime }&=10 x^{4}+2 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.554

19505

\begin{align*} y^{\prime \prime }+k^{2} y&=\sin \left (b x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.105

19506

\begin{align*} 4 y+y^{\prime \prime }&=4 \cos \left (2 x \right )+6 \cos \left (x \right )+8 x^{2}-4 x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.402

19507

\begin{align*} y^{\prime \prime }+9 y&=2 \sin \left (3 x \right )+4 \sin \left (x \right )-26 \,{\mathrm e}^{-2 x}+27 x^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

3.739

19508

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=2 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.594

19509

\begin{align*} y^{\prime \prime }-y^{\prime }-6 y&={\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.452

19510

\begin{align*} 4 y+y^{\prime \prime }&=\tan \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.749

19511

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.665

19512

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=64 x \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.512

19513

\begin{align*} 5 y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \sec \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.734

19514

\begin{align*} 2 y^{\prime \prime }+3 y^{\prime }+y&={\mathrm e}^{-3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.471

19515

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=\frac {1}{1+{\mathrm e}^{-x}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.507

19516

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.533

19517

\begin{align*} y^{\prime \prime }+y&=\cot \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.740

19518

\begin{align*} y^{\prime \prime }+y&=\cot \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.882

19519

\begin{align*} y^{\prime \prime }+y&=\cos \left (x \right ) x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.853

19520

\begin{align*} y^{\prime \prime }+y&=\tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.532

19521

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.653

19522

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \csc \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.783

19551

\begin{align*} y^{\prime \prime }-4 y&={\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.550

19552

\begin{align*} y^{\prime \prime }-y&=x^{2} {\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.490

19553

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=10 x^{3} {\mathrm e}^{-2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.704

19554

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.573

19555

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.457

19556

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=6 \,{\mathrm e}^{5 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.491

19557

\begin{align*} y^{\prime \prime }-y^{\prime }+y&=x^{3}-3 x^{2}+1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.722

19559

\begin{align*} 4 y^{\prime \prime }+y&=x^{4} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.510

19562

\begin{align*} y^{\prime \prime }+y^{\prime }-y&=-x^{4}+3 x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.557

19563

\begin{align*} y^{\prime \prime }+y&=x^{4} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.465

19566

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=x^{3} {\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.508

19567

\begin{align*} 12 y-7 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{2 x} \left (x^{3}-5 x^{2}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.542

19568

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=2 x^{2} {\mathrm e}^{-2 x}+3 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.221

19577

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.688

19688

\begin{align*} x^{\prime \prime }-5 x^{\prime }+6 x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.267

19689

\begin{align*} x^{\prime \prime }-4 x^{\prime }+4 x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.391

19690

\begin{align*} x^{\prime \prime }-4 x^{\prime }+5 x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.370

19691

\begin{align*} x^{\prime \prime }+3 x^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.476

19692

\begin{align*} x^{\prime \prime }-3 x^{\prime }+2 x&=0 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.499

19693

\begin{align*} x^{\prime \prime }+x&=0 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.227

19694

\begin{align*} x^{\prime \prime }+2 x^{\prime }+x&=0 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.581

19695

\begin{align*} x^{\prime \prime }-2 x^{\prime }+2 x&=0 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.469

19696

\begin{align*} x^{\prime \prime }-x&=t^{2} \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.647

19697

\begin{align*} x^{\prime \prime }-x&={\mathrm e}^{t} \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.702

19698

\begin{align*} x^{\prime \prime }+2 x^{\prime }+4 x&={\mathrm e}^{t} \cos \left (2 t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.965

19699

\begin{align*} x^{\prime \prime }-x^{\prime }+x&=\sin \left (2 t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.836

19700

\begin{align*} x^{\prime \prime }+4 x^{\prime }+3 x&=t \sin \left (t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.985

19701

\begin{align*} x^{\prime \prime }+x&=\cos \left (t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.779

19736

\begin{align*} \theta ^{\prime \prime }&=-p^{2} \theta \\ \end{align*}

[[_2nd_order, _missing_x]]

4.881

19750

\begin{align*} \theta ^{\prime \prime }-p^{2} \theta &=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

7.025

19751

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.621

19752

\begin{align*} y^{\prime \prime }+12 y&=7 y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_x]]

0.289

19753

\begin{align*} r^{\prime \prime }-a^{2} r&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

6.171

19755

\begin{align*} v^{\prime \prime }-6 v^{\prime }+13 v&={\mathrm e}^{-2 u} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.689

19756

\begin{align*} y^{\prime \prime }+4 y^{\prime }-y&=\sin \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.708

19757

\begin{align*} y^{\prime \prime }+3 y&=\sin \left (x \right )+\frac {\sin \left (3 x \right )}{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.320

19769

\begin{align*} y^{\prime \prime }&=-m^{2} y \\ \end{align*}

[[_2nd_order, _missing_x]]

5.289

19777

\begin{align*} y^{\prime \prime }+4 y^{\prime }+3 y&=2 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.508

19824

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.358

19825

\begin{align*} y^{\prime \prime }+2 y^{\prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.328

19833

\begin{align*} y^{\prime \prime }+4 y^{\prime }+3 y&=2 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.482

19835

\begin{align*} y^{\prime \prime }-4 y^{\prime }+2 y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.539

19836

\begin{align*} y^{\prime \prime }+3 y^{\prime }-y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.556

19839

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.721

19840

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.600

19841

\begin{align*} y^{\prime \prime }+y&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.623

19843

\begin{align*} y^{\prime \prime }+y&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.612

19847

\begin{align*} e y^{\prime \prime }&=\frac {P \left (\frac {L}{2}-x \right )}{2} \\ \end{align*}

[[_2nd_order, _quadrature]]

2.859

19848

\begin{align*} e y^{\prime \prime }&=\frac {w \left (\frac {L^{2}}{4}-x^{2}\right )}{2} \\ \end{align*}

[[_2nd_order, _quadrature]]

2.750

19849

\begin{align*} e y^{\prime \prime }&=-\frac {\left (w L +P \right ) x}{2}-\frac {w \,x^{2}}{2} \\ \end{align*}

[[_2nd_order, _quadrature]]

2.721

19850

\begin{align*} e y^{\prime \prime }&=-P \left (L -x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

2.027

19851

\begin{align*} e y^{\prime \prime }&=-P L +\left (w L +P \right ) x -\frac {w \left (L^{2}+x^{2}\right )}{2} \\ \end{align*}

[[_2nd_order, _quadrature]]

2.576

19852

\begin{align*} e y^{\prime \prime }&=P \left (-y+a \right ) \\ \end{align*}

[[_2nd_order, _missing_x]]

13.066

19867

\begin{align*} y^{\prime \prime }&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

1.811

19869

\begin{align*} y^{\prime \prime }&=-a^{2} y \\ \end{align*}

[[_2nd_order, _missing_x]]

5.720

19875

\begin{align*} x&=y^{\prime \prime }+y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y]]

1.661

19895

\begin{align*} y^{\prime \prime }-k^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

7.502

20036

\begin{align*} y^{\prime \prime }+3 y^{\prime }-54 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.184

20037

\begin{align*} y^{\prime \prime }-m^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.098

20038

\begin{align*} 2 y^{\prime \prime }+5 y^{\prime }-12 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.176

20039

\begin{align*} 9 y^{\prime \prime }+18 y^{\prime }-16 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.171

20042

\begin{align*} y^{\prime \prime }+8 y^{\prime }+25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.234

20045

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{4 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.274

20046

\begin{align*} y^{\prime \prime }-y&=2+5 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.260

20047

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.362

20051

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=3 \,{\mathrm e}^{\frac {5 x}{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.368

20056

\begin{align*} y^{\prime \prime }-4 y&=2 \sin \left (\frac {x}{2}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.370

20059

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{2 x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.337

20060

\begin{align*} y^{\prime \prime }+2 y&=x^{2} {\mathrm e}^{3 x}+{\mathrm e}^{x} \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.981

20061

\begin{align*} 4 y+y^{\prime \prime }&=x \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.431

20062

\begin{align*} y^{\prime \prime }-y&=x^{2} \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.457

20066

\begin{align*} 4 y+y^{\prime \prime }&=\sin \left (3 x \right )+{\mathrm e}^{x}+x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.609

20067

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=x +{\mathrm e}^{m x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.309

20068

\begin{align*} y^{\prime \prime }-a^{2} y&={\mathrm e}^{a x}+{\mathrm e}^{n x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.596

20075

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x^{2} {\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.380

20076

\begin{align*} y^{\prime \prime }+n^{2} y&={\mathrm e}^{x} x^{4} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.483

20080

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=\sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.443

20082

\begin{align*} y^{\prime \prime }-2 y^{\prime }+4 y&={\mathrm e}^{x} \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.404

20086

\begin{align*} y^{\prime \prime }-y&=x \sin \left (x \right )+\left (x^{2}+1\right ) {\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.690

20087

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&={\mathrm e}^{x} \cos \left (2 x \right )+\cos \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.854

20089

\begin{align*} 20 y-9 y^{\prime }+y^{\prime \prime }&=20 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.275

20125

\begin{align*} y^{\prime \prime }&=x^{2} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

0.833

20126

\begin{align*} y^{\prime \prime }+a^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.836

20162

\begin{align*} y^{\prime \prime }&=\frac {a}{x} \\ \end{align*}

[[_2nd_order, _quadrature]]

0.717

20165

\begin{align*} y^{\prime \prime }+y^{\prime }&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.697

20168

\begin{align*} a y^{\prime \prime }&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_x]]

0.644

20328

\begin{align*} y^{\prime \prime }-n^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.855

20330

\begin{align*} 2 x^{\prime \prime }+5 x^{\prime }-12 x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.195

20331

\begin{align*} y^{\prime \prime }+3 y^{\prime }-54 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.180

20332

\begin{align*} 9 x^{\prime \prime }+18 x^{\prime }-16 x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.193

20334

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.229

20342

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{4 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.284

20343

\begin{align*} y^{\prime \prime }-y&=2+5 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.279

20344

\begin{align*} y^{\prime \prime }+2 y^{\prime }-15 y&=15 x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.321

20345

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.566

20346

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{\frac {5 x}{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.380

20347

\begin{align*} y^{\prime \prime }+y^{\prime }+y&={\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.411

20348

\begin{align*} y^{\prime \prime }+2 p y^{\prime }+\left (p^{2}+q^{2}\right ) y&={\mathrm e}^{k x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.650

20349

\begin{align*} y^{\prime \prime }+9 y&=\sin \left (2 x \right )+\cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.607

20351

\begin{align*} 4 y+y^{\prime \prime }&={\mathrm e}^{x}+\sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.640

20353

\begin{align*} y^{\prime \prime }-4 y&=2 \sin \left (\frac {x}{2}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.311

20354

\begin{align*} y^{\prime \prime }+y&=\sin \left (3 x \right )-\cos \left (\frac {x}{2}\right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.890

20360

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&={\mathrm e}^{2 x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.422

20361

\begin{align*} y^{\prime \prime }-2 y^{\prime }+4 y&={\mathrm e}^{x} \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.424

20362

\begin{align*} y^{\prime \prime }-y&=\cos \left (x \right ) \cosh \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.599

20365

\begin{align*} y^{\prime \prime }+4 y^{\prime }-12 y&=\left (x -1\right ) {\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.399

20366

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=\cos \left (x \right ) x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.490

20369

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \sin \left (x \right ) x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.459

20370

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=8 x^{2} {\mathrm e}^{2 x} \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.701

20371

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{-x}+\cos \left (x \right )+x^{3}+{\mathrm e}^{x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.314

20375

\begin{align*} y^{\prime \prime }+y&=3 \cos \left (x \right )^{2}+2 \sin \left (x \right )^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.436

20378

\begin{align*} y^{\prime \prime }+2 y^{\prime }+10 y+37 \sin \left (3 x \right )&=0 \\ y \left (\frac {\pi }{2}\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.593

20535

\begin{align*} y^{\prime \prime }&=x +\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

1.021

20536

\begin{align*} y^{\prime \prime }&=x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _quadrature]]

0.867

20539

\begin{align*} y^{\prime \prime }&=\frac {a}{x} \\ \end{align*}

[[_2nd_order, _quadrature]]

1.031

20543

\begin{align*} y^{\prime \prime }&=y \\ \end{align*}

[[_2nd_order, _missing_x]]

2.059

20545

\begin{align*} y^{\prime \prime }-a^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.516

20551

\begin{align*} y^{\prime \prime }+y^{\prime }&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.851

20569

\begin{align*} a y^{\prime \prime }&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_x]]

1.106

20590

\begin{align*} y^{\prime \prime }+a^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.428

20641

\begin{align*} y^{\prime \prime }+y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.545

