| # |
ODE |
CAS classification |
Solved |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
x^{\prime \prime }&=50 \\
x \left (0\right ) &= 20 \\
x^{\prime }\left (0\right ) &= 10 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.829 |
|
| \begin{align*}
x^{\prime \prime }&=-20 \\
x \left (0\right ) &= 5 \\
x^{\prime }\left (0\right ) &= -15 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.741 |
|
| \begin{align*}
x^{\prime \prime }&=3 t \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.813 |
|
| \begin{align*}
x^{\prime \prime }&=2 t +1 \\
x \left (0\right ) &= 4 \\
x^{\prime }\left (0\right ) &= -7 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.832 |
|
| \begin{align*}
x^{\prime \prime }&=4 \left (t +3\right )^{2} \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.827 |
|
| \begin{align*}
x^{\prime \prime }&=\frac {1}{\sqrt {t +4}} \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
2.925 |
|
| \begin{align*}
x^{\prime \prime }&=\frac {1}{\left (t +1\right )^{3}} \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.909 |
|
| \begin{align*}
x^{\prime \prime }&=50 \sin \left (5 t \right ) \\
x \left (0\right ) &= 8 \\
x^{\prime }\left (0\right ) &= -10 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.953 |
|
| \begin{align*}
y^{\prime \prime } x&=y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.634 |
|
| \begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.504 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=4 x \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.700 |
|
| \begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=y^{\prime } y \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.902 |
|
| \begin{align*}
y^{\prime \prime }&=2 y^{\prime } y \\
\end{align*} | [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] | ✓ | ✓ | ✓ | ✗ | 0.572 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=0 \\
y \left (0\right ) &= -2 \\
y^{\prime }\left (0\right ) &= 8 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.883 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }&=0 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.901 |
|
| \begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.404 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.700 |
|
| \begin{align*}
2 y^{\prime \prime }+3 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.723 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.088 |
|
| \begin{align*}
2 y^{\prime \prime }-3 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.658 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=72 x^{5} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.506 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=0 \\
y \left (0\right ) &= -2 \\
y^{\prime }\left (0\right ) &= 8 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.874 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }&=0 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.907 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.694 |
|
| \begin{align*}
2 y^{\prime \prime }+3 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.705 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.096 |
|
| \begin{align*}
2 y^{\prime \prime }-3 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.705 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=72 x^{5} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.708 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.819 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }&=0 \\
y \left (0\right ) &= -2 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.996 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+4 t y^{\prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.262 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-4 t y^{\prime }-6 y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.865 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+3 t y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.980 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-2 y&=3 t^{2}-1 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.688 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+7 t y^{\prime }+5 y&=t \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.598 |
|
| \begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\
y \left (0\right ) &= -5 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.872 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.193 |
|
| \begin{align*}
\left (x^{2}-4\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.582 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=2 x^{2}+2 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.905 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x -3 y&=x^{{3}/{2}} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.558 |
|
| \begin{align*}
\left (x -1\right )^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=2 x \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.463 |
|
| \begin{align*}
\left (x +1\right ) \left (2 x +3\right ) y^{\prime \prime }+2 \left (2+x \right ) y^{\prime }-2 y&=\left (2 x +3\right )^{2} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.322 |
|
| \begin{align*}
2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y&=0 \\
y \left (1\right ) &= 2 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.174 |
|
| \begin{align*}
y^{\prime \prime }+t y^{\prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.736 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+3 t y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.023 |
|
| \begin{align*}
2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.845 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+3 t y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.016 |
|
| \begin{align*}
2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y&=0 \\
y \left (1\right ) &= 2 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} | [[_2nd_order, _exact, _linear, _homogeneous]] | ✓ | ✓ | ✓ | ✓ | 1.078 |
|
| \begin{align*}
y^{\prime \prime }+t y^{\prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.668 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+3 t y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.949 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-2 y&=t^{2} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.648 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }&=1+t^{2}+{\mathrm e}^{-2 t} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.008 |
|
| \begin{align*}
2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.772 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+3 t y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.894 |
|
| \begin{align*}
y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.796 |
|
| \begin{align*}
2 y^{\prime \prime }+y^{\prime }&=8 \sin \left (2 x \right )+{\mathrm e}^{-x} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.811 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }&=x^{3} \sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.812 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }&={\mathrm e}^{2 x} \sin \left (x \right ) x \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.589 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }&=x^{2} {\mathrm e}^{-x} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.851 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=1-x \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.772 |
|
| \begin{align*}
y^{\prime \prime }&=\cos \left (t \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.019 |
|
| \begin{align*}
y^{\prime \prime } x&=x^{2}+1 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.793 |
|
| \begin{align*}
\left (1-x \right ) y^{\prime \prime }&=y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.036 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (1+y^{\prime }\right )&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.888 |
|
| \begin{align*}
y^{\prime \prime } x +x&=y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.975 |
|
| \begin{align*}
y^{\prime \prime }&=y^{\prime } y \\
\end{align*} | [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] | ✓ | ✓ | ✓ | ✗ | 0.941 |
|
| \begin{align*}
y^{\prime } y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.865 |
|
| \begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.853 |
|
| \begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=y^{\prime } y \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
1.306 |
|
| \begin{align*}
y^{\prime \prime }&=\sec \left (x \right ) \tan \left (x \right ) \\
y \left (0\right ) &= \frac {\pi }{4} \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
2.006 |
|
| \begin{align*}
\left (1-{\mathrm e}^{x}\right ) y^{\prime \prime }&={\mathrm e}^{x} y^{\prime } \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
2.354 |
|
| \begin{align*}
\left (x +1\right )^{2} y^{\prime \prime }+3 \left (x +1\right ) y^{\prime }+y&=x^{2} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.982 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+5 y^{\prime } x +3 y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.101 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.452 |
|
| \begin{align*}
y^{\prime \prime }&=x \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.573 |
|
| \begin{align*}
y^{\prime \prime }&=x^{n} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.640 |
|
| \begin{align*}
y^{\prime \prime }&=\cos \left (x \right ) \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
2.842 |
|
| \begin{align*}
y^{\prime \prime }&=x \,{\mathrm e}^{x} \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} | [[_2nd_order, _quadrature]] | ✓ | ✓ | ✓ | ✓ | 0.817 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.642 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.934 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=4 \ln \left (x \right ) \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.705 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.754 |
|
| \begin{align*}
2 y^{\prime \prime }+3 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.721 |
|
| \begin{align*}
y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.545 |
|
| \begin{align*}
y^{\prime \prime } x&=x +y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.901 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }&={\mathrm e}^{x} \left (x^{2}+10\right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.869 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=\frac {1}{{\mathrm e}^{x}+1} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✗ |
0.895 |
|
| \begin{align*}
y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.551 |
|
| \begin{align*}
y^{\prime \prime }&=x +\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.803 |
|
| \begin{align*}
y^{\prime \prime }&=\operatorname {c1} \cos \left (a x \right )+\operatorname {c2} \sin \left (b x \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.023 |
|
| \begin{align*}
y^{\prime \prime }&=x \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.737 |
|
| \begin{align*}
y^{\prime \prime }&=\operatorname {c1} \,{\mathrm e}^{a x}+\operatorname {c2} \,{\mathrm e}^{-b x} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.948 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime } x +y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.714 |
|
| \begin{align*}
a k \,x^{-1+k} y+a \,x^{k} y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✗ |
0.565 |
|
| \begin{align*}
-\csc \left (x \right )^{2} y+\cot \left (x \right ) y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✗ |
