2.3.161 Problems 16001 to 16100

Table 2.853: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

16001

4218

\begin{align*} y^{\prime } x&=y \\ \end{align*}

1.463

16002

22062

\begin{align*} y^{\prime }+y&=\sin \left (x \right ) \\ y \left (\pi \right ) &= 1 \\ \end{align*}

1.463

16003

6818

\begin{align*} y^{\prime }+y x&=x^{3} y^{3} \\ \end{align*}

1.464

16004

18282

\begin{align*} y^{\prime \prime }-y&=1 \\ \end{align*}

1.464

16005

4698

\begin{align*} y^{\prime }+2 x y \left (1+a \,x^{2} y^{2}\right )&=0 \\ \end{align*}

1.465

16006

4716

\begin{align*} y^{\prime }&=a +b \cos \left (A x +B y\right ) \\ \end{align*}

1.465

16007

3604

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }+y x&=a x \\ y \left (0\right ) &= 2 a \\ \end{align*}

1.466

16008

16389

\begin{align*} y^{\prime } y^{\prime \prime }&=1 \\ \end{align*}

1.466

16009

4955

\begin{align*} x \left (1-2 x \right ) y^{\prime }+1+\left (1-4 x \right ) y&=0 \\ \end{align*}

1.467

16010

10091

\begin{align*} y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{3}&=0 \\ \end{align*}

1.467

16011

12285

\begin{align*} y^{\prime \prime }+y-\sin \left (a x \right ) \sin \left (b x \right )&=0 \\ \end{align*}

1.467

16012

13713

\begin{align*} y^{\prime \prime }+\left (a b \,x^{n}+b \,x^{n -1}+2 a \right ) y^{\prime }+a^{2} \left (b \,x^{n}+1\right ) y&=0 \\ \end{align*}

1.467

16013

13798

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }-b y&=0 \\ \end{align*}

1.467

16014

17465

\begin{align*} y^{\prime \prime }-3 y^{\prime }&=-{\mathrm e}^{3 t}-2 t \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= {\frac {8}{9}} \\ \end{align*}

1.467

16015

14971

\begin{align*} 3 x^{2} z^{\prime \prime }+5 x z^{\prime }-z&=0 \\ z \left (1\right ) &= 2 \\ z^{\prime }\left (1\right ) &= -1 \\ \end{align*}

1.468

16016

16750

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +2 y&=6 \\ \end{align*}

1.468

16017

10214

\begin{align*} \left (x^{2}-x \right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.469

16018

12328

\begin{align*} y^{\prime \prime }+2 a x y^{\prime }+y a^{2} x^{2}&=0 \\ \end{align*}

1.469

16019

12281

\begin{align*} y^{\prime \prime }&=0 \\ \end{align*}

1.470

16020

16571

\begin{align*} 4 x^{2} y^{\prime \prime }+4 y^{\prime } x -y&=0 \\ y \left (4\right ) &= 0 \\ y^{\prime }\left (4\right ) &= 2 \\ \end{align*}

1.470

16021

16910

\begin{align*} \left (x -3\right ) y^{\prime \prime }+\left (x -3\right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=3\).

1.470

16022

22760

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -9 y&=\sqrt {x}+\frac {1}{\sqrt {x}} \\ \end{align*}

1.470

16023

8754

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}}&=0 \\ \end{align*}

1.471

16024

17760

\begin{align*} y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+18 y^{\prime \prime }+30 y^{\prime }+25 y&={\mathrm e}^{-t} \cos \left (2 t \right )+{\mathrm e}^{-2 t} \sin \left (t \right ) \\ \end{align*}

1.471

16025

18521

\begin{align*} y+2 y^{\prime }&=3 t^{2} \\ \end{align*}

1.471

16026

19197

\begin{align*} y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {n \left (n +1\right ) y}{x^{2}}&=0 \\ \end{align*}

1.471

16027

25046

\begin{align*} y^{\prime }&=1+\left (t -y\right )^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

1.471

16028

4705

\begin{align*} y^{\prime }&=f \left (x \right )+g \left (x \right ) y+h \left (x \right ) y^{n} \\ \end{align*}

1.472

16029

13021

\begin{align*} \sqrt {y}\, y^{\prime \prime }-a&=0 \\ \end{align*}

1.472

16030

4214

\begin{align*} y^{\prime }&={\mathrm e}^{y} \sin \left (x \right ) \\ \end{align*}

1.473

16031

4770

\begin{align*} y^{\prime } x&=a x -\left (-b \,x^{2}+1\right ) y \\ \end{align*}

1.473

16032

8884

\begin{align*} y^{\prime }&=1+y \\ y \left (0\right ) &= 0 \\ \end{align*}

1.473

16033

11665

\begin{align*} {y^{\prime }}^{2}-2 y^{\prime }-y^{2}&=0 \\ \end{align*}

1.473

16034

15379

\begin{align*} x^{2}+y+\left (x -2 y\right ) y^{\prime }&=0 \\ \end{align*}

1.473

16035

19427

\begin{align*} y^{\prime \prime }-2 y^{\prime }&=4 \\ \end{align*}

1.473

16036

24913

\begin{align*} 2 y y^{\prime }&=y^{2}+t -1 \\ \end{align*}

1.473

16037

7323

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=6 \ln \left (x \right ) x^{2} \\ \end{align*}