20642

\begin{align*} y^{\prime \prime }+y&=\csc \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.644

20643

\begin{align*} 4 y+y^{\prime \prime }&=4 \tan \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.863

20645

\begin{align*} y^{\prime \prime }-y&=\frac {2}{{\mathrm e}^{x}+1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.455

20697

\begin{align*} 2 y^{\prime \prime }+9 y^{\prime }-18 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.230

20703

\begin{align*} y^{\prime \prime }-4 y^{\prime }+y&=a \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.466

20706

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.622

20708

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x^{2} {\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.480

20709

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=2 \sinh \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.662

20711

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.591

20771

\begin{align*} y^{\prime \prime }&=x^{2} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

1.343

20772

\begin{align*} y^{\prime \prime }&=\sec \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _quadrature]]

1.599

20837

\begin{align*} 20 y-9 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.218

20838

\begin{align*} y^{\prime \prime }-3 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.706

20839

\begin{align*} 8 y^{\prime \prime }+4 y^{\prime }+y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.608

20840

\begin{align*} x^{\prime \prime }-x^{\prime }-6 x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.243

20845

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.702

20846

\begin{align*} x^{\prime \prime }-3 x^{\prime }+2 x&=6 \,{\mathrm e}^{3 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.370

20847

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=10 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.323

20848

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=5+10 \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.691

20849

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=3 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.361

20850

\begin{align*} y^{\prime \prime }+5 y^{\prime }-6 y&=3 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.462

20851

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right )^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.003

20852

\begin{align*} y^{\prime \prime }+y^{\prime }&=3 x^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.008

20853

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{x}+1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.433

20854

\begin{align*} y^{\prime \prime }+y&=\tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.649

20855

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=6 x \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.491

20856

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{2 x}}{\left ({\mathrm e}^{x}+1\right )^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.872

20857

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=\cos \left ({\mathrm e}^{x}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.716

20871

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=20 \,{\mathrm e}^{-2 x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.668

20872

\begin{align*} y^{\prime \prime }+y&=2 \sin \left (3 x \right ) \\ y \left (0\right ) &= 5 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.772

20873

\begin{align*} y^{\prime \prime }+y&=1+2 \cos \left (x \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.838

20875

\begin{align*} x^{\prime \prime }+x&=5 t^{2} \\ x \left (0\right ) &= 4 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.687

20876

\begin{align*} x^{\prime \prime }+x&=2 \tan \left (t \right ) \\ x \left (0\right ) &= 4 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.270

20877

\begin{align*} y^{\prime \prime }-k^{2} y&=f \left (x \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.314

20878

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{-x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.516

20879

\begin{align*} y^{\prime \prime }-4 y&={\mathrm e}^{2 x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.603

20998

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&={\mathrm e}^{x} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.623

20999

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&={\mathrm e}^{x} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.732

21000

\begin{align*} u^{\prime \prime }+2 a u^{\prime }+\omega ^{2} u&=c \cos \left (\omega t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.920

21104

\begin{align*} x^{\prime \prime }+x&=0 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.362

21105

\begin{align*} x^{\prime \prime }+4 x&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

4.804

21108

\begin{align*} 2 x^{\prime \prime }+x^{\prime }-x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.244

21109

\begin{align*} x^{\prime \prime }+2 x^{\prime }+2 x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.430

21110

\begin{align*} x^{\prime \prime }+8 x^{\prime }+16 x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.312

21111

\begin{align*} x^{\prime \prime }+2 x^{\prime }-15 x&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.373

21112

\begin{align*} x^{\prime \prime }-3 x^{\prime }+2 x&=0 \\ x \left (1\right ) &= 0 \\ x^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.435

21113

\begin{align*} 4 x^{\prime }+2 x^{\prime \prime }&=-5 x \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.681

21114

\begin{align*} x^{\prime \prime }-6 x^{\prime }+9 x&=0 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.482

21115

\begin{align*} x^{\prime \prime }+x^{\prime }-\beta x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.542

21116

\begin{align*} x^{\prime \prime }+4 x^{\prime }+k x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.570

21117

\begin{align*} x^{\prime \prime }+b x^{\prime }+c x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.814

21118

\begin{align*} x^{\prime \prime }+5 x^{\prime }+6 x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.231

21119

\begin{align*} x^{\prime \prime }+p x^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.922

21120

\begin{align*} x^{\prime \prime }+x^{\prime }-2 x&=0 \\ x \left (0\right ) &= a \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.351

21121

\begin{align*} x^{\prime \prime }-2 x^{\prime }+2 x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.422

21122

\begin{align*} x^{\prime \prime }-2 a x^{\prime }+b x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.788

21123

\begin{align*} x^{\prime \prime }+\lambda ^{2} x&=0 \\ x \left (0\right ) &= 0 \\ x \left (\pi \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.337

21124

\begin{align*} x^{\prime \prime }+x&=0 \\ x \left (a \right ) &= 0 \\ x \left (b \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.115

21125

\begin{align*} x^{\prime \prime }-x&=0 \\ x \left (0\right ) &= 0 \\ x \left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.962

21126

\begin{align*} x^{\prime \prime }+x^{\prime }-2 x&=0 \\ x \left (0\right ) &= 0 \\ x \left (\infty \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.398

21127

\begin{align*} x^{\prime \prime }-2 x^{\prime }+5 x&=0 \\ x \left (0\right ) &= 0 \\ x \left (\frac {\pi }{4}\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.478

21128

\begin{align*} x^{\prime \prime }-2 x^{\prime }+5 x&=0 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (\theta \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.412

21130

\begin{align*} x^{\prime \prime }-4 x&=t \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.368

21131

\begin{align*} x^{\prime \prime }-4 x&=4 t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.382

21132

\begin{align*} x^{\prime \prime }+x&=t^{2}-2 t \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.556

21133

\begin{align*} x^{\prime \prime }+x&=3 t^{2}+t \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.548

21134

\begin{align*} x^{\prime \prime }-x&={\mathrm e}^{-3 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.386

21135

\begin{align*} x^{\prime \prime }-x&=3 \,{\mathrm e}^{2 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.385

21136

\begin{align*} x^{\prime \prime }-x&={\mathrm e}^{2 t} t \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.423

21137

\begin{align*} x^{\prime \prime }-3 x^{\prime }-x&=t^{2}+t \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.512

21138

\begin{align*} x^{\prime \prime }-4 x^{\prime }+13 x&=20 \,{\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.655

21139

\begin{align*} x^{\prime \prime }-x^{\prime }-2 x&=2 t +{\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.420

21140

\begin{align*} x^{\prime \prime }+4 x&=\cos \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.657

21141

\begin{align*} x^{\prime \prime }+x&=\sin \left (2 t \right )-\cos \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.008

21142

\begin{align*} x^{\prime \prime }+2 x^{\prime }+2 x&=\cos \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.618

21143

\begin{align*} x^{\prime \prime }+x&=t \sin \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.787

21144

\begin{align*} x^{\prime \prime }-x^{\prime }&=t \\ \end{align*}

[[_2nd_order, _missing_y]]

1.126

21145

\begin{align*} x^{\prime \prime }-x&={\mathrm e}^{k t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.406

21146

\begin{align*} x^{\prime \prime }-x^{\prime }-2 x&=3 \,{\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.402

21147

\begin{align*} x^{\prime \prime }-3 x^{\prime }+2 x&=3 \,{\mathrm e}^{t} t \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.434

21148

\begin{align*} x^{\prime \prime }-4 x^{\prime }+3 x&=2 \,{\mathrm e}^{t}-5 \,{\mathrm e}^{2 t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.562

21149

\begin{align*} x^{\prime \prime }+2 x&=\cos \left (t \sqrt {2}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.763

21150

\begin{align*} x^{\prime \prime }+4 x&=\sin \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.639

21151

\begin{align*} x^{\prime \prime }+x&=2 \sin \left (t \right )+2 \cos \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.813

21152

\begin{align*} x^{\prime \prime }+9 x&=\sin \left (t \right )+\sin \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.101

21153

\begin{align*} x^{\prime \prime }-x&=t \\ x \left (0\right ) &= 0 \\ x \left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.474

21154

\begin{align*} x^{\prime \prime }+4 x^{\prime }+x&=k \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.603

21155

\begin{align*} x^{\prime \prime }-2 x&=2 \,{\mathrm e}^{t} \\ x \left (0\right ) &= 0 \\ x \left (a \right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.664

21161

\begin{align*} x^{\prime \prime }+x^{\prime }+x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.531

21298

\begin{align*} x^{\prime \prime }+2 x^{\prime }-x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.303

21299

\begin{align*} x^{\prime \prime }+2 x^{\prime }+x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.340

21300

\begin{align*} x^{\prime \prime }+2 h x^{\prime }+k^{2} x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.864

21475

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.244

21477

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

4.929

21478

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.553

21479

\begin{align*} y^{\prime \prime }+b y^{\prime }+c y&=f \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.590

21480

\begin{align*} x^{\prime \prime }-4 x&=0 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 3 \\ \end{align*}

[[_2nd_order, _missing_x]]

4.438

21481

\begin{align*} y^{\prime \prime }-5 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.631

21482

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.251

21483

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.343

21484

\begin{align*} x^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _quadrature]]

1.289

21485

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.348

21486

\begin{align*} y^{\prime \prime }+2 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.609

21487

\begin{align*} y^{\prime \prime }-2 y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.294

21488

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.629

21489

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.789

21490

\begin{align*} 5 y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.562

21491

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.560

21492

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.416

21493

\begin{align*} y^{\prime \prime }-2 y^{\prime }-2 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.569

21494

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.542

21495

\begin{align*} y^{\prime \prime }-2 y^{\prime }+10 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.676

21496

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=0 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.420

21497

\begin{align*} y^{\prime \prime }+16 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.575

21498

\begin{align*} y^{\prime \prime }-6 y^{\prime }+25 y&=0 \\ y \left (0\right ) &= -3 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.726

21499

\begin{align*} y^{\prime \prime }-\frac {6 y^{\prime }}{5}+\frac {9 y}{25}&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.555

21514

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.465

21515

\begin{align*} y^{\prime \prime }&=9 x^{2}+2 x -1 \\ \end{align*}

[[_2nd_order, _quadrature]]

1.577

21516

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.541

21517

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&=x^{2}+2 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.454

21518

\begin{align*} 5 y+2 y^{\prime }+y^{\prime \prime }&=x^{3}+3 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.672

21519

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=2 x^{3}+5 x^{2}-7 x +2 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.468

21520

\begin{align*} y^{\prime \prime }+y&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.685

21521

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.440

21522

\begin{align*} 4 y+y^{\prime \prime }&=\sin \left (x \right )+\sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.160

21523

\begin{align*} y^{\prime \prime }-4 y^{\prime }+5 y&=2 \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.691

21524

\begin{align*} 5 y+2 y^{\prime }+y^{\prime \prime }&=3 \sin \left (x +\frac {\pi }{4}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.724

21525

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=2 x^{2}+{\mathrm e}^{x}+2 x \,{\mathrm e}^{x}+4 \,{\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.030

21526

\begin{align*} 5 y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.673

21527

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=3 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.457

21528

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\left (x^{2}-1\right ) {\mathrm e}^{2 x}+\left (3 x +4\right ) {\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.155

21529

\begin{align*} y^{\prime \prime }+y^{\prime }+8 y&=\left (10 x^{2}+21 x +9\right ) \sin \left (3 x \right )+x \cos \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.953

21530

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=2 \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.430

21531

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=2 x -40 \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.691

21532

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=2 \,{\mathrm e}^{x}-10 \sin \left (x \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.873

21539

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&=x^{2}+2 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.400

21540

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=\frac {1}{1+{\mathrm e}^{-x}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.449

21541

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.373

21542

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.837

21543

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.442

21544

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.729

21545

\begin{align*} 4 y+y^{\prime \prime }&=\sec \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.829

21546

\begin{align*} y^{\prime \prime }+y&=\csc \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.565

21547

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.630

21548

\begin{align*} y^{\prime \prime }+y&=\tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.598

21563

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.915

21566

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.273

21567

\begin{align*} y^{\prime \prime }&=\cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

1.504

21568

\begin{align*} y^{\prime \prime }+k^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

4.260

21571

\begin{align*} 2 y^{\prime \prime }+5 y^{\prime }-12 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.233

21572

\begin{align*} y^{\prime \prime }-y&=2 x +{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.418

21575

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=16 x^{3} {\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.701

21577

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x \,{\mathrm e}^{x}+7 x -2 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.599

21580

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.584

21581

\begin{align*} y^{\prime \prime }+y&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.560

21584

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{x} \cos \left (x \right ) x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.921

21585

\begin{align*} y^{\prime \prime }+4 y^{\prime }+3 y&={\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.398

