2.3.87 Problems 8601 to 8700

Table 2.705: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

8601

6955

\begin{align*} y^{2}-3 y x -2 x^{2}+\left (y x -x^{2}\right ) y^{\prime }&=0 \\ \end{align*}

0.433

8602

8560

\begin{align*} \left (x -1\right ) y^{\prime \prime }+3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.433

8603

9563

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y&=0 \\ \end{align*}

0.433

8604

12304

\begin{align*} y^{\prime \prime }-\left (1+2 \tan \left (x \right )^{2}\right ) y&=0 \\ \end{align*}

0.433

8605

14923

\begin{align*} y^{\prime \prime }+2 y^{\prime }+10 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.433

8606

17279

\begin{align*} \left (t^{2}-y^{2}\right ) y^{\prime }+y^{2}+t y&=0 \\ \end{align*}

0.433

8607

17485

\begin{align*} y^{\prime \prime }+4 y^{\prime }+20 y&=2 t \,{\mathrm e}^{-2 t} \\ \end{align*}

0.433

8608

18195

\begin{align*} y^{\prime \prime }+4 y^{\prime }+3 y&=9 \,{\mathrm e}^{-3 x} \\ \end{align*}

0.433

8609

18201

\begin{align*} y^{\prime \prime }+4 y^{\prime }-2 y&=8 \sin \left (2 x \right ) \\ \end{align*}

0.433

8610

20853

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{x}+1 \\ \end{align*}

0.433

8611

23563

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=-x \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

0.433

8612

23922

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2}&=0 \\ \end{align*}

0.433

8613

24431

\begin{align*} y^{\prime \prime }-\left (a +b \right ) y^{\prime }+a b y&=0 \\ \end{align*}

0.433

8614

25373

\begin{align*} y_{1}^{\prime }&=2 y_{1}-5 y_{2} \\ y_{2}^{\prime }&=y_{1}-2 y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= -1 \\ \end{align*}

0.433

8615

477

\begin{align*} 2 x^{2} y^{\prime \prime }+y^{\prime } x -\left (2 x^{2}+1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.434

8616

507

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}+1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.434

8617

1089

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x +2 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.434

8618

1839

\begin{align*} \left (2+x \right ) y^{\prime \prime }+y^{\prime } x +3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.434

8619

1877

\begin{align*} \left (2 x^{2}+4 x +5\right ) y^{\prime \prime }-20 \left (x +1\right ) y^{\prime }+60 y&=0 \\ y \left (-1\right ) &= 3 \\ y^{\prime }\left (-1\right ) &= -3 \\ \end{align*}
Series expansion around \(x=-1\).

0.434

8620

3735

\begin{align*} y^{\prime \prime }-y&=10 \,{\mathrm e}^{2 x} \cos \left (x \right ) \\ \end{align*}

0.434

8621

3859

\begin{align*} x_{1}^{\prime }&=-2 x_{1} \\ x_{2}^{\prime }&=x_{1}-3 x_{2}-x_{3} \\ x_{3}^{\prime }&=-x_{1}+x_{2}-x_{3} \\ \end{align*}

0.434

8622

3965

\begin{align*} y^{\prime \prime }+y&=t -\operatorname {Heaviside}\left (-1+t \right ) \left (-1+t \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

0.434

8623

6281

\begin{align*} y+\left (b x +a \right )^{4} y^{\prime \prime }&=0 \\ \end{align*}

0.434

8624

6289

\begin{align*} \left (-2 x^{2}+1\right ) y+4 x^{3} \left (2 x^{2}+1\right ) y^{\prime }+4 x^{6} y^{\prime \prime }&=0 \\ \end{align*}

0.434

8625

6803

\begin{align*} 2 y^{\prime \prime \prime } y^{\prime }&=2 {y^{\prime \prime }}^{2} \\ \end{align*}

0.434

8626

14054

\begin{align*} y&=-y^{\prime } x +x^{4} {y^{\prime }}^{2} \\ \end{align*}

0.434

8627

14557

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&={\mathrm e}^{x} \\ y \left (0\right ) &= 5 \\ y^{\prime }\left (1\right ) &= 7 \\ \end{align*}

0.434

8628

15576

\begin{align*} y^{\prime }&=\frac {1}{x^{2}-1} \\ y \left (2\right ) &= 1 \\ \end{align*}

0.434

8629

16001

\begin{align*} x^{\prime }&=-4 x+y \\ y^{\prime }&=2 x-3 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

0.434

8630

16861

\begin{align*} \left (x^{2}-4\right ) y^{\prime \prime }+\left (x^{2}+x -6\right ) y&=0 \\ \end{align*}
Series expansion around \(x=2\).