1.474

16038

13488

\begin{align*} y^{\prime }&=f \left (x \right ) y^{2}+g^{\prime }\left (x \right ) y+a f \left (x \right ) {\mathrm e}^{2 g \left (x \right )} \\ \end{align*}

1.474

16039

14261

\begin{align*} x^{\prime }&=2 t x \\ \end{align*}

1.474

16040

20949

\begin{align*} y^{\prime }&=y^{2}-6 y-16 \\ \end{align*}

1.474

16041

22043

\begin{align*} \left (1-x \right ) y^{\prime }+y&=0 \\ \end{align*}

1.474

16042

22956

\begin{align*} \left (x^{2}-1\right ) y^{\prime }&=\left (y-1\right ) x \\ \end{align*}

1.474

16043

6490

\begin{align*} 4 y y^{\prime \prime }&=a y+b y^{2}+c y^{3}+3 {y^{\prime }}^{2} \\ \end{align*}

1.475

16044

12492

\begin{align*} 2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

1.475

16045

19085

\begin{align*} \left (x^{2} y^{3}+y x \right ) y^{\prime }&=1 \\ \end{align*}

1.475

16046

21041

\begin{align*} x^{\prime }&=\sin \left (t x\right ) \\ \end{align*}

1.476

16047

21609

\begin{align*} \left (1-\frac {1}{x}\right ) u^{\prime \prime }+\left (\frac {2}{x}-\frac {2}{x^{2}}-\frac {1}{x^{3}}\right ) u^{\prime }-\frac {u}{x^{4}}&=\frac {2}{x}-\frac {2}{x^{2}}-\frac {2}{x^{3}} \\ \end{align*}

1.476

16048

23384

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +2 y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

1.476

16049

167

\begin{align*} y^{\prime }+y^{2}&=x^{2}+1 \\ \end{align*}

1.477

16050

4605

\begin{align*} x^{2} y^{\prime \prime }-x^{2} y^{\prime }+2 \left (x -1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.477

16051

9482

\begin{align*} x^{\prime }&=x+2 y-4 t +1 \\ y^{\prime }&=-x+2 y+3 t +4 \\ \end{align*}

1.477

16052

14852

\begin{align*} -\frac {6 y^{\prime } x}{\left (3 x^{2}+1\right )^{2}}+\frac {y^{\prime \prime }}{3 x^{2}+1}+\lambda \left (3 x^{2}+1\right ) y&=0 \\ y \left (0\right ) &= 0 \\ y \left (\pi \right ) &= 0 \\ \end{align*}

1.477

16053

16678

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y&=\frac {5}{x^{3}} \\ \end{align*}

1.477

16054

23021

\begin{align*} 9 y^{\prime \prime }+49 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

1.477

16055

24931

\begin{align*} \left (t +1\right ) y^{\prime }+y&=0 \\ y \left (1\right ) &= -9 \\ \end{align*}

1.477

16056

22695

\begin{align*} L q^{\prime \prime }+R q^{\prime }+\frac {q}{c}&=E_{0} \sin \left (\omega t \right ) \\ q \left (0\right ) &= 0 \\ q^{\prime }\left (0\right ) &= 0 \\ \end{align*}

1.479

16057

24103

\begin{align*} x^{2} \left (x +1\right ) y^{\prime \prime }-3 y^{\prime } x +\left (3-2 x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.479

16058

4251

\begin{align*} y-x^{3}+\left (y^{3}+x \right ) y^{\prime }&=0 \\ \end{align*}

1.480

16059

6481

\begin{align*} 2 y y^{\prime \prime }&=4 y^{2}+3 {y^{\prime }}^{2} \\ \end{align*}

1.480

16060

7351

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=5 x +4 \,{\mathrm e}^{x} \left (1+\sin \left (2 x \right )\right ) \\ \end{align*}

1.480

16061

12302

\begin{align*} y^{\prime \prime }+\left (a \cos \left (2 x \right )+b \right ) y&=0 \\ \end{align*}

1.480

16062

15511

\begin{align*} y^{\prime }&=3 y^{{2}/{3}} \\ \end{align*}

1.480

16063

4655

\begin{align*} y^{\prime }&=\left (x +y\right )^{2} \\ \end{align*}

1.481

16064

15335

\begin{align*} y-y^{\prime } x&=0 \\ \end{align*}

1.481

16065

21434

\begin{align*} 2 y+y^{\prime }&=1 \\ y \left (0\right ) &= 0 \\ \end{align*}

1.481

16066

25523

\begin{align*} y^{\prime \prime }+100 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 10 \\ \end{align*}