21586

\begin{align*} y^{\prime \prime }-y&=x^{2}-x +1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.386

21588

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{2 x} \left (x +1\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.540

21591

\begin{align*} y^{\prime \prime }+y^{\prime }-12 y&={\mathrm e}^{x} x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.427

21618

\begin{align*} y^{\prime \prime }+2 b y^{\prime }+y&=k \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.242

21619

\begin{align*} m y^{\prime \prime }+a y^{\prime }+k y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.542

21620

\begin{align*} y^{\prime \prime }+\omega ^{2} y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= v \\ \end{align*}

[[_2nd_order, _missing_x]]

9.883

21621

\begin{align*} \theta ^{\prime \prime }+4 \theta &=15 \cos \left (3 t \right ) \\ \theta \left (0\right ) &= 0 \\ \theta ^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.105

21624

\begin{align*} y^{\prime \prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.889

21726

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.375

21727

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.342

21728

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 0 \\ y \left (\frac {\pi }{4}\right ) &= 7 \\ \end{align*}

[[_2nd_order, _missing_x]]

7.242

21729

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 4 \\ y \left (\pi \right ) &= 4 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.327

21730

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 0 \\ y \left (L \right ) &= 7 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.780

21792

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.678

21793

\begin{align*} y^{\prime \prime }+y^{\prime }&=6 y+5 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.539

21874

\begin{align*} y^{\prime \prime }-12 y^{\prime }+35 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.301

21875

\begin{align*} y^{\prime \prime }-2 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.158

21876

\begin{align*} 9 y^{\prime \prime }-30 y^{\prime }+25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.428

21877

\begin{align*} 3 y^{\prime \prime }-4 y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.646

21883

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y+8 \,{\mathrm e}^{-x}+3 x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.535

21884

\begin{align*} 4 y+y^{\prime \prime }&=2 \tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.735

21885

\begin{align*} y^{\prime \prime }-y^{\prime }&=6 x^{5} {\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.545

21886

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=x \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.631

21887

\begin{align*} 4 y+y^{\prime \prime }&=4 \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.716

21889

\begin{align*} y^{\prime \prime }+2 a y^{\prime }+a^{2} y&=x^{2} {\mathrm e}^{-a x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.745

21891

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{-x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.751

21921

\begin{align*} 4 y+y^{\prime \prime }&=x \sin \left (x \right ) \\ y \left (0\right ) &= {\frac {7}{9}} \\ y \left (\frac {\pi }{2}\right ) &= \frac {\pi }{6}-1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.186

21922

\begin{align*} y^{\prime \prime }+3 y&=0 \\ y \left (0\right ) &= -2 \\ y \left (1\right ) &= \left (1-3 \,{\mathrm e}^{3}\right ) {\mathrm e}^{-3} \\ \end{align*}

[[_2nd_order, _missing_x]]

26.830

21923

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y+8 \,{\mathrm e}^{-x}+3 x&=0 \\ y \left (0\right ) &= -{\frac {2}{3}} \\ y \left (1\right ) &= 2 \,{\mathrm e}^{-1}+\frac {1}{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.670

21931

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.437

21932

\begin{align*} k^{2} y^{\prime \prime }+2 k y^{\prime }+\left (k^{2}+1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.414

21933

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{-2 x}}{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.657

21934

\begin{align*} y^{\prime \prime }+y^{\prime }&=\sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.680

21935

\begin{align*} x^{\prime \prime }+2 x^{\prime }+2 x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.558

21938

\begin{align*} y^{\prime \prime }+4 y^{\prime }+13 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.550

21962

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.201

21963

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.258

21967

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.675

21968

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ y \left (\frac {\pi }{8}\right ) &= 0 \\ y \left (\frac {\pi }{6}\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.237

21970

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.695

21971

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.277

22079

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.847

22093

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.174

22094

\begin{align*} y^{\prime \prime }-7 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.685

22095

\begin{align*} y^{\prime \prime }-5 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.188

22096

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.259

22097

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.906

22098

\begin{align*} y^{\prime \prime }-3 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.294

22099

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.224

22100

\begin{align*} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.530

22101

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.533

22102

\begin{align*} y^{\prime \prime }-y^{\prime }-30 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.181

22103

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.215

22104

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.694

22105

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.201

22106

\begin{align*} y^{\prime \prime }-7 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.104

22107

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.226

22108

\begin{align*} 3 y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.274

22109

\begin{align*} y^{\prime \prime }-3 y^{\prime }-5 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.217

22110

\begin{align*} y^{\prime \prime }+y^{\prime }+\frac {y}{4}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.228

22129

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=4 x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.330

22130

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.286

22131

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=\sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.336

22133

\begin{align*} y^{\prime \prime }&=9 x^{2}+2 x -1 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.727

22138

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x^{2}-1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.353

22139

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=3 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.370

22140

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=4 \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.468

22141

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=3 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.376

22142

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.364

22148

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.436

22149

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.288

22152

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x^{5}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.441

22153

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.405

22154

\begin{align*} 4 y+y^{\prime \prime }&=\sin \left (2 x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.481

22158

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=4 x^{2} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.429

22159

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.661

22160

\begin{align*} y^{\prime \prime }+4 y^{\prime }+8 y&=\sin \left (x \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.563

22162

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{3 x} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.421

22163

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{3 x} \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.412

22164

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.268

22165

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{3 x} \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.430

22166

\begin{align*} y^{\prime \prime }+y&=x \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.448

22167

\begin{align*} 4 y+y^{\prime \prime }&=\sin \left (2 x \right )^{2} \\ y \left (\pi \right ) &= 0 \\ y^{\prime }\left (\pi \right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.532

22168

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (2\right ) &= 0 \\ y^{\prime }\left (2\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.608

22169

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=\sin \left (2 x \right )+\cos \left (2 x \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.542

22280

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.203

22281

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&=9 x \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (1\right ) &= 2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.383

22282

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y \left (\frac {\pi }{2}\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.586

22283

\begin{align*} y^{\prime \prime }+y&=x \\ y \left (0\right ) &= 0 \\ y \left (\frac {\pi }{2}\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.360

22284

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y \left (\frac {\pi }{2}\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.869

22285

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= -1 \\ y \left (\frac {\pi }{2}\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.658

22286

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (\frac {\pi }{2}\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.602

22289

\begin{align*} y^{\prime \prime }+y&=x \\ y \left (\frac {\pi }{2}\right ) &= \frac {\pi }{2} \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.292

22291

\begin{align*} y^{\prime \prime }-4 y^{\prime }-5 y&={\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.301

22294

\begin{align*} x^{\prime \prime }-3 x&=\sin \left (y \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.411

22298

\begin{align*} y^{\prime \prime }-3 y^{\prime }-10 y&=6 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.271

22299

\begin{align*} s^{\prime \prime }&=-9 s \\ s \left (0\right ) &= 9 \\ s^{\prime }\left (0\right ) &= 18 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.164

22306

\begin{align*} x^{\prime \prime }&=t^{2}-4 t +8 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= -3 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.869

22308

\begin{align*} y^{\prime \prime }&=12 x \left (4-x \right ) \\ y \left (0\right ) &= 7 \\ y \left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _quadrature]]

1.659

22310

\begin{align*} y^{\prime \prime }&=1-\cos \left (x \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _quadrature]]

1.086

22311

\begin{align*} y^{\prime \prime }&=\sqrt {2 x +1} \\ y \left (0\right ) &= 5 \\ y \left (4\right ) &= -3 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.837

22313

\begin{align*} y^{\prime \prime }+3 y^{\prime }-4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.182

22316

\begin{align*} y^{\prime \prime }+3 y^{\prime }-4 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.289

22327

\begin{align*} y^{\prime \prime }-y&=4 x \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.388

22331

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{-x^{2}} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.718

22334

\begin{align*} y^{\prime \prime }+\lambda y&=0 \\ y \left (0\right ) &= 0 \\ y \left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.078

22477

\begin{align*} y^{\prime \prime }&=2 x \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 10 \\ \end{align*}

[[_2nd_order, _quadrature]]

1.112

22481

\begin{align*} i^{\prime \prime }&=t^{2}+1 \\ i \left (0\right ) &= 2 \\ i^{\prime }\left (0\right ) &= 3 \\ \end{align*}

[[_2nd_order, _quadrature]]

1.106

22485

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.261

22487

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.067

22542

\begin{align*} y^{\prime \prime }&=y^{\prime }+2 x \\ \end{align*}

[[_2nd_order, _missing_y]]

1.082

22613

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=x^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.321

22615

\begin{align*} s^{\prime \prime }+b s^{\prime }+\omega ^{2} s&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.341

22617

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.272

22618

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.289

22621

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=x^{2} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.407

22623

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.255

22624

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&={\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.275

22626

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.296

22628

\begin{align*} y^{\prime \prime }+4 y^{\prime }-5 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.163

22629

\begin{align*} 4 y^{\prime \prime }-25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.926

22630

\begin{align*} y^{\prime \prime }-4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.754

22632

\begin{align*} i^{\prime \prime }-4 i^{\prime }+2 i&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.202

22634

\begin{align*} y^{\prime \prime }-y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -3 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.993

22635

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.270

22639

\begin{align*} y^{\prime \prime }-\left (m_{1} +m_{2} \right ) y^{\prime }+m_{1} m_{2} y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.392

22642

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.222

22643

\begin{align*} 16 y^{\prime \prime }-8 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.207

22644

\begin{align*} 4 i^{\prime \prime }-12 i^{\prime }+9 i&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.217

22648

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.349

22650

\begin{align*} s^{\prime \prime }+16 s^{\prime }+64 s&=0 \\ s \left (0\right ) &= 0 \\ s^{\prime }\left (0\right ) &= -4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.350

22654

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.968

22655

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.186

22656

\begin{align*} 4 y^{\prime \prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.767

22657

\begin{align*} 4 y^{\prime \prime }-8 y^{\prime }+7 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.252

22660

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.766

22661

\begin{align*} u^{\prime \prime }+16 u&=0 \\ u \left (0\right ) &= 0 \\ u^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.787

22662

\begin{align*} i^{\prime \prime }+2 i^{\prime }+5 i&=0 \\ i \left (0\right ) &= 2 \\ i^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.348

22668

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.231

22676

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.218

22677

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.161

22678

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.201

22681

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.156

22684

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.195

22686

\begin{align*} y^{\prime \prime }+y&=2 \,{\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.293

22687

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=4 \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.418

22688

\begin{align*} y^{\prime \prime }-4 y&=8 x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.252

22689

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x}+15 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.332

22690

\begin{align*} 4 i^{\prime \prime }+i&=t^{2}+2 \cos \left (4 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.535

22692

\begin{align*} y^{\prime \prime }+16 y&=5 \sin \left (x \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.542

22693

\begin{align*} s^{\prime \prime }-3 s^{\prime }+2 s&=8 t^{2}+12 \,{\mathrm e}^{-t} \\ s \left (0\right ) &= 0 \\ s^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.490

22694

\begin{align*} y^{\prime \prime }+y&=6 \cos \left (x \right )^{2} \\ y \left (0\right ) &= 0 \\ y \left (\frac {\pi }{2}\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.556

22695

\begin{align*} L q^{\prime \prime }+R q^{\prime }+\frac {q}{c}&=E_{0} \sin \left (\omega t \right ) \\ q \left (0\right ) &= 0 \\ q^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.479

22696

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=4 \sin \left (3 x \right )^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.602

22697

\begin{align*} y^{\prime \prime }+y&=\left \{\begin {array}{cc} x & 0\le x \le \pi \\ 0 & \pi <x \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.894

22698

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&=2 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.351

22699

\begin{align*} y^{\prime \prime }+y&=x^{2}+\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.414

22700

\begin{align*} y^{\prime \prime }+y^{\prime }&=x^{2}+3 x +{\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.830

22701

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.337

22702

\begin{align*} 4 y+y^{\prime \prime }&=8 \cos \left (2 x \right )-4 x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.420

22704

\begin{align*} i^{\prime \prime }+9 i&=12 \cos \left (3 t \right ) \\ i \left (0\right ) &= 4 \\ i^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.510

22705

\begin{align*} s^{\prime \prime }+s^{\prime }&=t +{\mathrm e}^{-t} \\ s \left (0\right ) &= 0 \\ s^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.008

22707

\begin{align*} y^{\prime \prime }+y&=x \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.388

22708

\begin{align*} y^{\prime \prime }+\omega ^{2} y&=A \cos \left (\lambda x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.505

22709

\begin{align*} 4 y+y^{\prime \prime }&=\sin \left (x \right )^{4} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.713

22710

\begin{align*} y^{\prime \prime }+y&=x \,{\mathrm e}^{-x}+3 \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.638

22711

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=\sin \left (2 x \right ) x +x^{3} {\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.687