4.743 |
|
| \begin{align*}
-y \cos \left (x \right )-\sin \left (x \right ) y^{\prime }+y^{\prime \prime }&=a -x +x \ln \left (x \right ) \\
\end{align*} | [[_2nd_order, _exact, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✗ | 0.727 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.726 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=x^{n} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.165 |
|
| \begin{align*}
y^{\prime \prime } x +2 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.592 |
|
| \begin{align*}
y^{\prime \prime } x +2 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.572 |
|
| \begin{align*}
a y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.839 |
|
| \begin{align*}
2 y x -\left (-x^{2}+4\right ) y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.878 |
|
| \begin{align*}
-2 y^{\prime }+\left (a -x \right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.644 |
|
| \begin{align*}
y^{\prime }+2 y^{\prime \prime } x&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.664 |
|
| \begin{align*}
-y-\left (2+x \right ) y^{\prime }+\left (1-2 x \right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.121 |
|
| \begin{align*}
c y^{\prime }+\left (b x +a \right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.964 |
|
| \begin{align*}
x^{2} y^{\prime \prime }&=2 y \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.770 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.229 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=a \,x^{2} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.790 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x -3 y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.838 |
|
| \begin{align*}
-y+\left (x +a \right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.951 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.017 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=x \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.408 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=a -x +x \ln \left (x \right ) \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.876 |
|
| \begin{align*}
-5 y-3 y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\
\end{align*} | [[_2nd_order, _exact, _linear, _homogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.833 |
|
| \begin{align*}
-5 y-3 y^{\prime } x +x^{2} y^{\prime \prime }&=\ln \left (x \right ) x^{2} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.333 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.295 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.970 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=\ln \left (x +1\right ) \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.109 |
|
| \begin{align*}
-2 y+\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.542 |
|
| \begin{align*}
y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.663 |
|
| \begin{align*}
3 y+y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.596 |
|
| \begin{align*}
-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.720 |
|
| \begin{align*}
a -2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.146 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=-2 x +2 \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.874 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-6 y^{\prime } x -4 y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.589 |
|
| \begin{align*}
-\left (2-a \right ) y+a x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.273 |
|
| \begin{align*}
2 y-2 y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.536 |
|
| \begin{align*}
2 y+3 y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.598 |
|
| \begin{align*}
\left (1-x \right ) x y^{\prime \prime }-3 y^{\prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.598 |
|
| \begin{align*}
\left (1-x \right ) x y^{\prime \prime }-3 y^{\prime }+2 y&=x \left (3 x^{3}+1\right ) \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.711 |
|
| \begin{align*}
2 y-a y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.095 |
|
| \begin{align*}
y-\left (x +1\right ) y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.714 |
|
| \begin{align*}
-y-3 y^{\prime } x +\left (1-x \right ) x y^{\prime \prime }&=0 \\
\end{align*} | [[_2nd_order, _exact, _linear, _homogeneous]] | ✓ | ✓ | ✓ | ✗ | 0.568 |
|
| \begin{align*}
y+\left (3 x +2\right ) y^{\prime }+x \left (x +1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.705 |
|
| \begin{align*}
-2 y+\left (1-4 x \right ) y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.582 |
|
| \begin{align*}
-2 y-2 \left (2 x +1\right ) y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.624 |
|
| \begin{align*}
-a y-\left (a -\left (2-a \right ) x \right ) y^{\prime }+x \left (x +1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.743 |
|
| \begin{align*}
-a y-\left (a -\left (2-a \right ) x \right ) y^{\prime }+x \left (x +1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.536 |
|
| \begin{align*}
2 y-4 \left (1-x \right ) y^{\prime }+\left (1-x \right )^{2} y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.957 |
|
| \begin{align*}
2 y-4 \left (1-x \right ) y^{\prime }+\left (1-x \right )^{2} y^{\prime \prime }&=\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.415 |
|
| \begin{align*}
-3 y+\left (-x +2\right ) y^{\prime }+\left (-x +2\right )^{2} y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.676 |
|
| \begin{align*}
-3 y+y^{\prime } x +2 x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.845 |
|
| \begin{align*}
-4 y+y^{\prime }+2 x \left (x +1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.616 |
|
| \begin{align*}
-12 y-2 \left (2 x +1\right ) y^{\prime }+\left (2 x +1\right )^{2} y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.709 |
|
| \begin{align*}
-12 y-2 \left (2 x +1\right ) y^{\prime }+\left (2 x +1\right )^{2} y^{\prime \prime }&=1+3 x \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.835 |
|
| \begin{align*}
-9 y-3 \left (1-3 x \right ) y^{\prime }+\left (1-3 x \right )^{2} y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.569 |
|
| \begin{align*}
-2 a^{2} x y^{\prime }+\left (-a^{2} x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.105 |
|
| \begin{align*}
-2 b y+2 a y^{\prime }+x \left (b x +a \right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.829 |
|
| \begin{align*}
6 y x +\left (-x^{3}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.661 |
|
| \begin{align*}
4 y x -\left (x^{2}+7\right ) y^{\prime }+x \left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.737 |
|
| \begin{align*}
-2 y x -2 \left (-x^{2}+1\right ) y^{\prime }+x \left (x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.539 |
|
| \begin{align*}
-6 y x -y^{\prime }+x \left (x^{2}+2\right ) y^{\prime \prime }&=0 \\
\end{align*} | [[_2nd_order, _exact, _linear, _homogeneous]] | ✓ | ✓ | ✓ | ✗ | 0.800 |
|
| \begin{align*}
2 \left (x +1\right ) y+2 x \left (-x +2\right ) y^{\prime }+\left (1-x \right ) x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.776 |
|
| \begin{align*}
2 \left (1+3 x \right ) y+2 x \left (3 x +2\right ) y^{\prime }+x^{2} \left (x +1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.840 |
|
| \begin{align*}
y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.690 |
|
| \begin{align*}
y^{\prime } y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.761 |
|
| \begin{align*}
y^{\prime \prime } x&=\left (1-y\right ) y^{\prime } \\
\end{align*} |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
1.120 |
|
| \begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
1.049 |
|
| \begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=a^{2} \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
5.111 |
|
| \begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
1.484 |
|
| \begin{align*}
{y^{\prime }}^{2}+\left (a +y\right ) y^{\prime \prime }&=b \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
1.789 |
|
| \begin{align*}
-y^{\prime }+{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime \prime }&=0 \\
\end{align*} | [[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] | ✓ | ✓ | ✓ | ✗ | 0.447 |
|
| \begin{align*}
y^{\prime } y+x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.421 |
|
| \begin{align*}
x {y^{\prime }}^{2}+x y y^{\prime \prime }&=y^{\prime } y \\
\end{align*} |
[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.476 |
|
| \begin{align*}
2 y^{\prime } y+x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.647 |
|
| \begin{align*}
x {y^{\prime }}^{2}+x y y^{\prime \prime }&=3 y^{\prime } y \\
\end{align*} |
[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.682 |
|
| \begin{align*}
\left (x -y\right ) y^{\prime }+x {y^{\prime }}^{2}+x \left (x +y\right ) y^{\prime \prime }&=y \\
\end{align*} |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.729 |
|
| \begin{align*}
x^{2}+2 y+4 \left (x +y\right ) y^{\prime }+2 x {y^{\prime }}^{2}+x \left (x +2 y\right ) y^{\prime \prime }&=0 \\
\end{align*} | [[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]] | ✓ | ✓ | ✓ | ✗ | 0.524 |
|
| \begin{align*}
\left (-y+y^{\prime } x \right )^{2}+x^{2} y y^{\prime \prime }&=3 y^{2} \\
\end{align*} |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.658 |
|
| \begin{align*}
3 x y^{2}+6 x^{2} y y^{\prime }+x^{3} {y^{\prime }}^{2}+x^{3} y y^{\prime \prime }&=a \\
\end{align*} |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.512 |
|
| \begin{align*}
2 y^{\prime }+2 y {y^{\prime }}^{2}+\left (x +y^{2}\right ) y^{\prime \prime }&=a \\
\end{align*} |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.358 |
|
| \begin{align*}
y^{\prime } y^{\prime \prime }&=a^{2} x \\
\end{align*} |
[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]] |
✓ |
✓ |
✓ |
✓ |
4.351 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.849 |
|
| \begin{align*}
y^{\prime \prime }&=0 \\
y \left (1\right ) &= 2 \\
y^{\prime }\left (1\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.846 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }&=2 \,{\mathrm e}^{2 x} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.187 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=x^{2}+2 x \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.776 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=x +\sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.167 |
|
| \begin{align*}
y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}}&=x \ln \left (x \right ) \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.086 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=x^{2} {\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.355 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y&=\frac {1}{x} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.369 |
|
| \begin{align*}
y^{\prime \prime }&=2 y^{\prime } y \\
\end{align*} | [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] | ✓ | ✓ | ✓ | ✗ | 0.655 |
|
| \begin{align*}
-y^{\prime }+y^{\prime \prime } x&=x^{2} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.803 |
|
| \begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}-y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.984 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (1+y^{\prime }\right )&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.775 |
|
| \begin{align*}
y^{\prime \prime }&={\mathrm e}^{y} y^{\prime } \\
y \left (3\right ) &= 0 \\
y^{\prime }\left (3\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
