2.2.7 Problem 8
Internal
problem
ID
[10418]
Book
:
Second
order
enumerated
odes
Section
:
section
2
Problem
number
:
8
Date
solved
:
Thursday, November 27, 2025 at 10:51:25 AM
CAS
classification
:
[[_homogeneous, `class C`], _dAlembert]
Solved using first_order_ode_homog_type_C
Time used: 0.035 (sec)
Solve
\begin{align*}
y^{\prime }&=\left (x +y\right )^{4} \\
\end{align*}
Let
\begin{align*} z = x +y\tag {1} \end{align*}
Then
\begin{align*} z^{\prime }\left (x \right )&=y^{\prime }+1 \end{align*}
Therefore
\begin{align*} y^{\prime }&=z^{\prime }\left (x \right )-1 \end{align*}
Hence the given ode can now be written as
\begin{align*} z^{\prime }\left (x \right )-1&=z^{4} \end{align*}
This is separable first order ode. Integrating
\begin{align*}
\int d x&=\int \frac {1}{z^{4}+1}d z \\
x +c_1&=\frac {\sqrt {2}\, \left (\ln \left (\frac {z^{2}+\sqrt {2}\, z +1}{z^{2}-\sqrt {2}\, z +1}\right )+2 \arctan \left (\sqrt {2}\, z +1\right )+2 \arctan \left (\sqrt {2}\, z -1\right )\right )}{8} \\
\end{align*}
Replacing
\(z\) back by its value from (1) then the above
gives the solution as Simplifying the above gives
\begin{align*}
\frac {\sqrt {2}\, \left (\ln \left (\frac {\left (x +y\right ) \sqrt {2}+x^{2}+2 x y+y^{2}+1}{\left (-y-x \right ) \sqrt {2}+x^{2}+2 x y+y^{2}+1}\right )+2 \arctan \left (\left (x +y\right ) \sqrt {2}+1\right )+2 \arctan \left (\left (x +y\right ) \sqrt {2}-1\right )\right )}{8} &= x +c_1 \\
\end{align*}
Figure 2.120: Slope field \(y^{\prime } = \left (x +y\right )^{4}\)
Summary of solutions found
\begin{align*}
\frac {\sqrt {2}\, \left (\ln \left (\frac {\left (x +y\right ) \sqrt {2}+x^{2}+2 x y+y^{2}+1}{\left (-y-x \right ) \sqrt {2}+x^{2}+2 x y+y^{2}+1}\right )+2 \arctan \left (\left (x +y\right ) \sqrt {2}+1\right )+2 \arctan \left (\left (x +y\right ) \sqrt {2}-1\right )\right )}{8} &= x +c_1 \\
\end{align*}
✓ Maple. Time used: 0.264 (sec). Leaf size: 882
ode := diff ( y ( x ), x ) = (x+y(x))^4;
dsolve ( ode , y ( x ), singsol=all);
\[
\text {Expression too large to display}
\]
Maple trace
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1 st order, trying the canonical coordinates of the invariance group
-> Calling odsolve with the ODE, diff(y(x),x) = -1, y(x)
*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
<- 1st order, canonical coordinates successful
<- homogeneous successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=\left (x +y \left (x \right )\right )^{4} \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d x}y \left (x \right ) \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=\left (x +y \left (x \right )\right )^{4} \end {array} \]
✓ Mathematica. Time used: 0.087 (sec). Leaf size: 175
ode = D [ y [ x ], x ] == (x + y[x])^4;
ic ={};
DSolve [{ ode , ic }, y [ x ], x , IncludeSingularSolutions -> True ]
\[
\text {Solve}\left [\int _1^{y(x)}\left (\frac {1}{x^4+4 K[2] x^3+6 K[2]^2 x^2+4 K[2]^3 x+K[2]^4+1}-\int _1^x-\frac {4 K[1]^3+12 K[2] K[1]^2+12 K[2]^2 K[1]+4 K[2]^3}{\left (K[1]^4+4 K[2] K[1]^3+6 K[2]^2 K[1]^2+4 K[2]^3 K[1]+K[2]^4+1\right )^2}dK[1]\right )dK[2]+\int _1^x\left (\frac {1}{K[1]^4+4 y(x) K[1]^3+6 y(x)^2 K[1]^2+4 y(x)^3 K[1]+y(x)^4+1}-1\right )dK[1]=c_1,y(x)\right ]
\]
✓ Sympy. Time used: 1.692 (sec). Leaf size: 109
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(-(x + y(x))**4 + Derivative(y(x), x),0)
ics = {}
dsolve ( ode , func = y ( x ), ics = ics )
\[
C_{1} + x - \frac {\sqrt {2} \log {\left (\left (- x - y{\left (x \right )}\right )^{2} - \sqrt {2} \left (- x - y{\left (x \right )}\right ) + 1 \right )}}{8} + \frac {\sqrt {2} \log {\left (\left (- x - y{\left (x \right )}\right )^{2} + \sqrt {2} \left (- x - y{\left (x \right )}\right ) + 1 \right )}}{8} + \frac {\sqrt {2} \operatorname {atan}{\left (\sqrt {2} \left (- x - y{\left (x \right )}\right ) - 1 \right )}}{4} + \frac {\sqrt {2} \operatorname {atan}{\left (\sqrt {2} \left (- x - y{\left (x \right )}\right ) + 1 \right )}}{4} = 0
\]