22713

\begin{align*} y^{\prime \prime }-2 y^{\prime }-y&={\mathrm e}^{x} x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.333

22714

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{-x} \cos \left (x \right )+2 x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.591

22715

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=3 \,{\mathrm e}^{x}+2 \,{\mathrm e}^{-x}+x^{3} {\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.449

22716

\begin{align*} y^{\prime \prime }-y&=x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.369

22717

\begin{align*} 4 y+y^{\prime \prime }&=x^{2}+3 x \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.646

22718

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=\sin \left (3 x \right )+x \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.860

22719

\begin{align*} q^{\prime \prime }+q&=t \sin \left (t \right )+\cos \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.550

22722

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \left (1+\cos \left (2 x \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.389

22723

\begin{align*} 4 y+y^{\prime \prime }&=\cos \left (x \right ) \cos \left (2 x \right ) \cos \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.056

22725

\begin{align*} y^{\prime \prime }+y&=x^{2} \cos \left (5 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.636

22726

\begin{align*} y^{\prime \prime }+y&=\cot \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.419

22727

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.377

22728

\begin{align*} 4 y+y^{\prime \prime }&=\csc \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.570

22729

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.330

22730

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=3 \,{\mathrm e}^{-2 x}+x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.330

22731

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.437

22732

\begin{align*} 2 y^{\prime \prime }+3 y^{\prime }+y&={\mathrm e}^{-3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.288

22733

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{x} x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.367

22734

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{-x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.429

22735

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=\sqrt {x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.549

22739

\begin{align*} y^{\prime \prime }-y&=1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.219

22740

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.333

22741

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{x}-{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.434

22742

\begin{align*} y^{\prime \prime }-y&=2 x^{4}-3 x +1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.289

22743

\begin{align*} y^{\prime \prime }+y^{\prime }&=4 x^{3}-2 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.858

22744

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=x^{2} {\mathrm e}^{-x}+1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.471

22745

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 x} \sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.388

22747

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&={\mathrm e}^{4 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.249

22749

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=x^{3} {\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.300

22750

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=2 x^{2} {\mathrm e}^{-2 x}+3 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.445

22751

\begin{align*} y^{\prime \prime }+y&=x^{2} \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.448

22776

\begin{align*} y^{\prime \prime }+3 y&=x^{2}+1 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.459

22777

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.294

22778

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x}+{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.511

22780

\begin{align*} i^{\prime \prime }+2 i^{\prime }+5 i&=34 \cos \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.379

22782

\begin{align*} y^{\prime \prime }-4 y&=x \,{\mathrm e}^{2 x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.517

22786

\begin{align*} 4 y+y^{\prime \prime }&=x \left (\cos \left (x \right )+1\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.489

22787

\begin{align*} r^{\prime \prime }-2 r&=-{\mathrm e}^{-2 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.323

22789

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.628

22792

\begin{align*} 4 y^{\prime \prime }-4 y^{\prime }+y&=\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.507

22803

\begin{align*} y^{\prime \prime }+\lambda y&=0 \\ y \left (0\right ) &= 0 \\ y \left (\pi \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.015

22806

\begin{align*} Q^{\prime \prime }+k Q&=e \left (t \right ) \\ Q \left (0\right ) &= q_{0} \\ Q^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.823

22807

\begin{align*} y^{\prime \prime }&=f \left (x \right ) \\ y \left (0\right ) &= 0 \\ y \left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.766

22808

\begin{align*} y^{\prime \prime }+y&=f \left (x \right ) \\ y \left (0\right ) &= 0 \\ y \left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.823

22999

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.165

23000

\begin{align*} y^{\prime \prime }-5 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.177

23001

\begin{align*} y^{\prime \prime }-4 y&=0 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.864

23002

\begin{align*} y^{\prime \prime }+7 y^{\prime }-8 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.175

23003

\begin{align*} 3 x^{\prime \prime }+19 x^{\prime }-14 x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.187

23004

\begin{align*} 8 y^{\prime \prime }-10 y^{\prime }+3 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.299

23005

\begin{align*} y^{\prime \prime }-9 y^{\prime }+18 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.178

23006

\begin{align*} y^{\prime \prime }-2 y^{\prime }-63 y&=0 \\ y \left (0\right ) &= 5 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.285

23007

\begin{align*} 20 y^{\prime \prime }-3 y^{\prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.179

23008

\begin{align*} 35 y^{\prime \prime }-29 y^{\prime }+6 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.185

23009

\begin{align*} 3 y^{\prime \prime }+2 y^{\prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.209

23010

\begin{align*} 12 x^{\prime \prime }-25 x^{\prime }+12 x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.180

23011

\begin{align*} 38 x^{\prime \prime }+10 x^{\prime }-3 x&=0 \\ x \left (0\right ) &= 5 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.381

23012

\begin{align*} 2 y^{\prime \prime }-15 y^{\prime }+27 y&=0 \\ y \left (0\right ) &= 7 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.306

23013

\begin{align*} y^{\prime \prime }-3 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.272

23014

\begin{align*} y^{\prime \prime }-8 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.490

23015

\begin{align*} 4 y^{\prime \prime }-7 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.010

23016

\begin{align*} z^{\prime \prime }-3 z^{\prime }+z&=0 \\ z \left (0\right ) &= 1 \\ z^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.374

23017

\begin{align*} y^{\prime \prime }+8 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.214

23018

\begin{align*} x^{\prime \prime }+36 x&=0 \\ x \left (0\right ) &= 5 \\ x \left (\frac {\pi }{12}\right ) &= 7 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.852

23019

\begin{align*} y^{\prime \prime }+3 y&=0 \\ y \left (0\right ) &= 0 \\ y \left (\frac {\pi \sqrt {3}}{6}\right ) &= 4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.989

23020

\begin{align*} z^{\prime \prime }+g z&=0 \\ z \left (\frac {\pi }{3 \sqrt {g}}\right ) &= 5 \\ z \left (\frac {2 \pi }{3 \sqrt {g}}\right ) &= \frac {\pi }{3} \\ \end{align*}

[[_2nd_order, _missing_x]]

4.304

23021

\begin{align*} 9 y^{\prime \prime }+49 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.477

23022

\begin{align*} y^{\prime \prime }+3 y^{\prime }+3 y&=0 \\ y \left (0\right ) &= 1 \\ y \left (\frac {\pi \sqrt {3}}{3}\right ) &= 5 \,{\mathrm e}^{-\frac {\pi \sqrt {3}}{2}} \\ \end{align*}

[[_2nd_order, _missing_x]]

0.398

23023

\begin{align*} x^{\prime \prime }+2 x^{\prime }+4 x&=0 \\ x \left (0\right ) &= 5 \\ x \left (\frac {\pi \sqrt {3}}{6}\right ) &= 2 \,{\mathrm e}^{-\frac {\pi \sqrt {3}}{6}} \\ \end{align*}

[[_2nd_order, _missing_x]]

0.396

23024

\begin{align*} z^{\prime \prime }-7 z^{\prime }-13 z&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.262

23025

\begin{align*} y^{\prime \prime }-3 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.267

23026

\begin{align*} y^{\prime \prime }-5 y^{\prime }+8 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.241

23027

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.190

23028

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.219

23029

\begin{align*} x^{\prime \prime }-2 x^{\prime }+x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.215

23030

\begin{align*} z^{\prime \prime }+6 z^{\prime }+9 z&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.226

23031

\begin{align*} z^{\prime \prime }+8 z^{\prime }+16 z&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.220

23032

\begin{align*} y^{\prime \prime }-9 y&=5 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.215

23033

\begin{align*} y^{\prime \prime }-3 y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.296

23034

\begin{align*} x^{\prime \prime }-3 x^{\prime }-4 x&=3 \cos \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.350

23035

\begin{align*} z^{\prime \prime }-3 z^{\prime }+2 z&=4 \sin \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.344

23036

\begin{align*} x^{\prime \prime }-6 x^{\prime }-7 x&=4 z -7 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.304

23037

\begin{align*} y^{\prime \prime }+3 y^{\prime }+5 y&=4 \,{\mathrm e}^{3 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.410

23038

\begin{align*} x^{\prime \prime }-2 x^{\prime }+5 x&=3 \cos \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.380

23039

\begin{align*} y^{\prime \prime }+5 y^{\prime }+8 y&=4 \sin \left (5 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.432

23040

\begin{align*} x^{\prime \prime }+9 x^{\prime }+8 x&=\sin \left (5 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.360

23041

\begin{align*} x^{\prime \prime }-9 x^{\prime }-10 x&=\cos \left (4 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.362

23042

\begin{align*} y^{\prime \prime }-9 y^{\prime }+14 y&={\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.338

23043

\begin{align*} z^{\prime \prime }-4 z&=\sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.387

23044

\begin{align*} y^{\prime \prime }+2 y^{\prime }-15 y&={\mathrm e}^{4 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.289

23050

\begin{align*} x^{\prime \prime }+3 x^{\prime }&={\mathrm e}^{-3 t} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.782

23051

\begin{align*} y^{\prime \prime }-4 y^{\prime }&=7 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.813

23052

\begin{align*} z^{\prime \prime }+2 z^{\prime }&=3 \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

0.927

23053

\begin{align*} s^{\prime \prime }&=5 t^{2}-7 t \\ s \left (0\right ) &= 0 \\ s \left (1\right ) &= {\frac {1}{4}} \\ \end{align*}

[[_2nd_order, _quadrature]]

0.738

23054

\begin{align*} s^{\prime \prime }&=-9 s \\ s \left (0\right ) &= 9 \\ s^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

5.756

23065

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.288

23066

\begin{align*} y^{\prime \prime }-y&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.342

23067

\begin{align*} y^{\prime \prime }-5 y^{\prime }+4 y&=x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.294

23068

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.344

23069

\begin{align*} y^{\prime \prime }-11 y^{\prime }+30 y&={\mathrm e}^{5 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.308

23070

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.391

23071

\begin{align*} 2 y^{\prime \prime }-3 y^{\prime }-5 y&=2 \sin \left (2 x \right )+3 \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.374

23072

\begin{align*} y^{\prime \prime }-7 y^{\prime }+2 y&={\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.335

23073

\begin{align*} 2 y^{\prime \prime }-4 y^{\prime }-y&=7 \,{\mathrm e}^{5 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.355

23074

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.392

23075

\begin{align*} y^{\prime \prime }+2 y&=7 \cos \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.409

23076

\begin{align*} y^{\prime \prime }-2 y^{\prime }-y&=2 \cos \left (3 x \right )-3 \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.564

23077

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=5 x^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.378

23078

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=2 x^{3}+7 x^{2}-x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.386

23079

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=5 \sin \left (x \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.487

23080

\begin{align*} x^{\prime \prime }-3 x^{\prime }+2 x&=5 \cos \left (t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.486

23082

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=x \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.407

23083

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=8 \sin \left (2 x \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.633

23084

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=1+x^{2}+{\mathrm e}^{-2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.346

23085

\begin{align*} y^{\prime \prime }-4 y^{\prime }+13 y&={\mathrm e}^{2 x} \sin \left (3 x \right ) \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= -{\frac {25}{6}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.592

23086

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=x^{2} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.510

23087

\begin{align*} y^{\prime \prime }-4 y&=12 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.171

23088

\begin{align*} x^{\prime \prime }+4 x&=\sin \left (2 t \right )+2 t \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.575

23089

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.397

23090

\begin{align*} 16 y+8 y^{\prime }+y^{\prime \prime }&=x \left (12-{\mathrm e}^{-4 x}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.445

23091

\begin{align*} y^{\prime \prime }-2 y^{\prime }+4 y&={\mathrm e}^{x} \cos \left (x \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.512

23097

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.666

23098

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.643

23099

\begin{align*} y^{\prime \prime }-4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.610

23100

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.843

23108

\begin{align*} m s^{\prime \prime }&=\frac {g \,t^{2}}{2} \\ \end{align*}

[[_2nd_order, _quadrature]]

0.865

23110

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.216

23111

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.303

23116

\begin{align*} y^{\prime \prime }+y&=\cos \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.402

23226

\begin{align*} y^{\prime \prime }+y^{\prime }&=3 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.955

23229

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.847

23233

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.018

23253

\begin{align*} y^{\prime \prime }+5 y^{\prime }-6 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.183

23261

\begin{align*} y^{\prime \prime }&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

0.816

23262

\begin{align*} y^{\prime \prime }&=3 x \\ \end{align*}

[[_2nd_order, _quadrature]]

0.780

23266

\begin{align*} y^{\prime \prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.511

23267

\begin{align*} y^{\prime \prime }-4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.927

23268

\begin{align*} y^{\prime \prime }+a^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.293