1.047 |
|
| \begin{align*}
y^{\prime \prime }&=2 y^{\prime } y \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✗ |
✗ |
0.733 |
|
| \begin{align*}
-y^{\prime }+y^{\prime \prime } x&=x^{2} \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.894 |
|
| \begin{align*}
x y y^{\prime \prime }+x {y^{\prime }}^{2}-y^{\prime } y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.691 |
|
| \begin{align*}
y^{\prime \prime }+9 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.859 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.820 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }&=10 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.923 |
|
| \begin{align*}
2 y^{\prime \prime }+y^{\prime }&=2 x \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.925 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }&=9 x \,{\mathrm e}^{-x}-6 x^{2}+4 \,{\mathrm e}^{2 x} \\
\end{align*} | [[_2nd_order, _missing_y]] | ✓ | ✓ | ✓ | ✓ | 1.187 |
|
| \begin{align*}
y^{\prime } y+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 5 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✗ |
✗ |
0.794 |
|
| \begin{align*}
y^{\prime } y+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✗ |
✗ |
0.730 |
|
| \begin{align*}
y^{\prime } y+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✗ |
✗ |
0.857 |
|
| \begin{align*}
y^{\prime } y+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✗ |
✗ |
1.172 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=x -\frac {1}{x} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.230 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=4 x \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.816 |
|
| \begin{align*}
x \left (y y^{\prime \prime }+{y^{\prime }}^{2}\right )&=y^{\prime } y \\
\end{align*} |
[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.686 |
|
| \begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}+4&=0 \\
y \left (1\right ) &= 3 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
1.573 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 1.188 |
|
| \begin{align*}
\left (1-x \right ) x y^{\prime \prime }+2 \left (1-2 x \right ) y^{\prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.887 |
|
| \begin{align*}
y^{\prime \prime }&=9 x^{2}+2 x -1 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.964 |
|
| \begin{align*}
y^{\prime \prime }-7 y^{\prime }&=-3 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.129 |
|
| \begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}}&=\ln \left (x \right ) \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.670 |
|
| \begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=2 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
2.705 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }&=5 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.179 |
|
| \begin{align*}
\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y&=\ln \left (x +1\right )^{2}+x -1 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
2.394 |
|
| \begin{align*}
-12 y-2 \left (2 x +1\right ) y^{\prime }+\left (2 x +1\right )^{2} y^{\prime \prime }&=6 x \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.839 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x&=\frac {2}{x^{3}} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.750 |
|
| \begin{align*}
-y^{\prime }+y^{\prime \prime } x&=-\frac {2}{x}-\ln \left (x \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.931 |
|
| \begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.392 |
|
| \begin{align*}
\left (x +2 y\right ) y^{\prime \prime }+2 {y^{\prime }}^{2}+2 y^{\prime }&=2 \\
\end{align*} |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.402 |
|
| \begin{align*}
y^{\prime \prime } x +2 y^{\prime }&=0 \\
\end{align*} | [[_2nd_order, _missing_y]] | ✓ | ✓ | ✓ | ✓ | 0.779 |
|
| \begin{align*}
-y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.608 |
|
| \begin{align*}
y^{\prime \prime }&=y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.600 |
|
| \begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}}&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.471 |
|
| \begin{align*}
y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.632 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime } x +y&=2 x \,{\mathrm e}^{x}-1 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.164 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=x^{2}+2 x \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
3.007 |
|
| \begin{align*}
x \left (x +1\right ) y^{\prime \prime }+\left (2+x \right ) y^{\prime }-y&=x +\frac {1}{x} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.624 |
|
| \begin{align*}
y^{\prime \prime }&=2+x \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.016 |
|
| \begin{align*}
y^{\prime \prime }&=1+3 x \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.039 |
|
| \begin{align*}
y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.496 |
|
| \begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}}&=0 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
18.359 |
|
| \begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}}&=0 \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
18.138 |
|
| \begin{align*}
\left (3 x -1\right )^{2} y^{\prime \prime }+\left (9 x -3\right ) y^{\prime }-9 y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.275 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.819 |
|
| \begin{align*}
y^{\prime \prime }&=y^{\prime } y \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.693 |
|
| \begin{align*}
-2 y^{\prime }+y^{\prime \prime } x&=x^{3} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.760 |
|
| \begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=0 \\
\end{align*} | [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] | ✓ | ✓ | ✓ | ✗ | 0.579 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=4 x \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.838 |
|
| \begin{align*}
y^{\prime \prime }&={\mathrm e}^{y} y^{\prime } \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✗ |
✗ |
1.319 |
|
| \begin{align*}
y^{\prime \prime } x -3 y^{\prime }&=5 x \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.861 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }&=12 x -10 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.839 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=10 x^{4}+2 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.872 |
|
| \begin{align*}
y^{\prime \prime }&=\tan \left (x \right ) \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
3.684 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }&=\ln \left (x \right ) \\
y \left (1\right ) &= {\mathrm e} \\
y^{\prime }\left (1\right ) &= {\mathrm e}^{-1} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
2.770 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=\frac {2}{x} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.609 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=\frac {x -1}{x^{2}} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.956 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.739 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.878 |
|
| \begin{align*}
t y^{\prime \prime }-y^{\prime }&=2 t^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.050 |
|
| \begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.532 |
|
| \begin{align*}
y^{\prime \prime } x&=y^{\prime }+x^{5} \\
y \left (1\right ) &= {\frac {1}{2}} \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.202 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }+x&=0 \\
y \left (2\right ) &= -1 \\
y^{\prime }\left (2\right ) &= -{\frac {1}{2}} \\
\end{align*} | [[_2nd_order, _missing_y]] | ✓ | ✓ | ✓ | ✓ | 1.277 |
|
| \begin{align*}
t y^{\prime \prime }+4 y^{\prime }&=t^{2} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.115 |
|
| \begin{align*}
\left (t^{2}+9\right ) y^{\prime \prime }+2 t y^{\prime }&=0 \\
y \left (3\right ) &= 2 \pi \\
y^{\prime }\left (3\right ) &= {\frac {2}{3}} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.050 |
|
| \begin{align*}
t y^{\prime \prime }+y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.845 |
|
| \begin{align*}
y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.476 |
|
| \begin{align*}
y^{\prime \prime }&=1 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.888 |
|
| \begin{align*}
y^{\prime \prime }&=k \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.952 |
|
| \begin{align*}
y^{\prime \prime }&=4 \sin \left (x \right )-4 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.100 |
|
| \begin{align*}
y^{\prime \prime }&=\frac {1}{y}-\frac {x y^{\prime }}{y^{2}} \\
\end{align*} |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
52.467 |
|
| \begin{align*}
y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.556 |
|
| \begin{align*}
a y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.612 |
|
| \begin{align*}
y^{\prime \prime }&=1 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.668 |
|
| \begin{align*}
y^{\prime \prime }&=x \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.712 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.692 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.780 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=x \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.734 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.781 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=x \\
\end{align*} | [[_2nd_order, _missing_y]] | ✓ | ✓ | ✓ | ✓ | 0.733 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=x +1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.772 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=x^{2}+x +1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.790 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=x^{3}+x^{2}+x +1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.843 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.855 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.805 |
|
| \begin{align*}
y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.470 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime } x +y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
2.480 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.705 |
|
| \begin{align*}
y^{\prime \prime } x -y^{\prime } x -y-x \left (x +1\right ) {\mathrm e}^{x}&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
2.521 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y-a \,x^{2}&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
3.816 |
|
| \begin{align*}
-y+\left (x +a \right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
2.254 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.332 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y-x \sin \left (x \right )-\left (a \,x^{2}+12 a +4\right ) \cos \left (x \right )&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
3.279 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.414 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x -5 y-\ln \left (x \right ) x^{2}&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.574 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y-2 \cos \left (x \right )+2 x&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.690 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+a x y^{\prime }+\left (a -2\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
4.522 |
|
| \begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.579 |
|
| \begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x -a&=0 \\