0.434

8631

18222

\begin{align*} y^{\prime \prime }-4 y^{\prime }+5 y&={\mathrm e}^{2 x} \left (2 \cos \left (x \right )+\sin \left (x \right )\right ) \\ \end{align*}

0.434

8632

21147

\begin{align*} x^{\prime \prime }-3 x^{\prime }+2 x&=3 \,{\mathrm e}^{t} t \\ \end{align*}

0.434

8633

21941

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y&=\frac {{\mathrm e}^{x}}{x^{3}} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 0 \\ y^{\prime \prime }\left (1\right ) &= 0 \\ \end{align*}

0.434

8634

22741

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{x}-{\mathrm e}^{-x} \\ \end{align*}

0.434

8635

24871

\begin{align*} y y^{\prime \prime }+{y^{\prime }}^{2}&=0 \\ \end{align*}

0.434

8636

25126

\begin{align*} y^{\prime \prime }-8 y^{\prime }+25 y&=104 \sin \left (3 t \right ) \\ \end{align*}

0.434

8637

25317

\begin{align*} y^{\prime }+4 y&=\delta \left (t -3\right ) \\ y \left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

0.434

8638

354

\begin{align*} y^{\prime \prime }+y&=\cos \left (x \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

0.435

8639

3195

\begin{align*} y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+9 y^{\prime \prime }&=\sin \left (3 x \right )+x \,{\mathrm e}^{x} \\ \end{align*}

0.435

8640

3747

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=\frac {2 \,{\mathrm e}^{-3 x}}{x^{2}+1} \\ \end{align*}

0.435

8641

3749

\begin{align*} y^{\prime \prime }-4 y^{\prime }+5 y&={\mathrm e}^{2 x} \tan \left (x \right ) \\ \end{align*}

0.435

8642

4169

\begin{align*} y_{1}^{\prime }&=y_{1}+y_{2} \\ y_{2}^{\prime }&=y_{1}-y_{2} \\ \end{align*}

0.435

8643

4749

\begin{align*} y^{\prime } x&=\sqrt {a^{2}-x^{2}} \\ \end{align*}

0.435

8644

5542

\begin{align*} y {y^{\prime }}^{2}&=a \\ \end{align*}

0.435

8645

7796

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=4 \cos \left (x \right ) \\ \end{align*}

0.435

8646

7811

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x^{5}} \\ \end{align*}

0.435

8647

8075

\begin{align*} p \left (1+p \right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.435

8648

8097

\begin{align*} y^{\prime \prime } x +\left (x^{3}+1\right ) y^{\prime }+b x y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.435

8649

9593

\begin{align*} \left (2+x \right ) y^{\prime \prime }+3 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

0.435

8650

9778

\begin{align*} y^{\prime \prime }&=x {y^{\prime }}^{2} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= {\frac {1}{2}} \\ \end{align*}

0.435

8651

13200

\(\left [\begin {array}{ccccc} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 2 \end {array}\right ]\)

N/A

N/A

N/A

0.435

8652

13871

\begin{align*} x^{4} y^{\prime \prime }+a y&=0 \\ \end{align*}

0.435

8653

15769

\begin{align*} x^{\prime }&=-x-2 y \\ y^{\prime }&=5 x+y \\ \end{align*}

0.435

8654

15991

\begin{align*} x^{\prime }&=3 x+4 y \\ y^{\prime }&=x \\ \end{align*}

0.435

8655

16901

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.435

8656

18194

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=8 \,{\mathrm e}^{-2 x} \\ \end{align*}

0.435

8657

18208

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&=10 \cos \left (x \right ) {\mathrm e}^{-2 x} \\ \end{align*}

0.435

8658

18412

\begin{align*} x^{\prime }+3 x+4 y&=0 \\ y^{\prime }+2 x+5 y&=0 \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 4 \\ \end{align*}

0.435

8659

20368

\begin{align*} y^{\prime \prime \prime \prime }-y&=x \sin \left (x \right ) \\ \end{align*}

0.435

8660

21112

\begin{align*} x^{\prime \prime }-3 x^{\prime }+2 x&=0 \\ x \left (1\right ) &= 0 \\ x^{\prime }\left (1\right ) &= 1 \\ \end{align*}

0.435

8661

21224

\begin{align*} x^{\prime }&=x+y \\ y^{\prime }&=-y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= -1 \\ y \left (0\right ) &= 2 \\ \end{align*}

0.435

8662

3757

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {4 \,{\mathrm e}^{x} \ln \left (x \right )}{x^{3}} \\ \end{align*}

0.436

8663

8746

\begin{align*} \left (y^{2} x^{2}+1\right ) y+\left (y^{2} x^{2}-1\right ) x y^{\prime }&=0 \\ \end{align*}

0.436

8664

9649

\begin{align*} y^{\prime \prime }+2 y^{\prime }+y&=\delta \left (-1+t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.436

8665

14663

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime }&={\mathrm e}^{x} x^{2}+3 x \,{\mathrm e}^{2 x}+5 x^{2} \\ \end{align*}

0.436

8666

16045

\begin{align*} x^{\prime }&=-x+2 y \\ y^{\prime }&=2 x-4 y \\ z^{\prime }&=0 \\ \end{align*}