23270

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.171

23271

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.237

23272

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.245

23273

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.702

23276

\begin{align*} 2 y^{\prime \prime }-3 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.185

23280

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.946

23281

\begin{align*} y^{\prime \prime }-7 y^{\prime }+6 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.192

23283

\begin{align*} 3 y^{\prime \prime }+48 y^{\prime }+192 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.231

23293

\begin{align*} 3 y^{\prime \prime }+y^{\prime }-2 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.318

23301

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.665

23302

\begin{align*} y^{\prime \prime }+a^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.933

23306

\begin{align*} y^{\prime \prime }-y^{\prime }+6 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.292

23313

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.176

23314

\begin{align*} 2 y^{\prime \prime }+3 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.218

23315

\begin{align*} 2 y^{\prime \prime }+3 y^{\prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.183

23316

\begin{align*} y^{\prime \prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.295

23317

\begin{align*} 3 y^{\prime \prime }-5 y^{\prime }+3 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.287

23318

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.250

23319

\begin{align*} 2 y^{\prime \prime }-4 y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.210

23320

\begin{align*} 4 y^{\prime \prime }-3 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.291

23321

\begin{align*} y^{\prime \prime }+3 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.280

23322

\begin{align*} 2 y^{\prime \prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.983

23323

\begin{align*} y^{\prime \prime }+16 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.089

23324

\begin{align*} 2 y^{\prime \prime }+14 y^{\prime }+25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.239

23325

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.197

23326

\begin{align*} y^{\prime \prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.963

23327

\begin{align*} 4 y^{\prime \prime }-8 y^{\prime }+5 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.221

23328

\begin{align*} 2 y^{\prime \prime }-6 y^{\prime }+5 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.237

23329

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.856

23330

\begin{align*} 2 y^{\prime \prime }-6 y^{\prime }+5 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.192

23331

\begin{align*} y^{\prime \prime }+25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.765

23333

\begin{align*} 2 y^{\prime \prime }+3 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.177

23334

\begin{align*} 8 y^{\prime \prime }-6 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.180

23335

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.238

23336

\begin{align*} 9 y^{\prime \prime }-6 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.246

23337

\begin{align*} y^{\prime \prime }+6 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.940

23338

\begin{align*} y^{\prime \prime }-9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.997

23343

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.373

23344

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= \sqrt {3} \\ \end{align*}

[[_2nd_order, _missing_x]]

0.404

23345

\begin{align*} y^{\prime \prime }-i y^{\prime }+12 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.215

23346

\begin{align*} y^{\prime \prime }+3 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= -6 \sqrt {3} \\ \end{align*}

[[_2nd_order, _missing_x]]

2.201

23347

\begin{align*} y^{\prime \prime }-4 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.773

23351

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ y \left (\frac {\pi }{4}\right ) &= 1 \\ y^{\prime }\left (\frac {\pi }{4}\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.959

23353

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (-1\right ) &= {\mathrm e} \\ \end{align*}

[[_2nd_order, _missing_x]]

0.270

23355

\begin{align*} y^{\prime \prime }+6 y^{\prime }+12 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.310

23356

\begin{align*} y^{\prime \prime }+20 y^{\prime }+64 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.191

23357

\begin{align*} y^{\prime \prime }+9 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.226

23358

\begin{align*} 5 y^{\prime \prime }+10 y^{\prime }+20 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.248

23359

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.243

23360

\begin{align*} 6 y^{\prime \prime }+4 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.300

23361

\begin{align*} y^{\prime \prime }+5 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.228

23362

\begin{align*} y^{\prime \prime }+8 y^{\prime }+16 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.233

23363

\begin{align*} 4 y^{\prime \prime }+8 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.226

23364

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.210

23366

\begin{align*} y^{\prime \prime }-2 r y^{\prime }+\left (r^{2}-\frac {\alpha ^{2}}{4}\right ) y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.387

23367

\begin{align*} y^{\prime \prime }-2 \left (r +\beta \right ) y^{\prime }+r^{2} y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.731

23454

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=x^{2}+3 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.344

23455

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&={\mathrm e}^{x}+{\mathrm e}^{-2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.498

23456

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.363

23457

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.364

23458

\begin{align*} y^{\prime \prime }+9 y&=\cos \left (3 x \right )-\sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.522

23460

\begin{align*} y^{\prime \prime }-13 y^{\prime }+36 y&={\mathrm e}^{4 x} x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.389

23462

\begin{align*} y^{\prime \prime }-10 y^{\prime }+25 y&=x^{2} {\mathrm e}^{5 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.451

23467

\begin{align*} y^{\prime \prime }+y^{\prime }&={\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.865

23470

\begin{align*} y^{\prime \prime }+5 y^{\prime }&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.165

23471

\begin{align*} y^{\prime \prime }+y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.295

23473

\begin{align*} y^{\prime \prime }-3 y&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.424

23475

\begin{align*} y^{\prime \prime }+2 y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.391

23476

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.358

23477

\begin{align*} y^{\prime \prime }+y&=x +2 \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.364

23478

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{x}+\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.594

23479

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.409

23482

\begin{align*} y^{\prime \prime }-y&=x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.401

23483

\begin{align*} y^{\prime \prime }+y&=x +{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.349

23484

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{x}+\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.479

23485

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.402

23488

\begin{align*} y^{\prime \prime }-y&=x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.390

23490

\begin{align*} 4 y+y^{\prime \prime }&=4 x^{3}-8 x^{2}-14 x +7 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.364

23492

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{x} \left (x +1\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.361

23493

\begin{align*} y^{\prime \prime }-y&=x \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.467

23494

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.383

23495

\begin{align*} 2 y^{\prime \prime }+y^{\prime }-y&={\mathrm e}^{x} \left (x^{2}-1\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.385

23496

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.428

23497

\begin{align*} y^{\prime \prime }+y&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.374

23498

\begin{align*} 4 y+y^{\prime \prime }&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.392

23499

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=2 x \,{\mathrm e}^{-x}+x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.412

23500

\begin{align*} y^{\prime \prime }-y&=4 \cosh \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.519

23501

\begin{align*} y^{\prime \prime }&=3 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.602

23504

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.297

23505

\begin{align*} y^{\prime \prime }-7 y^{\prime }-8 y&={\mathrm e}^{x} \left (x^{2}+2\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.282

23506

\begin{align*} y^{\prime \prime }-5 y^{\prime }+4 y&={\mathrm e}^{2 x} \cos \left (x \right )+{\mathrm e}^{2 x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.287

23507

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&={\mathrm e}^{2 x} \left (x +3\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.274

23508

\begin{align*} y^{\prime \prime }+y&=x +2 \,{\mathrm e}^{-x} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.656

23509

\begin{align*} y^{\prime \prime }-y&=x \,{\mathrm e}^{x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.402

23510

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.475

23512

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.262

23513

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.266

23514

\begin{align*} y^{\prime \prime }+y&=\frac {1}{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.341

23515

\begin{align*} y^{\prime \prime }+y&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.352

23516

\begin{align*} y^{\prime \prime }-3 y&=x \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.546

23517

\begin{align*} 4 y^{\prime \prime }+7 y^{\prime }+3 y&=5 \cos \left (t \right ) \\ y \left (0\right ) &= -3 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.450

23524

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{a x} \\ y \left (0\right ) &= y_{0} \\ y^{\prime }\left (0\right ) &= y_{1} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.429

23525

\begin{align*} y^{\prime \prime }+y&=\sin \left (a x \right ) \\ y \left (0\right ) &= y_{0} \\ y^{\prime }\left (0\right ) &= y_{1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.419

23526

\begin{align*} y^{\prime \prime }+y&=\tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.391

23527

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.358

23528

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.393

23529

\begin{align*} y^{\prime \prime }+10 y^{\prime }+25 y&=\frac {{\mathrm e}^{-5 x} \ln \left (x \right )}{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.573

23530

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{-3 x}}{x^{3}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.527

23531

\begin{align*} y^{\prime \prime }+y&=\csc \left (x \right ) \cot \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.467

23532

\begin{align*} y^{\prime \prime }-12 y^{\prime }+36 y&={\mathrm e}^{6 x} \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.555

23533

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-2 x} \sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.437

23534

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right )^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.415

23535

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=\frac {{\mathrm e}^{2 x}}{x^{4}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.524

23536

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{-x} \ln \left (x \right )}{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.548

23537

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{2 x}}{\left ({\mathrm e}^{x}+1\right )^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.453

23543

\begin{align*} y^{\prime \prime }+y&=\csc \left (x \right ) \\ y \left (\frac {\pi }{2}\right ) &= 0 \\ y^{\prime }\left (\frac {\pi }{2}\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.708

23544

\begin{align*} y^{\prime \prime }+y&=\tan \left (x \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.672

23545

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x} \\ y \left (1\right ) &= {\mathrm e} \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.675

23546

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{-3 x}}{x^{3}} \\ y \left (1\right ) &= 4 \,{\mathrm e}^{-3} \\ y^{\prime }\left (1\right ) &= -2 \,{\mathrm e}^{-3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.743

23547

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right )^{3} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.595

23548

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=\frac {{\mathrm e}^{2 x}}{x^{4}} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= {\mathrm e}^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.705

23549

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{2 x}}{\left ({\mathrm e}^{x}+1\right )^{2}} \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= {\frac {5}{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.755

23554

\begin{align*} x^{\prime \prime }+2 x^{\prime }+x&=-\frac {{\mathrm e}^{-t}}{\left (t +1\right )^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.524

23753

\begin{align*} y^{\prime \prime }+9 y&=0 \\ y \left (0\right ) &= 1 \\ y \left (\pi \right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.939

23755

\begin{align*} y^{\prime \prime }+9 y&=0 \\ y \left (0\right ) &= 1 \\ y \left (\frac {\pi }{2}\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.584

23756

\begin{align*} y^{\prime \prime }+9 y&=0 \\ y \left (0\right ) &= 1 \\ y \left (\pi \right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.482

23758

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\ y \left (0\right ) &= 0 \\ y \left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.356

23759

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.181

23760

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.157

23763

\begin{align*} -\frac {u^{\prime \prime }}{2}&=x \\ u \left (0\right ) &= 0 \\ u \left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.800

23764

\begin{align*} -\frac {u^{\prime \prime }}{2}&=x \\ u \left (0\right ) &= 0 \\ u \left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.778

23848

\begin{align*} y^{\prime \prime }+y&=2 x -1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.272

23928

\begin{align*} 6 y^{\prime \prime }+11 y^{\prime }+4 y&=2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.258

23929

\begin{align*} 3 y^{\prime \prime }-4 y^{\prime }+y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.349

23930

\begin{align*} y^{\prime \prime }-k^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.044

23931

\begin{align*} y^{\prime \prime }+k^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.764

23973

\begin{align*} y^{\prime \prime }-5 y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.212

23974

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.236

23975

\begin{align*} y^{\prime \prime }-2 y^{\prime }-4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.208

23976

\begin{align*} y^{\prime \prime }-y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.055

23977

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.752

23978

\begin{align*} y^{\prime \prime }+y^{\prime }-y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.352

23979

\begin{align*} y^{\prime \prime }+k y^{\prime }+L y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.366

23980

\begin{align*} y^{\prime \prime }+\frac {327 y^{\prime }}{100}-\frac {21 y}{50}&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.230

23981

\begin{align*} y^{\prime \prime }+5 y^{\prime }-6 y&=x^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.303

23982

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=x^{2}-2 x +1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.358

23983

\begin{align*} 4 y+y^{\prime \prime }&=1-x \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.513

23984

\begin{align*} y^{\prime \prime }+y^{\prime }&=4 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.614

23985

\begin{align*} y^{\prime \prime }+y^{\prime }+y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.379

23986

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=2 \,{\mathrm e}^{x} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.352

23987

\begin{align*} y^{\prime \prime }-9 y&={\mathrm e}^{x}+3 \,{\mathrm e}^{-3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.379

23988

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=1+2 x +3 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.403

23989

\begin{align*} y^{\prime \prime }-\left (m_{1} +m_{2} \right ) y^{\prime }+m_{1} m_{2} y&={\mathrm e}^{m x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.451

23993

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&={\mathrm e}^{-2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.298

23995

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=x +{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.389

24004

\begin{align*} y^{\prime \prime }-y&=4 \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.297

24005

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.234

24006

\begin{align*} y^{\prime \prime }+y&=\csc \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.349

24007

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=\frac {{\mathrm e}^{2 x}}{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.292

24013

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{3 x} \sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.466

24016

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x} \ln \left (x \right )}{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.306

24019

\begin{align*} y^{\prime \prime }-4 y^{\prime }+5 y&={\mathrm e}^{2 x} \sec \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.392

24021

\begin{align*} y^{\prime \prime }+y&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.350

