2.3.162 Problems 16101 to 16200

Table 2.855: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

16101

24030

\begin{align*} y^{\prime \prime }+3 y&=-x^{6}+x^{4} \\ \end{align*}

1.495

16102

1349

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=\ln \left (x \right ) x^{2} \\ \end{align*}

1.497

16103

3593

\begin{align*} y^{\prime }&=\frac {y^{2}}{x^{2}+1} \\ \end{align*}

1.497

16104

8982

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -4 \pi y&=x \\ \end{align*}

1.497

16105

18302

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x -3 y&=-\frac {16 \ln \left (x \right )}{x} \\ \end{align*}

1.497

16106

25020

\begin{align*} y^{\prime }&=\frac {1}{2 t -2 y+1} \\ \end{align*}

1.497

16107

4756

\begin{align*} y^{\prime } x&=x \sin \left (x \right )-y \\ \end{align*}

1.498

16108

11791

\begin{align*} x y^{2} {y^{\prime }}^{2}-2 y^{3} y^{\prime }+2 x y^{2}-x^{3}&=0 \\ \end{align*}

1.498

16109

19863

\begin{align*} \left (x^{2}-x \right ) y^{\prime \prime }+\left (3 x -2\right ) y^{\prime }+y&=0 \\ \end{align*}

1.498

16110

22987

\begin{align*} y^{\prime }+\tan \left (x \right ) y&=\sec \left (x \right ) \\ y \left (0\right ) &= 5 \\ \end{align*}

1.498

16111

22977

\begin{align*} y^{\prime }+2 y x&=x \\ y \left (0\right ) &= 1 \\ \end{align*}

1.499

16112

98

\begin{align*} \frac {1-4 x y^{2}}{x^{\prime }}&=y^{3} \\ \end{align*}

1.500

16113

906

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y&=\ln \left (x \right ) \\ \end{align*}

1.500

16114

1683

\begin{align*} 2 x -2 y^{2}+\left (12 y^{2}-4 y x \right ) y^{\prime }&=0 \\ \end{align*}

1.500

16115

9532

\begin{align*} x^{2} \left (x -5\right )^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}-25\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.500

16116

13107

\begin{align*} x^{\prime }&=c y-b z \\ y^{\prime }&=a z-c x \\ z^{\prime }&=b x-a y \\ \end{align*}

1.500

16117

17672

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\ y \left (-1\right ) &= 0 \\ y^{\prime }\left (-1\right ) &= 1 \\ \end{align*}

1.500

16118

4051

\begin{align*} x^{2} y^{\prime \prime }-x^{2} y^{\prime }-\left (3 x +2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.501

16119

7264

\begin{align*} y^{\prime \prime }+16 y&=0 \\ \end{align*}

1.501

16120

1538

\begin{align*} y^{\prime }+3 x^{2} y&=0 \\ \end{align*}

1.502

16121

4193

\begin{align*} y^{\prime }+\tan \left (x \right ) y&=\cot \left (x \right ) \\ \end{align*}

1.502

16122

30

\begin{align*} y^{\prime }&=y^{{1}/{3}} \\ y \left (0\right ) &= 0 \\ \end{align*}

1.503

16123

1110

\begin{align*} -y+y^{\prime }&=2 \,{\mathrm e}^{2 t} t \\ y \left (0\right ) &= 1 \\ \end{align*}

1.503

16124

3138

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=x \,{\mathrm e}^{-x} \\ y \left (0\right ) &= {\frac {1}{9}} \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

1.503

16125

3777

\begin{align*} x^{2} y^{\prime \prime }+6 y^{\prime } x +6 y&=4 \,{\mathrm e}^{2 x} \\ \end{align*}

1.503

16126

4984

\begin{align*} x \left (x^{2}+1\right ) y^{\prime }&=2-4 x^{2} y \\ \end{align*}

1.503

16127

6977

\begin{align*} y^{\prime } x +y&=x \sin \left (x \right ) \\ \end{align*}

1.503

16128

8646

\begin{align*} y^{\prime \prime }+4 y&=\left \{\begin {array}{cc} 8 t^{2} & 0<t <5 \\ 0 & 5<t \end {array}\right . \\ y \left (1\right ) &= 1+\cos \left (2\right ) \\ y^{\prime }\left (1\right ) &= 4-2 \sin \left (2\right ) \\ \end{align*}
Using Laplace transform method.