\end{align*} | [[_2nd_order, _missing_y]] | ✓ | ✓ | ✓ | ✓ | 0.895 |
|
| \begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }-2 \left (v -1\right ) x y^{\prime }-2 v y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.694 |
|
| \begin{align*}
y+\left (3 x +2\right ) y^{\prime }+x \left (x +1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.548 |
|
| \begin{align*}
x \left (x -1\right ) y^{\prime \prime }+a y^{\prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.697 |
|
| \begin{align*}
x \left (x +3\right ) y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y-\left (20 x +30\right ) \left (x^{2}+3 x \right )^{{7}/{3}}&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
13.464 |
|
| \begin{align*}
\left (x -2\right )^{2} y^{\prime \prime }-\left (x -2\right ) y^{\prime }-3 y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.503 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }-\left (2 x^{2}+l -5 x \right ) y^{\prime }-\left (4 x -1\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.770 |
|
| \begin{align*}
\left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }-12 y-3 x -1&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.784 |
|
| \begin{align*}
\left (3 x -1\right )^{2} y^{\prime \prime }+3 \left (3 x -1\right ) y^{\prime }-9 y-\ln \left (3 x -1\right )^{2}&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
2.117 |
|
| \begin{align*}
\left (a^{2} x^{2}-1\right ) y^{\prime \prime }+2 a^{2} x y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.697 |
|
| \begin{align*}
\left (a \,x^{2}+b x \right ) y^{\prime \prime }+2 b y^{\prime }-2 a y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.664 |
|
| \begin{align*}
x \left (x^{2}+1\right ) y^{\prime \prime }+2 \left (x^{2}-1\right ) y^{\prime }-2 y x&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.487 |
|
| \begin{align*}
-6 y x -y^{\prime }+x \left (x^{2}+2\right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.691 |
|
| \begin{align*}
y^{\prime \prime }&=-\frac {\cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}+\frac {y}{\sin \left (x \right )^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✗ |
4.624 |
|
| \begin{align*}
y^{\prime \prime }-2 a y y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.815 |
|
| \begin{align*}
y^{\prime \prime } x +\left (y-1\right ) y^{\prime }&=0 \\
\end{align*} | [[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]] | ✓ | ✓ | ✓ | ✗ | 0.651 |
|
| \begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}-a&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
2.623 |
|
| \begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}-y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.909 |
|
| \begin{align*}
-y^{\prime }+{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.711 |
|
| \begin{align*}
x y y^{\prime \prime }+x {y^{\prime }}^{2}-y^{\prime } y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.989 |
|
| \begin{align*}
x \left (x +y\right ) y^{\prime \prime }+x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.761 |
|
| \begin{align*}
y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+a y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.939 |
|
| \begin{align*}
y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+\left (x^{n -1} a n +b m \,x^{m -1}\right ) y&=0 \\
\end{align*} | [[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] | ✓ | ✓ | ✓ | ✗ | 0.737 |
|
| \begin{align*}
y^{\prime \prime } x +a x y^{\prime }+a y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.032 |
|
| \begin{align*}
y^{\prime \prime } x +\left (a \,x^{2}+b x +c \right ) y^{\prime }+\left (2 a x +b \right ) y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.165 |
|
| \begin{align*}
y^{\prime \prime } x +\left (a \,x^{2}+b \right ) x y^{\prime }+\left (3 a \,x^{2}+b \right ) y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.177 |
|
| \begin{align*}
y^{\prime \prime } x +\left (a \,x^{n}+b \right ) y^{\prime }+x^{n -1} a n y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✗ |
0.832 |
|
| \begin{align*}
\left (x +a \right ) y^{\prime \prime }+\left (b x +c \right ) y^{\prime }+b y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.462 |
|
| \begin{align*}
\left (x +\gamma \right ) y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime }+\left (x^{n -1} a n +b m \,x^{m -1}\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✗ |
✗ |
0.896 |
|
| \begin{align*}
\left (x^{2}+a \right ) y^{\prime \prime }+2 b x y^{\prime }+2 \left (b -1\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.933 |
|
| \begin{align*}
\left (a \,x^{2}+b x +c \right ) y^{\prime \prime }+\left (d x +k \right ) y^{\prime }+\left (d -2 a \right ) y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
16.487 |
|
| \begin{align*}
x \left (a \,x^{2}+b \right ) y^{\prime \prime }+2 \left (a \,x^{2}+b \right ) y^{\prime }-2 a x y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.849 |
|
| \begin{align*}
\left (a \,x^{n}+b x +c \right ) y^{\prime \prime }&=a n \left (n -1\right ) x^{-2+n} y \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✗ |
✗ |
3.259 |
|
| \begin{align*}
y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\mu x}+c \right ) y^{\prime }+\left (a \lambda \,{\mathrm e}^{\lambda x}+{\mathrm e}^{\mu x} b \mu \right ) y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.967 |
|
| \begin{align*}
\left (a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime \prime }-a \,\lambda ^{2} {\mathrm e}^{\lambda x} y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✗ |
✗ |
0.645 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }&={\mathrm e}^{2 x}+1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.852 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=\frac {1}{\left (1-x \right )^{2}} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
4.430 |
|
| \begin{align*}
y^{\prime \prime }&=x \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.693 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=x \\
\end{align*} | [[_2nd_order, _exact, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 4.214 |
|
| \begin{align*}
\left (x -1\right )^{2} y^{\prime \prime }+4 \left (x -1\right ) y^{\prime }+2 y&=\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
4.410 |
|
| \begin{align*}
y^{\prime } y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.599 |
|
| \begin{align*}
\left (x^{2}-x \right ) y^{\prime \prime }+\left (2+4 x \right ) y^{\prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.632 |
|
| \begin{align*}
x^{2}+2 y+4 \left (x +y\right ) y^{\prime }+2 x {y^{\prime }}^{2}+x \left (x +2 y\right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.602 |
|
| \begin{align*}
\sin \left (x \right ) y^{\prime \prime }-\cos \left (x \right ) y^{\prime }+2 y \sin \left (x \right )&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.572 |
|
| \begin{align*}
x^{\prime \prime }&=-3 \sqrt {t} \\
x \left (1\right ) &= 4 \\
x^{\prime }\left (1\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
3.294 |
|
| \begin{align*}
x^{\prime }+t x^{\prime \prime }&=1 \\
x \left (1\right ) &= 0 \\
x^{\prime }\left (1\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
3.403 |
|
| \begin{align*}
x^{\prime \prime }+x^{\prime }&=3 t \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.760 |
|
| \begin{align*}
x^{\prime \prime }-2 x^{\prime }&=0 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.765 |
|
| \begin{align*}
x^{\prime \prime }-2 x^{\prime }&=0 \\
x \left (0\right ) &= -1 \\
x^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.831 |
|
| \begin{align*}
x^{\prime \prime }-x^{\prime }&=6+{\mathrm e}^{2 t} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.833 |
|
| \begin{align*}
x^{\prime \prime }-2 x^{\prime }&=4 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.998 |
|
| \begin{align*}
t^{2} x^{\prime \prime }+3 t x^{\prime }+x&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.945 |
|
| \begin{align*}
t^{2} x^{\prime \prime }-2 x&=t^{3} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.649 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.611 |
|
| \begin{align*}
\left (2 x +1\right ) \left (x +1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y&=\left (2 x +1\right )^{2} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.431 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=4 \ln \left (x \right ) \\
\end{align*} | [[_2nd_order, _exact, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 2.301 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+5 y^{\prime } x +3 y&=0 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= -5 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.688 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y&=4 x -8 \\
y \left (1\right ) &= 4 \\
y^{\prime }\left (1\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.956 |
|
| \begin{align*}
\left (2+x \right )^{2} y^{\prime \prime }-\left (2+x \right ) y^{\prime }-3 y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.691 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }&=0 \\
y \left (0\right ) &= 13 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.947 |
|
| \begin{align*}
x^{\prime \prime }-4 x^{\prime }&=t^{2} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.997 |
|
| \begin{align*}
t^{2} x^{\prime \prime }-2 x&=t^{3} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.630 |
|
| \begin{align*}
x^{\prime \prime }-4 x^{\prime }&=\tan \left (t \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.759 |
|
| \begin{align*}
t^{2} x^{\prime \prime }+t x^{\prime }-x&=0 \\
x \left (1\right ) &= 1 \\
x^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.102 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x -3 y&=0 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.446 |
|
| \begin{align*}
3 x^{2} z^{\prime \prime }+5 x z^{\prime }-z&=0 \\
z \left (1\right ) &= 2 \\
z^{\prime }\left (1\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.468 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime } x +2 y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.495 |
|
| \begin{align*}
y^{\prime \prime } x +\sin \left (x \right ) y^{\prime }+y \cos \left (x \right )&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✗ |
✗ |
0.629 |
|
| \begin{align*}
y^{\prime \prime }+2 x^{2} y^{\prime }+4 y x&=2 x \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.013 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y&=1-2 x \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.979 |
|
| \begin{align*}
y^{\prime \prime }+x^{2} y^{\prime }+2 y x&=2 x \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.987 |
|
| \begin{align*}
y^{\prime \prime } x +x^{2} y^{\prime }+2 y x&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.602 |
|
| \begin{align*}
y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+y \cos \left (x \right )&=\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.617 |
|
| \begin{align*}
-\csc \left (x \right )^{2} y+\cot \left (x \right ) y^{\prime }+y^{\prime \prime }&=\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
24.576 |
|
| \begin{align*}
\frac {x y^{\prime \prime }}{1+y}+\frac {y^{\prime } y-x {y^{\prime }}^{2}+y^{\prime }}{\left (1+y\right )^{2}}&=x \sin \left (x \right ) \\
\end{align*} | [[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]] | ✓ | ✓ | ✓ | ✗ | 0.904 |
|
| \begin{align*}
\left (x \cos \left (y\right )+\sin \left (x \right )\right ) y^{\prime \prime }-x {y^{\prime }}^{2} \sin \left (y\right )+2 \left (\cos \left (y\right )+\cos \left (x \right )\right ) y^{\prime }&=y \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✗ |