0.436

8667

16521

\begin{align*} y^{\prime \prime }-4 y^{\prime }+13 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.436

8668

17451

\begin{align*} y^{\prime \prime }-7 y^{\prime }+12 y&=-2 t^{3} {\mathrm e}^{4 t} \\ \end{align*}

0.436

8669

18225

\begin{align*} y^{\prime \prime }-y&=x +\sin \left (x \right ) \\ \end{align*}

0.436

8670

19686

\begin{align*} x^{\prime }&=x \\ y^{\prime }&=x+2 y \\ \end{align*}

0.436

8671

21212

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=-x \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 1 \\ \end{align*}

0.436

8672

21217

\begin{align*} x^{\prime }&=x+2 y \\ y^{\prime }&=3 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= 3 \\ \end{align*}

0.436

8673

21270

\begin{align*} x^{\prime \prime }+t x^{\prime }+x&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(t=0\).

0.436

8674

22148

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x} \\ \end{align*}

0.436

8675

24891

\begin{align*} 2 y^{\prime \prime }&={y^{\prime }}^{3} \sin \left (2 x \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

0.436

8676

2231

\begin{align*} x^{4} y^{\prime \prime \prime \prime }+3 x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y&=9 x^{2} \\ y \left (1\right ) &= -7 \\ y^{\prime }\left (1\right ) &= -11 \\ y^{\prime \prime }\left (1\right ) &= -5 \\ y^{\prime \prime \prime }\left (1\right ) &= 6 \\ \end{align*}

0.437

8677

2825

\begin{align*} x_{1}^{\prime }&=-x_{2} \\ x_{2}^{\prime }&=8 x_{1}-6 x_{2} \\ \end{align*}

0.437

8678

6959

\begin{align*} x \left (2 x +3 y\right ) y^{\prime }+3 \left (x +y\right )^{2}&=0 \\ \end{align*}

0.437

8679

7178

\begin{align*} a^{2} y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.437

8680

7311

\begin{align*} y^{\prime \prime }+2 y^{\prime } x&=0 \\ \end{align*}

0.437

8681

7647

\begin{align*} \left (x^{2}-2 x \right ) y^{\prime \prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=1\).

0.437

8682

9740

\begin{align*} 2 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}+x^{4}&=0 \\ \end{align*}

0.437

8683

9984

\begin{align*} x^{\prime }&=-x+4 y \\ y^{\prime }&=2 x-3 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 3 \\ y \left (0\right ) &= 0 \\ \end{align*}

0.437

8684

16524

\begin{align*} y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= {\frac {1}{2}} \\ \end{align*}

0.437

8685

17014

\begin{align*} x^{\prime }&=-5 x+4 y \\ y^{\prime }&=2 x+2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 4 \\ y \left (0\right ) &= 0 \\ \end{align*}

0.437

8686

17101

\begin{align*} y^{\prime }&=y^{3}+1 \\ \end{align*}

0.437

8687

18870

\begin{align*} y^{\prime \prime }+4 y&=g \left (t \right ) \\ \end{align*}

0.437

8688

19246

\begin{align*} \left (x^{2}+1\right ) y^{\prime }&=x \\ \end{align*}

0.437

8689

19480

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.437

8690

21931

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=0 \\ \end{align*}

0.437

8691

22170

\begin{align*} \left (x^{2}-4\right ) y^{\prime \prime }+y&=0 \\ \end{align*}
Series expansion around \(x=1\).

0.437

8692

22731

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=\ln \left (x \right ) \\ \end{align*}

0.437

8693

23435

\begin{align*} y^{\prime \prime }+y^{\prime }+{\mathrm e}^{x} y&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

0.437

8694

23533

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{-2 x} \sec \left (x \right ) \\ \end{align*}

0.437

8695

25137

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=25 \,{\mathrm e}^{2 t} t \\ \end{align*}

0.437

8696

478

\begin{align*} 2 x^{2} y^{\prime \prime }+y^{\prime } x -\left (-2 x^{2}+3\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.438

8697

1402

\begin{align*} x_{1}^{\prime }&=-x_{1}-4 x_{2} \\ x_{2}^{\prime }&=x_{1}-x_{2} \\ \end{align*}

0.438

8698

2232

\begin{align*} 4 x^{4} y^{\prime \prime \prime \prime }+24 x^{3} y^{\prime \prime \prime }+23 x^{2} y^{\prime \prime }-y^{\prime } x +y&=6 x \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= 0 \\ y^{\prime \prime }\left (1\right ) &= 4 \\ y^{\prime \prime \prime }\left (1\right ) &= -{\frac {37}{4}} \\ \end{align*}

0.438

8699

4532

\begin{align*} x^{\prime }+2 x-y&=0 \\ x+y^{\prime }-2 y&=0 \\ \end{align*}

0.438

8700

6187

\begin{align*} x^{3} y^{\prime \prime }&=b x +a \\ \end{align*}

0.438