1.503

16129

15380

\begin{align*} y-3 x^{2}-\left (4 y-x \right ) y^{\prime }&=0 \\ \end{align*}

1.503

16130

17401

\begin{align*} y^{\prime \prime }+100 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 10 \\ \end{align*}

1.503

16131

744

\begin{align*} y^{\prime }&=\sqrt {x +y+1} \\ \end{align*}

1.504

16132

18328

\begin{align*} y^{\prime \prime }+y^{\prime }&={\mathrm e}^{2 x} \cos \left ({\mathrm e}^{x}\right ) \\ \end{align*}

1.504

16133

21567

\begin{align*} y^{\prime \prime }&=\cos \left (2 x \right ) \\ \end{align*}

1.504

16134

22474

\begin{align*} y^{\prime }&=\frac {x^{3}+2 y}{x^{3}+x} \\ \end{align*}

1.504

16135

22948

\begin{align*} \left (x +1\right ) y^{\prime }&=1+y \\ \end{align*}

1.504

16136

1704

\begin{align*} 3 x^{2}+2 y+\left (2 y+2 x \right ) y^{\prime }&=0 \\ \end{align*}

1.505

16137

14448

\begin{align*} 2 y x -3+\left (x^{2}+4 y\right ) y^{\prime }&=0 \\ y \left (1\right ) &= 2 \\ \end{align*}

1.505

16138

24039

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=0 \\ \end{align*}

1.505

16139

24290

\begin{align*} 3 \left (y-1\right ) x +y+2+y^{\prime } x&=0 \\ \end{align*}

1.505

16140

376

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=72 x^{5} \\ \end{align*}

1.506

16141

4730

\begin{align*} y^{\prime }&=a +b \sin \left (A x +B y\right ) \\ \end{align*}

1.506

16142

10284

\begin{align*} y^{\prime }&=y+\sin \left (x \right ) \\ \end{align*}

1.506

16143

12465

\begin{align*} x^{2} y^{\prime \prime }-x \left (x +4\right ) y^{\prime }+4 y&=0 \\ \end{align*}

1.506

16144

20273

\begin{align*} y^{\prime }+3 x^{2} y&=x^{5} {\mathrm e}^{x^{3}} \\ \end{align*}

1.506

16145

8344

\begin{align*} y^{\prime }&={\mathrm e}^{2 y+3 x} \\ \end{align*}

1.507

16146

15312

\begin{align*} x \left (x -1\right ) y^{\prime \prime }+3 y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.507

16147

24970

\begin{align*} \left (1-t \right ) y^{\prime }&=y^{2} \\ \end{align*}

1.507

16148

2655

\begin{align*} t^{2} y^{\prime \prime }+\left (t^{2}-3 t \right ) y^{\prime }+3 y&=0 \\ \end{align*}
Series expansion around \(t=0\).

1.508

16149

17456

\begin{align*} y^{\prime \prime }&=t^{2}+{\mathrm e}^{t}+\sin \left (t \right ) \\ \end{align*}

1.508

16150

23724

\begin{align*} x^{2} y^{\prime \prime }+4 x \left (1-x \right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.508

16151

3683

\begin{align*} y \,{\mathrm e}^{y x}+\left (2 y-x \,{\mathrm e}^{y x}\right ) y^{\prime }&=0 \\ \end{align*}