✗ |
10.063 |
|
| \begin{align*}
y y^{\prime \prime } \sin \left (x \right )+\left (\sin \left (x \right ) y^{\prime }+y \cos \left (x \right )\right ) y^{\prime }&=\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.556 |
|
| \begin{align*}
\left (1-y\right ) y^{\prime \prime }-{y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.615 |
|
| \begin{align*}
\left (\cos \left (y\right )-\sin \left (y\right ) y\right ) y^{\prime \prime }-{y^{\prime }}^{2} \left (2 \sin \left (y\right )+y \cos \left (y\right )\right )&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✗ |
✗ |
0.796 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+3 t y^{\prime }+y&=t^{7} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.559 |
|
| \begin{align*}
-y^{\prime }+y^{\prime \prime } x&={\mathrm e}^{x} x^{2} \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.163 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }&=2-6 x \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.862 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.227 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.865 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.464 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+6 y^{\prime } x +4 y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.161 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }&=3 t +2 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.302 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }&=3 t +2 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.336 |
|
| \begin{align*}
y^{\prime \prime }&=\frac {x +1}{x -1} \\
\end{align*} | [[_2nd_order, _quadrature]] | ✓ | ✓ | ✓ | ✓ | 0.980 |
|
| \begin{align*}
y^{\prime \prime }&=\sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.924 |
|
| \begin{align*}
y^{\prime \prime }-3&=x \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.891 |
|
| \begin{align*}
y^{\prime \prime } x +2&=\sqrt {x} \\
y \left (1\right ) &= 8 \\
y^{\prime }\left (1\right ) &= 6 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.134 |
|
| \begin{align*}
y^{\prime \prime } x +4 y^{\prime }&=18 x^{2} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.928 |
|
| \begin{align*}
y^{\prime \prime } x&=2 y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.687 |
|
| \begin{align*}
y^{\prime \prime }&=y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.661 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }&=8 \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.898 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.635 |
|
| \begin{align*}
y^{\prime } y^{\prime \prime }&=1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]] |
✓ |
✓ |
✓ |
✓ |
1.466 |
|
| \begin{align*}
y y^{\prime \prime }&=-{y^{\prime }}^{2} \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
7.616 |
|
| \begin{align*}
y^{\prime \prime }&=2 y^{\prime }-6 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.897 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }&=9 \,{\mathrm e}^{-3 x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.939 |
|
| \begin{align*}
\sin \left (y\right ) y^{\prime \prime }+\cos \left (y\right ) {y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.556 |
|
| \begin{align*}
y^{\prime \prime }&=y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.671 |
|
| \begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=2 y^{\prime } y \\
\end{align*} | [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] | ✓ | ✓ | ✓ | ✗ | 0.945 |
|
| \begin{align*}
y^{2} y^{\prime \prime }+y^{\prime \prime }+2 y {y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.559 |
|
| \begin{align*}
y^{\prime } y^{\prime \prime }&=1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]] |
✓ |
✓ |
✓ |
✓ |
1.435 |
|
| \begin{align*}
-y^{\prime }+y^{\prime \prime } x&=6 x^{5} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.860 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }&=9 \,{\mathrm e}^{-3 x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.901 |
|
| \begin{align*}
y^{\prime \prime } x +4 y^{\prime }&=18 x^{2} \\
y \left (1\right ) &= 8 \\
y^{\prime }\left (1\right ) &= -3 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.204 |
|
| \begin{align*}
y^{\prime \prime } x&=2 y^{\prime } \\
y \left (-1\right ) &= 4 \\
y^{\prime }\left (-1\right ) &= 12 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.887 |
|
| \begin{align*}
y^{\prime \prime }&=y^{\prime } \\
y \left (0\right ) &= 8 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.921 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }&=8 \,{\mathrm e}^{2 x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.216 |
|
| \begin{align*}
y^{\prime \prime } x +2 y^{\prime }&=6 \\
y \left (1\right ) &= 4 \\
y^{\prime }\left (1\right ) &= 5 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.054 |
|
| \begin{align*}
y^{\prime \prime }&=-{\mathrm e}^{-y} y^{\prime } \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
1.070 |
|
| \begin{align*}
y^{\prime \prime }&=2 y^{\prime } y \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✗ |
✗ |
0.632 |
|
| \begin{align*}
y^{\prime \prime }&=2 y^{\prime } y \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} | [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] | ✓ | ✓ | ✗ | ✗ | 0.564 |
|
| \begin{align*}
y^{\prime \prime }&=2 y^{\prime } y \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✗ |
✗ |
0.591 |
|
| \begin{align*}
y^{\prime \prime }&=2 y^{\prime } y \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✗ |
✗ |
0.582 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.851 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.779 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.462 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.158 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }&={\mathrm e}^{\frac {x}{2}} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.843 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }&=26 \cos \left (\frac {x}{3}\right )-12 \sin \left (\frac {x}{3}\right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.088 |
|
| \begin{align*}
y^{\prime \prime }&=6 \,{\mathrm e}^{x} \sin \left (x \right ) x \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.056 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }&=20 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.891 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }&=x^{2} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.874 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y&=85 \cos \left (2 \ln \left (x \right )\right ) \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
3.092 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y&=15 \cos \left (3 \ln \left (x \right )\right )-10 \sin \left (3 \ln \left (x \right )\right ) \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.189 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y&=\frac {10}{x} \\
\end{align*} | [[_2nd_order, _exact, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 1.797 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=\sqrt {x} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.058 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y&=\frac {1}{x -2} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.700 |
|
| \begin{align*}
y^{\prime \prime } x +\left (2 x +2\right ) y^{\prime }+2 y&=8 \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.184 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y&=\frac {10}{x} \\
y \left (1\right ) &= 3 \\
y^{\prime }\left (1\right ) &= -15 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.543 |
|
| \begin{align*}
y^{\prime }+2 y^{\prime \prime } x&=\sqrt {x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.858 |
|
| \begin{align*}
2 y^{\prime \prime }-7 y^{\prime }+3&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.946 |
|
| \begin{align*}
y^{\prime \prime } x&=3 y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.678 |
|
| \begin{align*}
y^{\prime \prime }-5 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.756 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=\frac {1}{x^{2}+1} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
2.302 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=\frac {1}{\left (x +1\right )^{2}} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.642 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=\frac {1}{x} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.585 |
|
| \begin{align*}
y^{\prime \prime }+9 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.818 |
|
| \begin{align*}
y^{\prime \prime }+9 y^{\prime }&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.954 |
|
| \begin{align*}
y^{\prime \prime }-\frac {y^{\prime }}{t}+\frac {y}{t^{2}}&=\frac {1}{t} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.850 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+t y^{\prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.562 |
|
| \begin{align*}
y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.787 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.145 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.151 |
|
| \begin{align*}
3 y^{\prime \prime }-y^{\prime }&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 7 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 2.316 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }&=3-4 t \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.148 |
|
| \begin{align*}
y^{\prime \prime }&=3 t^{4}-2 t \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.069 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }&=52 \sin \left (3 t \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.255 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }&=8 \,{\mathrm e}^{4 t}-4 \,{\mathrm e}^{-4 t} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✗ |
1.307 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }&=t^{2}-{\mathrm e}^{3 t} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.230 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }&=-24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.287 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }&=t^{2}-{\mathrm e}^{3 t} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.133 |
|
| \begin{align*}
y^{\prime \prime }&=t^{2}+{\mathrm e}^{t}+\sin \left (t \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.508 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }&=18 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.388 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }&=-{\mathrm e}^{3 t}-2 t \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= {\frac {8}{9}} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.467 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }&=-3 t -4 \,{\mathrm e}^{2 t} t^{2} \\
y \left (0\right ) &= -{\frac {7}{2}} \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.539 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }&=2 t^{2} \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= {\frac {3}{2}} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.304 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }&=-24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.585 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }&={\mathrm e}^{-3 t}-{\mathrm e}^{3 t} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✗ |
1.914 |
|
| \begin{align*}