24022

\begin{align*} y^{\prime \prime }+y&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.399

24025

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.323

24029

\begin{align*} y^{\prime \prime }+2 y^{\prime }-2 y&=x^{2}+4 x +3 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.341

24030

\begin{align*} y^{\prime \prime }+3 y&=-x^{6}+x^{4} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.495

24031

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&=x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.284

24033

\begin{align*} y^{\prime \prime }-6 y^{\prime }+8 y&={\mathrm e}^{x} x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.323

24060

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.369

24062

\begin{align*} y^{\prime \prime }+y^{\prime }&=x +{\mathrm e}^{-x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.928

24063

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=1+\ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.272

24067

\begin{align*} y^{\prime \prime }+3 y^{\prime }-4 y&=12 \,{\mathrm e}^{2 x} \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.416

24068

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{2 x}}{\left ({\mathrm e}^{x}+1\right )^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.452

24070

\begin{align*} y^{\prime \prime }+i y&=\cosh \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.702

24071

\begin{align*} 4 y+y^{\prime \prime }&=x -4 \\ y \left (0\right ) &= {\frac {1}{2}} \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.489

24072

\begin{align*} y^{\prime \prime }-4 y^{\prime }-5 y&=x^{2} {\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.329

24073

\begin{align*} y^{\prime \prime }-y^{\prime }-y&=\sinh \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.647

24075

\begin{align*} y^{\prime \prime }+y&=\cot \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.401

24410

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.182

24411

\begin{align*} y^{\prime \prime }+3 y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.091

24412

\begin{align*} y^{\prime \prime }-y^{\prime }-6 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.175

24413

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.170

24430

\begin{align*} y^{\prime \prime }-4 a y^{\prime }+3 a^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.301

24431

\begin{align*} y^{\prime \prime }-\left (a +b \right ) y^{\prime }+a b y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.433

24432

\begin{align*} y^{\prime \prime }-2 y^{\prime }+3 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= -4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.545

24433

\begin{align*} y^{\prime \prime }-y^{\prime }-6 y&=0 \\ y \left (0\right ) &= 0 \\ y \left (1\right ) &= {\mathrm e}^{3} \\ \end{align*}

[[_2nd_order, _missing_x]]

0.363

24434

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=0 \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.353

24436

\begin{align*} y^{\prime \prime }-y^{\prime }-6 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.338

24437

\begin{align*} y^{\prime \prime }+3 y^{\prime }-10 y&=0 \\ y \left (0\right ) &= 0 \\ y \left (2\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.334

24439

\begin{align*} 4 y^{\prime \prime }-4 y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.249

24440

\begin{align*} 9 y+6 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.236

24459

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.372

24460

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 2 \\ y \left (2\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.321

24465

\begin{align*} 4 y^{\prime \prime }-4 y^{\prime }+y&=0 \\ y \left (0\right ) &= -2 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.373

24468

\begin{align*} y^{\prime \prime }+a^{2} y-2 a y^{\prime }+b^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.828

24469

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.303

24470

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.258

24471

\begin{align*} y^{\prime \prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.976

24472

\begin{align*} y^{\prime \prime }-9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.102

24473

\begin{align*} y^{\prime \prime }+6 y^{\prime }+13 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.288

24474

\begin{align*} y^{\prime \prime }-4 y^{\prime }+7 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.353

24476

\begin{align*} y^{\prime \prime }-y&=0 \\ y \left (0\right ) &= y_{0} \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.886

24477

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= y_{0} \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.549

24486

\begin{align*} x^{\prime \prime }+k^{2} x&=0 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= v_{0} \\ \end{align*}

[[_2nd_order, _missing_x]]

2.243

24488

\begin{align*} x^{\prime \prime }+2 b x^{\prime }+k^{2} x&=0 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= v_{0} \\ \end{align*}

[[_2nd_order, _missing_x]]

0.731

24501

\begin{align*} y^{\prime \prime }-y^{\prime }-6 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.414

24512

\begin{align*} 5 y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.217

24519

\begin{align*} y^{\prime \prime }+y&=1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.767

24520

\begin{align*} 4 y+y^{\prime \prime }&=8 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.613

24522

\begin{align*} y^{\prime \prime }+4 y^{\prime }-5 y&=20 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.196

24535

\begin{align*} y^{\prime \prime }+y^{\prime }&=-\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

0.793

24536

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.270

24537

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=27 x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.234

24538

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=-6 x^{2}-8 x +4 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.232

24539

\begin{align*} 4 y+y^{\prime \prime }&=15 \,{\mathrm e}^{x}-8 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.268

24540

\begin{align*} 4 y+y^{\prime \prime }&=15 \,{\mathrm e}^{x}-8 x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.279

24541

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=12 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.233

24542

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=12 \,{\mathrm e}^{-2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.249

24543

\begin{align*} y^{\prime \prime }-4 y&=2+{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.309

24544

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=6 x +6 \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.270

24545

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=20 \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.246

24546

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=2 \cos \left (x \right )+4 \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.251

24547

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=7+75 \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.401

24548

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&=50 x +13 \,{\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.292

24549

\begin{align*} y^{\prime \prime }+y&=\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.283

24550

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.286

24551

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{-x} \left (2 \sin \left (x \right )+4 \cos \left (x \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.620

24552

\begin{align*} y^{\prime \prime }-y&=8 x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.313

24558

\begin{align*} y^{\prime \prime }-y&=10 \sin \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.351

24559

\begin{align*} y^{\prime \prime }+y&=12 \cos \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.326

24560

\begin{align*} 4 y+y^{\prime \prime }&=4 \sin \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.332

24561

\begin{align*} y^{\prime \prime }+y&=10 \,{\mathrm e}^{2 x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.346

24562

\begin{align*} y^{\prime \prime }-4 y&=2-8 x \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.300

24563

\begin{align*} y^{\prime \prime }+3 y^{\prime }&=-18 x \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.908

24564

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&=10 \,{\mathrm e}^{-3 x} \\ y \left (0\right ) &= 4 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.384

24565

\begin{align*} x^{\prime \prime }+4 x^{\prime }+5 x&=10 \\ x \left (0\right ) &= 4 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.355

24566

\begin{align*} x^{\prime \prime }+4 x^{\prime }+5 x&=8 \sin \left (t \right ) \\ x \left (0\right ) &= 4 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.358

24567

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=x \\ y \left (0\right ) &= -3 \\ y \left (1\right ) &= -1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.317

24568

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=x \\ y \left (0\right ) &= -2 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.355

24569

\begin{align*} 4 y^{\prime \prime }+y&=2 \\ y \left (\pi \right ) &= 0 \\ y^{\prime }\left (\pi \right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.617

24570

\begin{align*} 2 y^{\prime \prime }-5 y^{\prime }-3 y&=-9 x^{2}-1 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.331

24571

\begin{align*} y^{\prime \prime }+y^{\prime }&=x +1 \\ y \left (0\right ) &= 1 \\ y \left (1\right ) &= {\frac {1}{2}} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.665

24573

\begin{align*} y^{\prime \prime }+y&=2 \cos \left (x \right ) \\ y \left (0\right ) &= 0 \\ y \left (\pi \right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.297

24575

\begin{align*} y^{\prime \prime }+y^{\prime }&=-2 x +2 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.659

24576

\begin{align*} y^{\prime \prime }+9 y&=\sin \left (3 x \right ) \\ y \left (0\right ) &= 1 \\ y \left (\frac {\pi }{2}\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.379

24577

\begin{align*} y^{\prime \prime }+a^{2} y&=\sin \left (b x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.350

24579

\begin{align*} y^{\prime \prime }+9 y&=4 \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.273

24580

\begin{align*} y^{\prime \prime }+9 y&=15 \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.264

24581

\begin{align*} y^{\prime \prime }+9 y&=18 x -3+20 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.266

24582

\begin{align*} y^{\prime \prime }-y^{\prime }&=42 \,{\mathrm e}^{4 x} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.725

24583

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&={\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.213

24584

\begin{align*} y^{\prime \prime }+6 y^{\prime }+14 y&=42 \,{\mathrm e}^{x}-7 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.329

24585

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.216

24586

\begin{align*} y^{\prime \prime }+y&=4 x +1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.203

24587

\begin{align*} y^{\prime \prime }+y&=\sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.254

24588

\begin{align*} y^{\prime \prime }+y&=\cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.251

24589

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{x}-x +\sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.397

24590

\begin{align*} y^{\prime \prime }-y&=2 x -3 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.204

24591

\begin{align*} y^{\prime \prime }-y&=x +\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.295

24592

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.212

24593

\begin{align*} y^{\prime \prime }-y&=16 \,{\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.224

24594

\begin{align*} y^{\prime \prime }-y&=\cos \left (4 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.291

24595

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=6 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.309

24596

\begin{align*} y^{\prime \prime }+y^{\prime }+y&={\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.236

24597

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=4-{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.252

24598

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.256

24599

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.250

24600

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.255

24601

\begin{align*} 4 y^{\prime \prime }-y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.208

24602

\begin{align*} 4 y^{\prime \prime }-y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.202

24603

\begin{align*} 4 y^{\prime \prime }-y&=x +{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.227

24604

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.268

24605

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.269

24606

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=7+{\mathrm e}^{x}+{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.308

24613

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.272

24614

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.263

24615

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=12 \,{\mathrm e}^{-2 x} x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.309

24616

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=3 x \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.302

24623

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=18 x \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.251

24624

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=36 x \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.306

24625

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=20-3 x \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.329

24626

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=4-8 x +6 x \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.341

24627

\begin{align*} y^{\prime \prime }-9 y&=18 x -162 x \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.288

24628

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=4 x -6 \,{\mathrm e}^{-2 x}+3 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.364

24629

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-x}+3 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.303

24630

\begin{align*} y^{\prime \prime }-4 y&=16 \,{\mathrm e}^{-2 x} x +8 x +4 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.298

24631

\begin{align*} y^{\prime \prime }-4 y&=8 x \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.308

24632

\begin{align*} y^{\prime \prime }-9 y&=-72 x \,{\mathrm e}^{-3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.264

24635

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=48 \,{\mathrm e}^{-x} \cos \left (4 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.356

24636

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=18 \,{\mathrm e}^{-2 x} \cos \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.349

24637

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \sec \left (x \right )^{2} \tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.506

24638

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=-\frac {{\mathrm e}^{-2 x}}{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.462

24639

\begin{align*} y^{\prime \prime }-2 a y^{\prime }+a^{2} y&={\mathrm e}^{a x}+f^{\prime \prime }\left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.671

24640

\begin{align*} y^{\prime \prime }+7 y^{\prime }+12 y&={\mathrm e}^{-3 x} \sec \left (x \right )^{2} \left (1+2 \tan \left (x \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.475

24641

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.200

24642

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.256

24643

\begin{align*} y^{\prime \prime }+y&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.272

24644

\begin{align*} 4 y+y^{\prime \prime }&=\cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.276

24645

\begin{align*} y^{\prime \prime }+9 y&={\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.232

24646

\begin{align*} 4 y+y^{\prime \prime }&={\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.226

24647

\begin{align*} 4 y^{\prime \prime }+y&={\mathrm e}^{-2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.235

24648

\begin{align*} y^{\prime \prime }-2 y^{\prime }&={\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.671

24651

\begin{align*} 4 y+y^{\prime \prime }&=\cos \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.271

24652

\begin{align*} y^{\prime \prime }+9 y&=\cos \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.277

24653

\begin{align*} 4 y+y^{\prime \prime }&=\sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.269

24654

\begin{align*} y^{\prime \prime }+36 y&=\sin \left (6 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.314

24655

\begin{align*} y^{\prime \prime }+9 y&=\sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.245

24656

\begin{align*} y^{\prime \prime }+36 y&=\cos \left (6 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.289

24657

\begin{align*} y^{\prime \prime }+3 y^{\prime }-4 y&=12 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.234

24658

\begin{align*} y^{\prime \prime }+3 y^{\prime }-4 y&=21 \,{\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.231

24659

\begin{align*} y^{\prime \prime }+3 y^{\prime }-4 y&=15 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.291

24660

\begin{align*} y^{\prime \prime }+3 y^{\prime }-4 y&=20 \,{\mathrm e}^{-4 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.241

24661

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x}+{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.297

24662

\begin{align*} 4 y^{\prime \prime }-y&={\mathrm e}^{\frac {x}{2}}+12 \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.271

24665

\begin{align*} y^{\prime \prime }+16 y&=14 \cos \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.290

24666

\begin{align*} 4 y^{\prime \prime }+y&=33 \sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.283

24667

\begin{align*} y^{\prime \prime }+16 y&=24 \sin \left (4 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.294

24668

\begin{align*} y^{\prime \prime }+16 y&=48 \cos \left (4 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.289