1.509

16152

5211

\begin{align*} \left (x -y^{2}\right ) y^{\prime }&=x^{2}-y \\ \end{align*}

1.509

16153

13781

\begin{align*} x^{2} y^{\prime \prime }+\left (a \,x^{2 n}+b \,x^{n}+c \right ) y&=0 \\ \end{align*}

1.509

16154

17458

\begin{align*} y^{\prime \prime }-y&=4 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

1.509

16155

19868

\begin{align*} x^{2} y^{\prime \prime }&=\ln \left (x \right ) \\ \end{align*}

1.509

16156

20472

\begin{align*} \left (1-y^{\prime }\right )^{2}-{\mathrm e}^{-2 y}&={\mathrm e}^{-2 x} {y^{\prime }}^{2} \\ \end{align*}

1.509

16157

4599

\begin{align*} x^{2} y^{\prime \prime }-\left (x^{2}+2 x \right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.510

16158

7181

\begin{align*} y^{\prime \prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.510

16159

18481

\begin{align*} y^{\prime }&=\frac {x^{2}}{1+y^{2}} \\ \end{align*}

1.510

16160

24982

\begin{align*} t y^{\prime }+y&={\mathrm e}^{t} \\ y \left (1\right ) &= 0 \\ \end{align*}

1.510

16161

6999

\begin{align*} y+\left (1+y^{2} {\mathrm e}^{2 x}\right ) y^{\prime }&=0 \\ \end{align*}

1.511

16162

15112

\begin{align*} x^{\prime }+5 x+y&={\mathrm e}^{t} \\ y^{\prime }-x-3 y&={\mathrm e}^{2 t} \\ \end{align*}

1.511

16163

23266

\begin{align*} y^{\prime \prime }+9 y&=0 \\ \end{align*}

1.511

16164

20194

\begin{align*} -y+y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=x \left (-x^{2}+1\right )^{{3}/{2}} \\ \end{align*}

1.512

16165

21894

\begin{align*} y^{\prime }-3 z&=5 \\ y-z^{\prime }-x&=3-2 t \\ z+x^{\prime }&=-1 \\ \end{align*}

1.512

16166

25045

\begin{align*} y^{\prime }&=y^{3}-y \\ y \left (0\right ) &= 1 \\ \end{align*}

1.512

16167

4287

\begin{align*} y^{\prime } \ln \left (x -y\right )&=1+\ln \left (x -y\right ) \\ \end{align*}

1.513

16168

7426

\begin{align*} r^{\prime }+r \tan \left (\theta \right )&=\sec \left (\theta \right ) \\ \end{align*}

1.513

16169

20407

\begin{align*} y&=\ln \left (\cos \left (y^{\prime }\right )\right )+y^{\prime } \tan \left (y^{\prime }\right ) \\ \end{align*}

1.513

16170

25607

\begin{align*} -y+y^{\prime }&={\mathrm e}^{t} \cos \left (t \right ) \\ \end{align*}

1.513

16171

4670

\begin{align*} y^{\prime }&=a \,x^{n -1}+b \,x^{2 n}+c y^{2} \\ \end{align*}

1.514

16172

19596

\begin{align*} y^{\prime \prime } x +y \sin \left (x \right )&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.515

16173

25436

\begin{align*} y^{\prime }&=a \left (t \right ) y+q \left (t \right ) \\ \end{align*}

1.515

16174

1500

\begin{align*} y^{\prime \prime }+y^{\prime }+\frac {5 y}{4}&=\left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\pi \\ 0 & \operatorname {otherwise} \end {array}\right . \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

1.516

16175

4892

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }&=1-x^{2}+y \\ \end{align*}

1.516

16176

7114

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=x \\ \end{align*}

1.516

16177

8802

\begin{align*} y^{\prime \prime }-\frac {x y^{\prime }}{-x^{2}+1}+\frac {y}{-x^{2}+1}&=0 \\ \end{align*}