y^{\prime \prime }+16 y^{\prime }&=t \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.126 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+3 t y^{\prime }+y&=\ln \left (t \right ) \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.287 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-4 t y^{\prime }-6 y&=2 \ln \left (t \right ) \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.614 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y&=\frac {1}{x^{2}} \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.859 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=\ln \left (x \right ) \\
y \left (1\right ) &= 2 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} | [[_2nd_order, _exact, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 3.300 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.733 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.717 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }&=5 t^{2} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.153 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }&=-3 \sin \left (t \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.246 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }&=\frac {1}{1+{\mathrm e}^{2 t}} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✗ |
1.537 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y&=0 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.217 |
|
| \begin{align*}
t \left (y y^{\prime \prime }+{y^{\prime }}^{2}\right )+y y^{\prime }&=1 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✗ |
✗ |
0.684 |
|
| \begin{align*}
\left (x -1\right ) y^{\prime \prime }&=1 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.589 |
|
| \begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
1.344 |
|
| \begin{align*}
y^{\prime \prime }&=x \,{\mathrm e}^{x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
2.092 |
|
| \begin{align*}
y^{\prime \prime }&=2 x \ln \left (x \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.892 |
|
| \begin{align*}
y^{\prime \prime } x&=y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.658 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.625 |
|
| \begin{align*}
y^{\prime \prime } x&=y^{\prime }+x^{2} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.873 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+2&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.970 |
|
| \begin{align*}
y^{\prime \prime }&=2 y^{\prime } y \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} | [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] | ✓ | ✓ | ✗ | ✗ | 0.598 |
|
| \begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.421 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }&=3 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.901 |
|
| \begin{align*}
y^{\prime \prime }-7 y^{\prime }&=\left (x -1\right )^{2} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.921 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.846 |
|
| \begin{align*}
y^{\prime \prime }+7 y^{\prime }&={\mathrm e}^{-7 x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.864 |
|
| \begin{align*}
4 y^{\prime \prime }-3 y^{\prime }&=x \,{\mathrm e}^{\frac {3 x}{4}} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.043 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }&={\mathrm e}^{4 x} x \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.939 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }&=-2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.937 |
|
| \begin{align*}
y^{\prime \prime }+8 y^{\prime }&=8 x \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.917 |
|
| \begin{align*}
7 y^{\prime \prime }-y^{\prime }&=14 x \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.882 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }&=3 x \,{\mathrm e}^{-3 x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.965 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }&={\mathrm e}^{x} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.063 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }&=4 \,{\mathrm e}^{x} \left (\cos \left (x \right )+\sin \left (x \right )\right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.281 |
|
| \begin{align*}
4 y^{\prime \prime }+8 y^{\prime }&=x \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.215 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }&=x +{\mathrm e}^{-4 x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.005 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }&=2 \cos \left (4 x \right )^{2} \\
\end{align*} | [[_2nd_order, _missing_y]] | ✓ | ✓ | ✓ | ✓ | 1.274 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }&=18 x -10 \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.165 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=\cos \left (x \right )^{2}+{\mathrm e}^{x}+x^{2} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.420 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=x^{2}-{\mathrm e}^{-x}+{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✗ |
1.385 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }&=1+{\mathrm e}^{x}+\cos \left (x \right )+\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.335 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+1&=3 \sin \left (2 x \right )+\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.727 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&={\mathrm e}^{-x} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.065 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }&=-5 \,{\mathrm e}^{-x} \left (\cos \left (x \right )+\sin \left (x \right )\right ) \\
y \left (0\right ) &= -4 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.661 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.221 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.967 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.638 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y&=\sin \left (\ln \left (x \right )\right ) \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.019 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x -3 y&=-\frac {16 \ln \left (x \right )}{x} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.497 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=x^{m} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.244 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=2 \ln \left (x \right )^{2}+12 x \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.187 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=\frac {1}{{\mathrm e}^{x}+1} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✗ |
1.164 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&={\mathrm e}^{2 x} \cos \left ({\mathrm e}^{x}\right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.504 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x&=\frac {1}{x^{2}+1} \\
y \left (\infty \right ) &= \frac {\pi ^{2}}{8} \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✗ |
✓ |
0.973 |
|
| \begin{align*}
x^{\prime \prime }+\left (2+x\right ) x^{\prime }&=0 \\
\end{align*} | [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] | ✓ | ✓ | ✓ | ✗ | 0.939 |
|
| \begin{align*}
1+{y^{\prime }}^{2}+y y^{\prime \prime }&=0 \\
y \left (0\right ) &= 1 \\
y \left (1\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
1.799 |
|
| \begin{align*}
y^{\prime \prime }+\alpha y^{\prime }&=0 \\
y \left (0\right ) &= {\mathrm e}^{\alpha } \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.238 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.683 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.393 |
|
| \begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.451 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.640 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }&=0 \\
y \left (0\right ) &= -2 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.809 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.989 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-4 y^{\prime } x -6 y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.726 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.398 |
|
| \begin{align*}
-3 y+y^{\prime } x +2 x^{2} y^{\prime \prime }&=0 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.003 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }&=3+4 \sin \left (2 t \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.059 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }&=2 t^{4}+t^{2} {\mathrm e}^{-3 t}+\sin \left (3 t \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.553 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+7 y^{\prime } x +5 y&=x \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.327 |
|
| \begin{align*}
t^{2} y^{\prime \prime }-2 y&=3 t^{2}-1 \\
\end{align*} | [[_2nd_order, _exact, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✓ | 0.610 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+7 t y^{\prime }+5 y&=t \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.287 |
|
| \begin{align*}
y^{\prime \prime }&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.660 |
|
| \begin{align*}
x y y^{\prime \prime }+x {y^{\prime }}^{2}-y^{\prime } y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
2.546 |
|
| \begin{align*}
x \left (y x +1\right ) y^{\prime \prime }+x^{2} {y^{\prime }}^{2}+\left (4 y x +2\right ) y^{\prime }+y^{2}+1&=0 \\
\end{align*} |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
1.435 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y&=x^{2}+\frac {1}{x} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.175 |
|
| \begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
2.255 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=4 x \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.628 |
|
| \begin{align*}
y^{\prime \prime }&={\mathrm e}^{y} y^{\prime } \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✗ |
✗ |
4.884 |
|
| \begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
4.496 |
|
| \begin{align*}
-y^{\prime }+y^{\prime \prime } x&=3 x^{2} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.462 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.427 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }&=6 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.318 |
|
| \begin{align*}
y^{\prime \prime }&={\mathrm e}^{x} \\
\end{align*} | [[_2nd_order, _quadrature]] | ✓ | ✓ | ✓ | ✓ | 1.755 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }&=4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.473 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }&=6 \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.378 |
|
| \begin{align*}
-5 y-3 y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.539 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y&=0 \\
y \left (1\right ) &= 1 \\
y^{\prime }\left (1\right ) &= 8 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.999 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=0 \\
y \left (2\right ) &= 0 \\
y^{\prime }\left (2\right ) &= {\mathrm e}^{-2} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.308 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.735 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }&=12 x -10 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.761 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=10 x^{4}+2 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.554 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime } x +y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.790 |
|
| \begin{align*}