24669

\begin{align*} y^{\prime \prime }+y&=12 \cos \left (2 x \right )-\sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.440

24670

\begin{align*} y^{\prime \prime }+y&=\sin \left (3 x \right )+4 \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.486

24671

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&={\mathrm e}^{x} \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.299

24672

\begin{align*} 5 y+2 y^{\prime }+y^{\prime \prime }&=\sin \left (2 x \right ) {\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.289

24673

\begin{align*} y^{\prime \prime }-y&=x^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.218

24674

\begin{align*} y^{\prime \prime }-y&=x^{4} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.227

24675

\begin{align*} 4 y^{\prime \prime }+y&=x^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.224

24676

\begin{align*} 4 y^{\prime \prime }+y&=x^{4} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.231

24677

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.265

24678

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=x^{2}+3 x +3 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.278

24679

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x^{3}-4 x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.280

24680

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=x^{3}+6 x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.285

24685

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=6 x^{2}-6 x -11 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.224

24686

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=2 x^{3}-9 x^{2}+2 x -16 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.238

24689

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=6 x^{2} {\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.310

24690

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.274

24691

\begin{align*} y^{\prime \prime }-2 y^{\prime }&={\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.716

24693

\begin{align*} 4 y+y^{\prime \prime }&=8 x^{5} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.241

24694

\begin{align*} 4 y+y^{\prime \prime }&=16 x \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.258

24695

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&=4 \cos \left (x \right ) {\mathrm e}^{-2 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.274

24696

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=4 x^{2}-3 \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.271

24697

\begin{align*} y^{\prime \prime }-4 y^{\prime }+13 y&=24 \,{\mathrm e}^{2 x} \sin \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.342

24698

\begin{align*} y^{\prime \prime }-4 y^{\prime }+13 y&=24 \,{\mathrm e}^{2 x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.269

24699

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=\left (x -2\right ) {\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.250

24700

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=72 x \,{\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.242

24701

\begin{align*} 4 y+y^{\prime \prime }&=12 \sin \left (x \right )+12 \sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.474

24702

\begin{align*} 4 y+y^{\prime \prime }&=20 \,{\mathrm e}^{x}-20 \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.397

24703

\begin{align*} y^{\prime \prime }+16 y&=8 x +8 \sin \left (4 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.356

24704

\begin{align*} 4 y+y^{\prime \prime }&=8 \cos \left (x \right ) \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.274

24705

\begin{align*} 4 y+y^{\prime \prime }&=8 \cos \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.325

24707

\begin{align*} y^{\prime \prime }-4 y^{\prime }+13 y&=24 \,{\mathrm e}^{2 x} \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.273

24708

\begin{align*} y^{\prime \prime }-4 y^{\prime }+13 y&=24 \,{\mathrm e}^{2 x} \cos \left (3 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.300

24709

\begin{align*} y^{\prime \prime }+25 y&=\sin \left (5 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.303

24712

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=x^{2}-2 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.225

24713

\begin{align*} y^{\prime \prime }+y&=4 \,{\mathrm e}^{x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.334

24714

\begin{align*} 4 y+y^{\prime \prime }&=2 x -8 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.333

24715

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=4 x^{2} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.324

24716

\begin{align*} y^{\prime \prime }-y&=\sin \left (2 x \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.419

24717

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=2 x \\ y \left (0\right ) &= 0 \\ y \left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.701

24718

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=2 x \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.920

24719

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=2+x \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.343

24720

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=2+x \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.358

24721

\begin{align*} y^{\prime \prime }+y&=3 \\ y \left (\frac {\pi }{2}\right ) &= 1 \\ y^{\prime }\left (\frac {\pi }{2}\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.526

24722

\begin{align*} y^{\prime \prime }+y&=\csc \left (x \right ) \cot \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.390

24723

\begin{align*} y^{\prime \prime }+y&=\cot \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.336

24724

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.312

24725

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.363

24726

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right )^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.345

24727

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right )^{4} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.395

24728

\begin{align*} y^{\prime \prime }+y&=\tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.332

24729

\begin{align*} y^{\prime \prime }+y&=\tan \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.372

24730

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \csc \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.483

24731

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right )^{2} \csc \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.486

24732

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{2 x}}{\left ({\mathrm e}^{x}+1\right )^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.520

24733

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{2 x}}{{\mathrm e}^{2 x}+1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.337

24734

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=\cos \left ({\mathrm e}^{-x}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.366

24735

\begin{align*} y^{\prime \prime }-y&=\frac {2}{\sqrt {1-{\mathrm e}^{-2 x}}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.443

24736

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{-2 x} \sin \left ({\mathrm e}^{-x}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.616

24737

\begin{align*} y^{\prime \prime }-5 y^{\prime }+4 y&=\frac {6}{1+{\mathrm e}^{-2 x}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.364

24738

\begin{align*} y^{\prime \prime }-y&=\frac {1}{\left (1+{\mathrm e}^{-x}\right )^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.412

24739

\begin{align*} y^{\prime \prime }-4 y^{\prime }-3 y&=\cos \left ({\mathrm e}^{-x}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.895

24740

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=15 \sqrt {1+{\mathrm e}^{-x}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.371

24741

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=\frac {1}{\sqrt {1+{\mathrm e}^{-2 x}}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.376

24742

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=f \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.531

24743

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=\frac {1}{\left ({\mathrm e}^{x}-1\right )^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.511

24744

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=\frac {1}{\left ({\mathrm e}^{x}+1\right )^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.470

24745

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=\sin \left ({\mathrm e}^{-x}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.374

24746

\begin{align*} y^{\prime \prime }-y&=\frac {2 \,{\mathrm e}^{x}}{\left ({\mathrm e}^{x}+1\right )^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.419

24747

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.255

24748

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right )^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.276

24749

\begin{align*} y^{\prime \prime }+y&=\csc \left (x \right )^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.378

24750

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=\frac {1}{\sqrt {1+{\mathrm e}^{-2 x}}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.309

24751

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{-2 x}}{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.487

24752

\begin{align*} y^{\prime \prime }-y&=\frac {2 \,{\mathrm e}^{-x}}{\left (1+{\mathrm e}^{-2 x}\right )^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.423

24753

\begin{align*} y^{\prime \prime }-y&=\frac {1}{\left (1-{\mathrm e}^{2 x}\right )^{{3}/{2}}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.339

24754

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{2 x} \left (3 \tan \left ({\mathrm e}^{x}\right )+{\mathrm e}^{x} \sec \left ({\mathrm e}^{x}\right )^{2}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.001

24755

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right )^{2} \tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.413

24756

\begin{align*} y^{\prime \prime }+y&=\csc \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.300

24757

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=\sec \left ({\mathrm e}^{-x}\right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.447

24758

\begin{align*} y^{\prime \prime }-y&=\frac {2}{{\mathrm e}^{x}+1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.368

24760

\begin{align*} y^{\prime \prime }-y&=\frac {2}{{\mathrm e}^{x}-{\mathrm e}^{-x}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.374

24761

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=\sin \left ({\mathrm e}^{-x}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.354

24762

\begin{align*} y^{\prime \prime }-y&=\frac {1}{{\mathrm e}^{2 x}+1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.346

24763

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right )^{3} \tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.402

24764

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \tan \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.428

24765

\begin{align*} y^{\prime \prime }+4 y^{\prime }+3 y&=\sin \left ({\mathrm e}^{x}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.391

24766

\begin{align*} y^{\prime \prime }+y&=\csc \left (x \right )^{3} \cot \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.458

24879

\begin{align*} y^{\prime \prime }+\beta ^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.889

24910

\begin{align*} y^{\prime \prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.079

24926

\begin{align*} y^{\prime \prime }&=2 t +1 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.677

24927

\begin{align*} y^{\prime \prime }&=6 \sin \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

0.746

24934

\begin{align*} y^{\prime \prime }&=6 \sin \left (3 t \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _quadrature]]

1.062

25087

\begin{align*} y^{\prime \prime }-3 y^{\prime }&={\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.863

25091

\begin{align*} y^{\prime \prime }+2 y^{\prime }+3 y&={\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.439

25092

\begin{align*} y^{\prime \prime }-7 y^{\prime }+10 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.196

25093

\begin{align*} y^{\prime \prime }+8 y&=t \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.473

25094

\begin{align*} y^{\prime \prime }+2&=\cos \left (t \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

0.913

25095

\begin{align*} 2 y^{\prime \prime }-12 y^{\prime }+18 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.250

25096

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.194

25097

\begin{align*} y^{\prime \prime }+y^{\prime }-12 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.193

25098

\begin{align*} y^{\prime \prime }+10 y^{\prime }+24 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.193

25099

\begin{align*} y^{\prime \prime }-4 y^{\prime }-12 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.191

25100

\begin{align*} y^{\prime \prime }+8 y^{\prime }+16 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.253

25101

\begin{align*} y^{\prime \prime }-3 y^{\prime }-10 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.197

25102

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.274

25103

\begin{align*} 2 y^{\prime \prime }-12 y^{\prime }+18 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.241

25104

\begin{align*} y^{\prime \prime }+13 y^{\prime }+36 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.202

25105

\begin{align*} y^{\prime \prime }+8 y^{\prime }+25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.274

25106

\begin{align*} y^{\prime \prime }+10 y^{\prime }+25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.254

25107

\begin{align*} y^{\prime \prime }-4 y^{\prime }-21 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.197

25108

\begin{align*} y^{\prime \prime }-y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.228

25109

\begin{align*} y^{\prime \prime }-3 y^{\prime }-10 y&=0 \\ y \left (0\right ) &= 5 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.303

25110

\begin{align*} y^{\prime \prime }-10 y^{\prime }+25 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.404

25111

\begin{align*} y^{\prime \prime }+4 y^{\prime }+13 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -5 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.407

25112

\begin{align*} y^{\prime \prime }+3 y^{\prime }-4 y&={\mathrm e}^{2 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.321

25113

\begin{align*} y^{\prime \prime }-3 y^{\prime }-10 y&=7 \,{\mathrm e}^{2 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.341

25114

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.378

25115

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.399

25116

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.299

25117

\begin{align*} y^{\prime \prime }+4 y^{\prime }+5 y&={\mathrm e}^{-3 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.445

25118

\begin{align*} y^{\prime \prime }+4 y&=1+{\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.361

25119

\begin{align*} y^{\prime \prime }-y&=t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.313

25120

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.373

25121

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.407

25122

\begin{align*} y^{\prime \prime }+y&=2 \sin \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.354

25123

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=25 \,{\mathrm e}^{2 t} t \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.407

25124

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=25 t \,{\mathrm e}^{-3 t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.451

25125

\begin{align*} y^{\prime \prime }+6 y^{\prime }+13 y&={\mathrm e}^{-3 t} \cos \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.455

25126

\begin{align*} y^{\prime \prime }-8 y^{\prime }+25 y&=104 \sin \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.434

25127

\begin{align*} y^{\prime \prime }-5 y^{\prime }-6 y&={\mathrm e}^{3 t} \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.465

25128

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=8 \,{\mathrm e}^{-t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 8 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.535

25129

\begin{align*} y^{\prime \prime }+y&=10 \,{\mathrm e}^{2 t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.492

25130

\begin{align*} y^{\prime \prime }-4 y&=2-8 t \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 5 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.453

25131

\begin{align*} y^{\prime \prime }-4 y&={\mathrm e}^{-6 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.323

25132

\begin{align*} y^{\prime \prime }+2 y^{\prime }-15 y&=16 \,{\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.326

25133

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&={\mathrm e}^{-2 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.326

25134

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.293

25135

\begin{align*} y^{\prime \prime }+2 y^{\prime }-8 y&=6 \,{\mathrm e}^{-4 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.366

25136

\begin{align*} y^{\prime \prime }+3 y^{\prime }-10 y&=\sin \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.364

25137

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=25 \,{\mathrm e}^{2 t} t \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.437

25138

\begin{align*} y^{\prime \prime }-5 y^{\prime }-6 y&=10 t \,{\mathrm e}^{4 t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.365

25139

\begin{align*} y^{\prime \prime }-8 y^{\prime }+25 y&=36 t \,{\mathrm e}^{4 t} \sin \left (3 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.551

25140

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=\cos \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.443

25141

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&={\mathrm e}^{t} \cos \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.485

25180

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.307

25181

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.362

25211

\begin{align*} y^{\prime \prime }-2 y^{\prime }-2 y&=\frac {t^{2}+1}{-t^{2}+1} \\ y \left (2\right ) &= y_{1} \\ y^{\prime }\left (2\right ) &= y_{1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.228

25265

\begin{align*} y^{\prime \prime }+y&=\sin \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.484

25266

\begin{align*} y^{\prime \prime }-4 y&={\mathrm e}^{2 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.394