1.516

16178

16376

\begin{align*} y^{\prime }&={\mathrm e}^{4 x +3 y} \\ \end{align*}

1.516

16179

22039

\begin{align*} y^{\prime }&=2 y x -x \\ \end{align*}

1.516

16180

4361

\begin{align*} 1-\left (1+2 x \tan \left (y\right )\right ) y^{\prime }&=0 \\ \end{align*}

1.517

16181

12556

\begin{align*} 50 x \left (x -1\right ) y^{\prime \prime }+25 \left (2 x -1\right ) y^{\prime }-2 y&=0 \\ \end{align*}

1.517

16182

15635

\begin{align*} y^{\prime }&=\sqrt {\left (y+2\right ) \left (y-1\right )} \\ y \left (0\right ) &= 1 \\ \end{align*}

1.517

16183

18400

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=\arcsin \left (\sin \left (x \right )\right ) \\ \end{align*}

1.517

16184

19115

\begin{align*} y&={y^{\prime }}^{2} {\mathrm e}^{y^{\prime }} \\ \end{align*}

1.518

16185

91

\begin{align*} y^{\prime }+\cot \left (x \right ) y&=\cos \left (x \right ) \\ \end{align*}

1.519

16186

6186

\begin{align*} \operatorname {a2} y+\operatorname {a1} \left (b x +a \right ) y^{\prime }+\left (b x +a \right )^{2} y^{\prime \prime }&=0 \\ \end{align*}

1.519

16187

999

\begin{align*} x_{1}^{\prime }&=13 x_{1}-42 x_{2}+106 x_{3}+139 x_{4} \\ x_{2}^{\prime }&=2 x_{1}-16 x_{2}+52 x_{3}+70 x_{4} \\ x_{3}^{\prime }&=x_{1}+6 x_{2}-20 x_{3}-31 x_{4} \\ x_{4}^{\prime }&=-x_{1}-6 x_{2}+22 x_{3}+33 x_{4} \\ \end{align*}

1.520

16188

4059

\begin{align*} x^{2} y^{\prime \prime }+x \left (x +4\right ) y^{\prime }+\left (2+x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.520

16189

7675

\begin{align*} y^{\prime }-y&={\mathrm e}^{2 x} \\ \end{align*}

1.520

16190

22144

\begin{align*} y^{\prime }-y&=x \,{\mathrm e}^{2 x}+1 \\ \end{align*}

1.520

16191

4272

\begin{align*} y^{\prime }+\cot \left (x \right ) y&=2 x \csc \left (x \right ) \\ \end{align*}

1.522

16192

14256

\begin{align*} R^{\prime }+\frac {R}{t}&=\frac {2}{t^{2}+1} \\ R \left (1\right ) &= 3 \ln \left (2\right ) \\ \end{align*}

1.522

16193

14272

\begin{align*} w^{\prime }&=t w+t^{3} w^{3} \\ \end{align*}

1.522

16194

15812

\begin{align*} y^{\prime }&=4 y^{2} \\ \end{align*}

1.522

16195

22219

\begin{align*} 4 x^{2} y^{\prime \prime }+\left (2 x^{2}+4 x \right ) y^{\prime }+\left (3 x -1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

1.522

16196

1609

\begin{align*} y^{\prime }&=\frac {{\mathrm e}^{x}+y}{y^{2}+x^{2}} \\ \end{align*}

1.523

16197

4976

\begin{align*} x \left (x^{2}+1\right ) y^{\prime }&=a \,x^{2}+y \\ \end{align*}

1.523

16198

5500

\begin{align*} x^{2} {y^{\prime }}^{2}+2 a x y^{\prime }+a^{2}+x^{2}-2 a y&=0 \\ \end{align*}

1.523

16199

17849

\begin{align*} 2 y+y^{\prime }&={\mathrm e}^{x} \\ \end{align*}

1.523

16200

19128

\begin{align*} y^{\prime }&=\sqrt {y-x}+1 \\ \end{align*}

1.523