x^{\prime \prime }+3 x^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.476 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=\frac {1}{x} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
3.701 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime } y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
2.932 |
|
| \begin{align*}
e y^{\prime \prime }&=\frac {P \left (\frac {L}{2}-x \right )}{2} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
2.859 |
|
| \begin{align*}
e y^{\prime \prime }&=\frac {w \left (\frac {L^{2}}{4}-x^{2}\right )}{2} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
2.750 |
|
| \begin{align*}
e y^{\prime \prime }&=-\frac {\left (w L +P \right ) x}{2}-\frac {w \,x^{2}}{2} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
2.721 |
|
| \begin{align*}
e y^{\prime \prime }&=-P \left (L -x \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
2.027 |
|
| \begin{align*}
e y^{\prime \prime }&=-P L +\left (w L +P \right ) x -\frac {w \left (L^{2}+x^{2}\right )}{2} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
2.576 |
|
| \begin{align*}
y^{\prime \prime } x +2 y^{\prime }&=2 x \\
\end{align*} | [[_2nd_order, _missing_y]] | ✓ | ✓ | ✓ | ✓ | 1.771 |
|
| \begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=2 x \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.579 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=x \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.581 |
|
| \begin{align*}
y^{\prime \prime }-\cot \left (x \right ) y^{\prime }+\csc \left (x \right )^{2} y&=\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.917 |
|
| \begin{align*}
\left (x^{2}-x \right ) y^{\prime \prime }+\left (3 x -2\right ) y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.498 |
|
| \begin{align*}
\left (3 x^{2}+x \right ) y^{\prime \prime }+2 \left (1+6 x \right ) y^{\prime }+6 y&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
2.227 |
|
| \begin{align*}
y^{\prime \prime }&=\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.811 |
|
| \begin{align*}
y^{\prime \prime } x +3 y^{\prime }&=3 x \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.672 |
|
| \begin{align*}
x&=y^{\prime \prime }+y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.661 |
|
| \begin{align*}
y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}}&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
3.728 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y&=x^{4} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.124 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+7 y^{\prime } x +5 y&=x^{5} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.344 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.648 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=x^{m} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.902 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=\frac {1}{\left (1-x \right )^{2}} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.388 |
|
| \begin{align*}
y^{\prime \prime } x +2 y^{\prime } x +2 y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.499 |
|
| \begin{align*}
y^{\prime \prime }+2 \,{\mathrm e}^{x} y^{\prime }+2 \,{\mathrm e}^{x} y&=x^{2} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.421 |
|
| \begin{align*}
x^{2} y y^{\prime \prime }+\left (-y+y^{\prime } x \right )^{2}-3 y^{2}&=0 \\
\end{align*} |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.460 |
|
| \begin{align*}
y^{\prime \prime }&=x^{2} \sin \left (x \right ) \\
\end{align*} | [[_2nd_order, _quadrature]] | ✓ | ✓ | ✓ | ✓ | 0.833 |
|
| \begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
1.134 |
|
| \begin{align*}
a^{2} y^{\prime \prime } y^{\prime }&=x \\
\end{align*} |
[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]] |
✓ |
✓ |
✓ |
✓ |
1.719 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.537 |
|
| \begin{align*}
\sin \left (x \right ) y^{\prime \prime }-\cos \left (x \right ) y^{\prime }+2 y \sin \left (x \right )&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.557 |
|
| \begin{align*}
y^{\prime \prime }&=\frac {a}{x} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.717 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.697 |
|
| \begin{align*}
a y^{\prime \prime }&=y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.644 |
|
| \begin{align*}
y^{\prime \prime } x +\left (1-x \right ) y^{\prime }-y&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.675 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.984 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+3 y^{\prime } x +y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.510 |
|
| \begin{align*}
1+{y^{\prime }}^{2}+y y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
1.201 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+7 y^{\prime } x +5 y&=x^{5} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.601 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y&=x^{4} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.179 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=x^{m} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.143 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+2 y^{\prime } x&=\ln \left (x \right ) \\
\end{align*} | [[_2nd_order, _missing_y]] | ✓ | ✓ | ✓ | ✓ | 0.975 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.880 |
|
| \begin{align*}
y^{\prime \prime } x +2 y^{\prime } x +2 y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.795 |
|
| \begin{align*}
y^{\prime \prime }+{\mathrm e}^{x} \left (y^{\prime }+y\right )&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.724 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+3 y^{\prime } x +y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.611 |
|
| \begin{align*}
y^{\prime \prime }+2 \,{\mathrm e}^{x} y^{\prime }+2 \,{\mathrm e}^{x} y&=x^{2} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.471 |
|
| \begin{align*}
\left (x^{2}-x \right ) y^{\prime \prime }+2 \left (2 x +1\right ) y^{\prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.650 |
|
| \begin{align*}
\left (x^{2}-x \right ) y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }-4 y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.612 |
|
| \begin{align*}
y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=2 x \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
3.581 |
|
| \begin{align*}
\left (2 x^{2}+3 x \right ) y^{\prime \prime }+\left (3+6 x \right ) y^{\prime }+2 y&={\mathrm e}^{x} \left (x +1\right ) \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.784 |
|
| \begin{align*}
y^{\prime } y+x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.843 |
|
| \begin{align*}
\left (-b \,x^{2}+a x \right ) y^{\prime \prime }+2 a y^{\prime }+2 b y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.905 |
|
| \begin{align*}
\sin \left (x \right ) y^{\prime \prime }-\cos \left (x \right ) y^{\prime }+2 y \sin \left (x \right )&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.724 |
|
| \begin{align*}
y^{\prime \prime }&=x +\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.021 |
|
| \begin{align*}
y^{\prime \prime }&=x \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.867 |
|
| \begin{align*}
y^{\prime \prime }&=\frac {a}{x} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.031 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.851 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=x \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.903 |
|
| \begin{align*}
y^{\prime } y+y^{\prime \prime }&=0 \\
\end{align*} | [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] | ✓ | ✓ | ✓ | ✗ | 1.260 |
|
| \begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
3.535 |
|
| \begin{align*}
1+{y^{\prime }}^{2}+y y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
2.932 |
|
| \begin{align*}
a y^{\prime \prime }&=y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.106 |
|
| \begin{align*}
a^{2} y^{\prime \prime } y^{\prime }&=x \\
\end{align*} |
[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]] |
✓ |
✓ |
✓ |
✓ |
3.480 |
|
| \begin{align*}
x {y^{\prime }}^{2}+x y y^{\prime \prime }&=3 y^{\prime } y \\
\end{align*} |
[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
1.609 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+3 y^{\prime } x +y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.619 |
|
| \begin{align*}
y^{\prime \prime } x +\left (1-x \right ) y^{\prime }&={\mathrm e}^{x}+y \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.617 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=8 x^{3} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.885 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.331 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y&=x^{2}+\frac {1}{x} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.880 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=\frac {1}{\left (1-x \right )^{2}} \\
\end{align*} | [[_2nd_order, _exact, _linear, _nonhomogeneous]] | ✓ | ✓ | ✓ | ✗ | 1.989 |
|
| \begin{align*}
x^{2} y y^{\prime \prime }+\left (-y+y^{\prime } x \right )^{2}-3 y^{2}&=0 \\
\end{align*} |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.849 |
|
| \begin{align*}
y^{\prime \prime }&=x^{2} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.343 |
|
| \begin{align*}
y^{\prime \prime }&=\sec \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.599 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.952 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&={\mathrm e}^{x} x^{2} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.855 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.088 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=3 x^{2} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.008 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.637 |
|
| \begin{align*}
2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y&=x^{2}+x \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.957 |
|
| \begin{align*}
z^{2} u^{\prime \prime }+\left (3 z +1\right ) u^{\prime }+u&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.048 |
|
| \begin{align*}
x^{\prime \prime }+p x^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.922 |
|
| \begin{align*}
x^{\prime \prime }-x^{\prime }&=t \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.126 |
|
| \begin{align*}
x^{\prime \prime }-2 x^{\prime } \left (x-1\right )&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✗ |
✗ |
2.065 |
|
| \begin{align*}
t^{2} x^{\prime \prime }-2 x&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.654 |
|
| \begin{align*}
t^{2} x^{\prime \prime }-t x^{\prime }-3 x&=0 \\
x \left (1\right ) &= 0 \\
x^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.835 |
|
| \begin{align*}
x^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.289 |
|
| \begin{align*}
y^{\prime \prime }&=9 x^{2}+2 x -1 \\
\end{align*} | [[_2nd_order, _quadrature]] | ✓ | ✓ | ✓ | ✓ | 1.577 |
|
| \begin{align*}
-y^{\prime }+y^{\prime \prime } x&=3 x^{2} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.268 |
|
| \begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
23.924 |
|
| \begin{align*}
y^{\prime \prime }&=\cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.504 |
|
| \begin{align*}
y^{\prime \prime }&={\mathrm e}^{y} y^{\prime } \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✗ |
✗ |
13.501 |
|
| \begin{align*}
1+{y^{\prime }}^{2}+y y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