1.481

16067

21986

\begin{align*} y^{\prime }&=y x \\ \end{align*}

1.482

16068

3515

\begin{align*} y^{\prime }&=\frac {y^{2}}{x^{2}+1} \\ \end{align*}

1.483

16069

10127

\begin{align*} y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{2} y-x^{3}-\frac {1}{x}&=0 \\ \end{align*}

1.483

16070

6433

\begin{align*} y y^{\prime \prime }+{y^{\prime }}^{2}&=y^{\prime } \\ \end{align*}

1.484

16071

8240

\begin{align*} y^{\prime }&=y^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

1.484

16072

22421

\begin{align*} \left (x^{2}+1\right ) y^{\prime }+2 y x&=0 \\ y \left (1\right ) &= -3 \\ \end{align*}

1.484

16073

4261

\begin{align*} y x -1+\left (x^{2}-y x \right ) y^{\prime }&=0 \\ \end{align*}

1.485

16074

17476

\begin{align*} y^{\prime }+4 y&={\mathrm e}^{-4 t} \\ y \left (0\right ) &= 1 \\ \end{align*}

1.485

16075

19982

\begin{align*} x^{2}&=a^{2} \left (1+{y^{\prime }}^{2}\right ) \\ \end{align*}

1.485

16076

20142

\begin{align*} a y^{\prime \prime }&=\sqrt {1+{y^{\prime }}^{2}} \\ \end{align*}

1.485

16077

22080

\begin{align*} 3 y^{\prime }+y x&={\mathrm e}^{-x^{2}} \\ \end{align*}

1.485

16078

4939

\begin{align*} x \left (1-x \right ) y^{\prime }+2-3 y x +y&=0 \\ \end{align*}

1.486

16079

14988

\begin{align*} x^{\prime }&=2 x+5 y \\ y^{\prime }&=-2 x+\cos \left (3 t \right ) \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= -1 \\ \end{align*}

1.486

16080

23195

\begin{align*} x^{2}-2 y+y^{\prime } x&=0 \\ \end{align*}

1.486

16081

24817

\begin{align*} y&=y^{\prime } x +{y^{\prime }}^{n} \\ \end{align*}

1.486

16082

457

\begin{align*} y^{\prime \prime } x +\left (-x^{3}+x \right ) y^{\prime }+y \sin \left (x \right )&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.487

16083

4296

\begin{align*} \ln \left (x \right ) y^{\prime }+\frac {x +y}{x}&=0 \\ \end{align*}

1.487

16084

5158

\begin{align*} 2 x y^{\prime } y+a +y^{2}&=0 \\ \end{align*}

1.487

16085

6974

\begin{align*} 2 y+y^{\prime }&=\sin \left (x \right ) \\ \end{align*}

1.487

16086

17036

\begin{align*} y^{\prime }&=y+\frac {1}{1-t} \\ \end{align*}

1.487

16087

8641

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=\left \{\begin {array}{cc} 4 t & 0<t <1 \\ 8 & 1<t \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

1.488

16088

7624

\begin{align*} \left (x^{2}-2\right ) y^{\prime \prime }+2 y^{\prime }+y \sin \left (x \right )&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.489

16089

9003

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.489

16090

19136

\begin{align*} y^{2} \left (y^{\prime }-1\right )&=\left (2-y^{\prime }\right )^{2} \\ \end{align*}

1.489

16091

23014

\begin{align*} y^{\prime \prime }-8 y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

1.490

16092

2689

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=\left \{\begin {array}{cc} \sin \left (2 t \right ) & 0\le t <\frac {\pi }{2} \\ 0 & \frac {\pi }{2}\le t \end {array}\right . \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

1.491

16093

8314

\begin{align*} y^{\prime }&=\frac {x^{2}}{5}+y \\ y \left (2\right ) &= -1 \\ \end{align*}

1.491

16094

17860

\begin{align*} y^{\prime }&=x^{2}+2 x -y \\ \end{align*}

1.491

16095

22790

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y&=24 x +24 \\ \end{align*}

1.491

16096

2604

\begin{align*} y^{\prime \prime }+y^{\prime }+4 y&=t^{2}+\left (2 t +3\right ) \left (1+\cos \left (t \right )\right ) \\ \end{align*}

1.492

16097

23926

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x&=2 x \\ \end{align*}

1.492

16098

15284

\begin{align*} x^{\prime }&=2 x+6 y-2 z+50 \,{\mathrm e}^{t} \\ y^{\prime }&=6 x+2 y-2 z+21 \,{\mathrm e}^{-t} \\ z^{\prime }&=-x+6 y+z+9 \\ \end{align*}

1.493

16099

10250

\begin{align*} h^{2}+\frac {2 a h}{\sqrt {1+{h^{\prime }}^{2}}}&=b^{2} \\ \end{align*}

1.494

16100

8718

\begin{align*} y {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\ \end{align*}

1.495