25267

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&={\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.402

25268

\begin{align*} y^{\prime \prime }+3 y^{\prime }&={\mathrm e}^{-3 t} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.881

25269

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&={\mathrm e}^{3 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.285

25270

\begin{align*} y^{\prime \prime }+y&=\tan \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.465

25271

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=\frac {{\mathrm e}^{t}}{t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.500

25272

\begin{align*} y^{\prime \prime }+y&=\sec \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.419

25276

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=\frac {{\mathrm e}^{2 t}}{t^{2}+1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.491

25280

\begin{align*} y^{\prime \prime }-y&=\frac {1}{1+{\mathrm e}^{-t}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.461

25470

\begin{align*} m y^{\prime \prime }+k y&=F \\ \end{align*}

[[_2nd_order, _missing_x]]

2.354

25515

\begin{align*} m y^{\prime \prime }+k y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.921

25517

\begin{align*} y^{\prime \prime }&=-9 y \\ \end{align*}

[[_2nd_order, _missing_x]]

1.943

25518

\begin{align*} y^{\prime \prime }&=-9 y \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.810

25519

\begin{align*} y^{\prime \prime }+4 y&=F \cos \left (\omega t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.558

25521

\begin{align*} y^{\prime \prime }+9 y&={\mathrm e}^{c t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.414

25522

\begin{align*} y^{\prime \prime }+9 y&={\mathrm e}^{i \omega t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.505

25523

\begin{align*} y^{\prime \prime }+100 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 10 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.481

25524

\begin{align*} y^{\prime \prime }+100 y&=\cos \left (\omega t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.583

25525

\begin{align*} y^{\prime \prime }+100 y&=\cos \left (\omega t \right )-\sin \left (\omega t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.595

25526

\begin{align*} m y^{\prime \prime }+k y&=\delta \left (-t +T \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.837

25527

\begin{align*} m y^{\prime \prime }+k y&=f \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.614

25528

\begin{align*} m y^{\prime \prime }+k y&=1 \\ \end{align*}

[[_2nd_order, _missing_x]]

12.042

25529

\begin{align*} y^{\prime \prime }&=f \left (t \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

0.526

25530

\begin{align*} y^{\prime \prime }&={\mathrm e}^{i \omega t} \\ \end{align*}

[[_2nd_order, _quadrature]]

0.599

25531

\begin{align*} m y^{\prime \prime }-k y&={\mathrm e}^{i \omega t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.614

25533

\begin{align*} y^{\prime \prime }+\omega ^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.660

25534

\begin{align*} y^{\prime \prime }-2 a y^{\prime }+\left (a^{2}+\omega ^{2}\right ) y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.204

25535

\begin{align*} 2 y^{\prime \prime }+8 y^{\prime }+6 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.155

25537

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.200

25539

\begin{align*} 4 y^{\prime \prime }+B y^{\prime }+16 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.241

25540

\begin{align*} y^{\prime \prime }&=2 a y^{\prime }-\left (a^{2}-\omega ^{2}\right ) y \\ \end{align*}

[[_2nd_order, _missing_x]]

0.188

25541

\begin{align*} y^{\prime \prime }-2 y^{\prime }+10 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.191

25543

\begin{align*} y^{\prime \prime }&=1 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.750

25545

\begin{align*} y^{\prime \prime }+y&=1 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.617

25546

\begin{align*} y^{\prime \prime }+y&=\delta \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.271

25547

\begin{align*} y^{\prime \prime }+3 y^{\prime }+5 y&={\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.312

25548

\begin{align*} 2 y^{\prime \prime }+4 y&={\mathrm e}^{i t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.418

25549

\begin{align*} y^{\prime \prime }+y&=10 \,{\mathrm e}^{-3 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.260

25550

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{i \omega t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.532

25552

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{t} {\mathrm e}^{i t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.328

25554

\begin{align*} y^{\prime \prime }+c y&={\mathrm e}^{i \omega t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.575

25555

\begin{align*} y^{\prime \prime }+5 y^{\prime }+c y&={\mathrm e}^{i \omega t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.605

25556

\begin{align*} y^{\prime \prime }+k y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.690

25557

\begin{align*} y^{\prime \prime }+k y&={\mathrm e}^{i \omega t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.546

25558

\begin{align*} m y^{\prime \prime }+b y^{\prime }+k y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.352

25559

\begin{align*} m y^{\prime \prime }+b y^{\prime }+k y&={\mathrm e}^{c t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.406

25560

\begin{align*} m y^{\prime \prime }+b y^{\prime }+k y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.292

25561

\begin{align*} y^{\prime \prime }+\omega ^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.504

25563

\begin{align*} y^{\prime \prime }+2 z \omega _{n} y^{\prime }+\omega _{n}^{2} y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.301

25564

\begin{align*} y^{\prime \prime }+2 z \omega _{n} y^{\prime }+\omega _{n}^{2} y&={\mathrm e}^{c t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.350

25565

\begin{align*} y^{\prime \prime }+b y^{\prime }+c y&=f \\ \end{align*}

[[_2nd_order, _missing_x]]

0.364

25566

\begin{align*} y^{\prime \prime }+4 y^{\prime }+3 y&=5 \cos \left (\omega t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.301

25567

\begin{align*} y^{\prime \prime }+y&=\sin \left (\omega t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.370

25568

\begin{align*} y^{\prime \prime }+y&=\sin \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.407

25569

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{c t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.278

25570

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&={\mathrm e}^{i \omega t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.504

25571

\begin{align*} y^{\prime \prime }+2 z y^{\prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.314

25572

\begin{align*} m y^{\prime \prime }+k y&=\cos \left (\sqrt {\frac {k}{m}}\, t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.996

25573

\begin{align*} a y^{\prime \prime }+b y^{\prime }+c y&=f \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.045

25574

\begin{align*} 4 a y^{\prime \prime }+b y^{\prime }+\frac {c y}{4}&=f \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.033

25575

\begin{align*} g^{\prime \prime }-3 g^{\prime }+2 g&=\delta \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.342

25576

\begin{align*} y^{\prime \prime }+b y^{\prime }+y&=\cos \left (t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.449

25577

\begin{align*} m y^{\prime \prime }+k y&=\cos \left (\omega t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.495

25578

\begin{align*} r^{\prime \prime }+\frac {5 r^{\prime }}{2}+r&=1 \\ r \left (0\right ) &= 0 \\ r^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.335

25579

\begin{align*} r^{\prime \prime }+2 r^{\prime }+r&=1 \\ r \left (0\right ) &= 0 \\ r^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.361

25580

\begin{align*} r^{\prime \prime }+r^{\prime }+r&=1 \\ r \left (0\right ) &= 0 \\ r^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.418

25581

\begin{align*} r^{\prime \prime }+r&=1 \\ r \left (0\right ) &= 0 \\ r^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.554

25582

\begin{align*} y^{\prime \prime }+2 p y^{\prime }+\omega _{n}^{2} y&=\omega _{n}^{2} t \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.548

25583

\begin{align*} y^{\prime \prime }+y&=4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.612

25584

\begin{align*} y^{\prime \prime }+y^{\prime }&=4 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.752

25585

\begin{align*} y^{\prime \prime }&=4 \\ \end{align*}

[[_2nd_order, _quadrature]]

0.639

25586

\begin{align*} y^{\prime \prime }+y^{\prime }+y&={\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.250

25587

\begin{align*} y^{\prime \prime }+y^{\prime }+y&={\mathrm e}^{c t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.276

25588

\begin{align*} y^{\prime \prime }-y&=\cos \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.314

25589

\begin{align*} y^{\prime \prime }+y&=\cos \left (2 t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.299

25590

\begin{align*} y^{\prime \prime }+y&=t +{\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.264

25591

\begin{align*} y^{\prime \prime }+9 y&={\mathrm e}^{2 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.274

25592

\begin{align*} y^{\prime \prime }+9 y&={\mathrm e}^{2 t} t \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.294

25593

\begin{align*} y^{\prime \prime }+y^{\prime }&=t +1 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.757

25594

\begin{align*} y^{\prime \prime }+y^{\prime }&=t^{2}+1 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.778

25595

\begin{align*} y^{\prime \prime }+3 y&=\cos \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.330

25596

\begin{align*} y^{\prime \prime }+3 y&=t \cos \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.357

25597

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=t^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.274

25598

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=t^{3} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.282

25599

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=\cos \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.276

25600

\begin{align*} y^{\prime \prime }+y^{\prime }+y&=t \sin \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.323

25601

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{i t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.392

25602

\begin{align*} y^{\prime \prime }+y&=\cos \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.295

25603

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&={\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.261

25604

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&={\mathrm e}^{3 t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.311

25608

\begin{align*} y^{\prime \prime }+4 y&={\mathrm e}^{t} \sin \left (t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.360

25609

\begin{align*} y^{\prime \prime }+3 y^{\prime }-4 y&=t \,{\mathrm e}^{c t} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.304

25616

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.244

25617

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{-t} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.252

25618

\begin{align*} y^{\prime \prime }+4 y^{\prime }&={\mathrm e}^{2 t} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.798

25619

\begin{align*} y^{\prime \prime }+4 y^{\prime }&={\mathrm e}^{-4 t} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.782

25620

\begin{align*} y^{\prime \prime }+b y^{\prime }+c y&=1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.307

25621

\begin{align*} y^{\prime \prime }-5 y^{\prime }+6 y&=12 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.230

25622

\begin{align*} y^{\prime \prime }&=t \\ \end{align*}

[[_2nd_order, _quadrature]]

0.665

25623

\begin{align*} y^{\prime \prime }&=t^{2} \\ \end{align*}

[[_2nd_order, _quadrature]]

0.690

25624

\begin{align*} y^{\prime \prime }+y&=1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.541

25625

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.223

25626

\begin{align*} \frac {c y^{\prime \prime }}{\omega ^{2}}+c y&=\cos \left (\omega t \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.320

25659

\begin{align*} y^{\prime \prime }-6 y^{\prime }+13 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.186

25660

\begin{align*} y^{\prime \prime }+y&=\tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.612

25669

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.179

25679

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.158

25680

\begin{align*} 2 y^{\prime \prime }+9 y^{\prime }-5 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.166

25686

\begin{align*} y^{\prime \prime }+4 y^{\prime }+6 y&=10 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.314

25697

\begin{align*} x^{\prime \prime }+x&=0 \\ x \left (0\right ) &= -1 \\ x^{\prime }\left (0\right ) &= 8 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.403

25698

\begin{align*} x^{\prime \prime }+x&=0 \\ x \left (\frac {\pi }{2}\right ) &= 0 \\ x^{\prime }\left (\frac {\pi }{2}\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.486

25699

\begin{align*} x^{\prime \prime }+x&=0 \\ x \left (\frac {\pi }{6}\right ) &= {\frac {1}{2}} \\ x^{\prime }\left (\frac {\pi }{6}\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.704

25700

\begin{align*} x^{\prime \prime }+x&=0 \\ x \left (\frac {\pi }{4}\right ) &= \sqrt {2} \\ x^{\prime }\left (\frac {\pi }{4}\right ) &= 2 \sqrt {2} \\ \end{align*}

[[_2nd_order, _missing_x]]

0.792

25701

\begin{align*} y^{\prime \prime }-y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.242

25702

\begin{align*} y^{\prime \prime }-y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= {\mathrm e} \\ \end{align*}

[[_2nd_order, _missing_x]]

0.465

25703

\begin{align*} y^{\prime \prime }-y&=0 \\ y \left (-1\right ) &= 5 \\ y^{\prime }\left (-1\right ) &= -5 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.509

25704

\begin{align*} y^{\prime \prime }-y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.444

25725

\begin{align*} y^{\prime \prime }+9 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (\pi \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.165

25726

\begin{align*} y^{\prime \prime }+9 y&=0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime }\left (\frac {\pi }{4}\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.133

25727

\begin{align*} y^{\prime \prime }+9 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (\pi \right ) &= 5 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.452

25739

\begin{align*} y^{\prime \prime }+9 y&=18 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.339

25741

\begin{align*} y^{\prime \prime }&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_x]]

0.969

25749

\begin{align*} y^{\prime \prime }+y&=2 \cos \left (x \right )-2 \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.571

25756

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.040

25761

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&=-12 x +8 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.408

25762

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&=-12 x +8 \\ y \left (0\right ) &= 5 \\ y^{\prime }\left (0\right ) &= -11 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.393

25763

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&=-12 x +8 \\ y \left (1\right ) &= -2 \\ y^{\prime }\left (1\right ) &= 4 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.427

25764

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&=-12 x +8 \\ y \left (-1\right ) &= 1 \\ y^{\prime }\left (-1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.427

25765

\begin{align*} y^{\prime \prime }+9 y&=f \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.974