50.521 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.158 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }&=6 x^{5} {\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.545 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=\sin \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.680 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=16 x^{3} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.806 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.513 |
|
| \begin{align*}
y^{\prime \prime }-7 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.685 |
|
| \begin{align*}
y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.530 |
|
| \begin{align*}
y^{\prime \prime }&=9 x^{2}+2 x -1 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.727 |
|
| \begin{align*}
x^{\prime \prime }&=t^{2}-4 t +8 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= -3 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.869 |
|
| \begin{align*}
y^{\prime \prime }&=12 x \left (4-x \right ) \\
y \left (0\right ) &= 7 \\
y \left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.659 |
|
| \begin{align*}
y^{\prime \prime }&=1-\cos \left (x \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} | [[_2nd_order, _quadrature]] | ✓ | ✓ | ✓ | ✓ | 1.086 |
|
| \begin{align*}
y^{\prime \prime }&=\sqrt {2 x +1} \\
y \left (0\right ) &= 5 \\
y \left (4\right ) &= -3 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.837 |
|
| \begin{align*}
2 y^{\prime } y+x {y^{\prime }}^{2}+x y y^{\prime \prime }&=0 \\
y \left (3\right ) &= 1 \\
y^{\prime }\left (3\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.934 |
|
| \begin{align*}
y^{\prime \prime } x -3 y^{\prime }&=4 x^{2} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.877 |
|
| \begin{align*}
y^{\prime \prime }&=2 x \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 10 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.112 |
|
| \begin{align*}
i^{\prime \prime }&=t^{2}+1 \\
i \left (0\right ) &= 2 \\
i^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.106 |
|
| \begin{align*}
y^{\prime } y^{\prime \prime }&=1 \\
y \left (0\right ) &= 5 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]] |
✓ |
✓ |
✓ |
✓ |
2.173 |
|
| \begin{align*}
y^{\prime \prime }&=\left (1+y\right ) y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
1.104 |
|
| \begin{align*}
1+{y^{\prime }}^{2}+y y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
2.229 |
|
| \begin{align*}
y^{\prime \prime }&=y^{\prime }+2 x \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.082 |
|
| \begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.449 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.722 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=x^{2}+3 x +{\mathrm e}^{3 x} \\
\end{align*} | [[_2nd_order, _missing_y]] | ✓ | ✓ | ✓ | ✓ | 0.830 |
|
| \begin{align*}
s^{\prime \prime }+s^{\prime }&=t +{\mathrm e}^{-t} \\
s \left (0\right ) &= 0 \\
s^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.008 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=4 x^{3}-2 \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.858 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y&=x \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.527 |
|
| \begin{align*}
x^{\prime \prime }+3 x^{\prime }&={\mathrm e}^{-3 t} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.782 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }&=7 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.813 |
|
| \begin{align*}
z^{\prime \prime }+2 z^{\prime }&=3 \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.927 |
|
| \begin{align*}
s^{\prime \prime }&=5 t^{2}-7 t \\
s \left (0\right ) &= 0 \\
s \left (1\right ) &= {\frac {1}{4}} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.738 |
|
| \begin{align*}
m s^{\prime \prime }&=\frac {g \,t^{2}}{2} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.865 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=3 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.955 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=3 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.848 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }-2 y^{\prime } y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.971 |
|
| \begin{align*}
y^{\prime \prime }-\frac {2 y^{\prime }}{y^{3}}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.927 |
|
| \begin{align*}
y^{\prime \prime }&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.816 |
|
| \begin{align*}
y^{\prime \prime }&=3 x \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.780 |
|
| \begin{align*}
\left (x -a \right ) \left (-b +x \right ) y^{\prime \prime }+2 \left (2 x -a -b \right ) y^{\prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.706 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.678 |
|
| \begin{align*}
y^{\prime \prime } x +4 y^{\prime }&=0 \\
\end{align*} | [[_2nd_order, _missing_y]] | ✓ | ✓ | ✓ | ✓ | 0.624 |
|
| \begin{align*}
\left (x -1\right ) y^{\prime \prime }+3 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.710 |
|
| \begin{align*}
-3 y+y^{\prime } x +2 x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.836 |
|
| \begin{align*}
y^{\prime \prime }-\frac {5 y^{\prime }}{x}+\frac {5 y}{x^{2}}&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.171 |
|
| \begin{align*}
3 x^{2} y^{\prime \prime }-2 y^{\prime } x -8 y&=3 x +5 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.316 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&={\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.865 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.165 |
|
| \begin{align*}
y^{\prime \prime }&=3 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.602 |
|
| \begin{align*}
-3 y+y^{\prime } x +2 x^{2} y^{\prime \prime }&=\frac {1}{x^{3}} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.292 |
|
| \begin{align*}
-3 y+y^{\prime } x +2 x^{2} y^{\prime \prime }&=\frac {1}{x^{3}} \\
y \left (\frac {1}{4}\right ) &= 0 \\
y^{\prime }\left (\frac {1}{4}\right ) &= {\frac {14}{9}} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.664 |
|
| \begin{align*}
-\frac {u^{\prime \prime }}{2}&=x \\
u \left (0\right ) &= 0 \\
u \left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✗ |
0.800 |
|
| \begin{align*}
-\frac {u^{\prime \prime }}{2}&=x \\
u \left (0\right ) &= 0 \\
u \left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✗ |
0.778 |
|
| \begin{align*}
\left (2 x +1\right ) y^{\prime \prime }+y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.420 |
|
| \begin{align*}
y^{\prime \prime } x&=x^{2}+1 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.306 |
|
| \begin{align*}
3 y^{\prime } y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.641 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.236 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.614 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=x +{\mathrm e}^{-x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.928 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }&=0 \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 1.091 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=-\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.793 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }&=-18 x \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 5 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.908 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=x +1 \\
y \left (0\right ) &= 1 \\
y \left (1\right ) &= {\frac {1}{2}} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.665 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=-2 x +2 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.659 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }&=42 \,{\mathrm e}^{4 x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.725 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }&={\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.671 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }&={\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.716 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }&=2 x \\
y \left (0\right ) &= 0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.701 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }&=2 x \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.920 |
|
| \begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.434 |
|
| \begin{align*}
y^{\prime \prime } x&=y^{\prime }+x^{5} \\
y \left (1\right ) &= {\frac {1}{2}} \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.939 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }+x&=0 \\
y \left (2\right ) &= -1 \\
y^{\prime }\left (2\right ) &= -{\frac {1}{2}} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.934 |
|
| \begin{align*}
y^{\prime \prime }&=2 t +1 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.677 |
|
| \begin{align*}
y^{\prime \prime }&=6 \sin \left (3 t \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.746 |
|
| \begin{align*}
y^{\prime \prime }&=6 \sin \left (3 t \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.062 |
|
| \begin{align*}
y^{\prime \prime }-3 y^{\prime }&={\mathrm e}^{t} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.863 |
|
| \begin{align*}
y^{\prime \prime }+2&=\cos \left (t \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.913 |
|
| \begin{align*}
y^{\prime \prime }+y y^{\prime }&=0 \\
\end{align*} | [[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] | ✓ | ✓ | ✓ | ✗ | 0.837 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+t y^{\prime }-y&=\sqrt {t} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.264 |
|
| \begin{align*}
t^{2} y^{\prime \prime }+\left (-1+t \right ) y^{\prime }-y&={\mathrm e}^{-t} t^{2} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
1.384 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }&={\mathrm e}^{-3 t} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.881 |
|
| \begin{align*}
t y^{\prime \prime }-y^{\prime }&=3 t^{2}-1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.937 |
|
| \begin{align*}
y^{\prime \prime }-\tan \left (t \right ) y^{\prime }-\sec \left (t \right )^{2} y&=t \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
11.580 |
|
| \begin{align*}
y^{\prime \prime }&={\mathrm e}^{i \omega t} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.599 |
|
| \begin{align*}
y^{\prime \prime }&=1 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.750 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.752 |
|
| \begin{align*}
y^{\prime \prime }&=4 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.639 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=t +1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.757 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }&=t^{2}+1 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.778 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }&={\mathrm e}^{2 t} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.798 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }&={\mathrm e}^{-4 t} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.782 |
|
| \begin{align*}
y^{\prime \prime }&=t \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.665 |
|
| \begin{align*}
y^{\prime \prime }&=t^{2} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.690 |
|
| \begin{align*}
y^{\prime \prime } x +2 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.701 |
|
| \begin{align*}
-y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.970 |
|
| \begin{align*}
y^{\prime \prime }&=y^{\prime } \\
\end{align*} | [[_2nd_order, _missing_x]] | ✓ | ✓ | ✓ | ✓ | 0.969 |
|