| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 8701 |
\begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \left (2 x -3\right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.438 |
|
| 8702 |
\begin{align*}
y^{\prime }&=\left (y-1\right )^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.438 |
|
| 8703 |
\begin{align*}
y^{\prime }+y&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.438 |
|
| 8704 |
\begin{align*}
x {y^{\prime }}^{2}-2 y^{\prime } y-x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.438 |
|
| 8705 |
\begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.438 |
|
| 8706 |
\begin{align*}
y^{\prime \prime }+y&=\tan \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.438 |
|
| 8707 |
\begin{align*}
x^{\prime \prime }+x&=\tan \left (t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.438 |
|
| 8708 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=t^{2} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.438 |
|
| 8709 |
\begin{align*}
y^{\prime \prime }+y^{\prime } x&=\sin \left (x \right ) \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.438 |
|
| 8710 |
\begin{align*}
y^{\prime \prime }+{\mathrm e}^{x} y^{\prime }+\left (x +1\right ) y&=0 \\
y \left (1\right ) &= 0 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.438 |
|
| 8711 |
\begin{align*}
y_{1}^{\prime }&=-y_{1}+2 y_{2} \\
y_{2}^{\prime }&=-2 y_{1}-y_{2} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 1 \\
y_{2} \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.438 |
|
| 8712 |
\begin{align*}
\left (2 x +1\right ) y^{\prime \prime }-2 y^{\prime }-\left (2 x +3\right ) y&=\left (2 x +1\right )^{2} {\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.439 |
|
| 8713 |
\begin{align*}
y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.439 |
|
| 8714 |
\begin{align*}
y^{\prime \prime }+2 y&=x^{2} {\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.439 |
|
| 8715 |
\begin{align*}
z y^{\prime \prime }-2 y^{\prime }+y z&=0 \\
\end{align*} Series expansion around \(z=0\). |
✓ |
✓ |
✓ |
✓ |
0.439 |
|
| 8716 |
\begin{align*}
y^{\prime \prime }+5 y^{\prime }+4 y&=F \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.439 |
|
| 8717 |
\begin{align*}
2 y \left (x \,{\mathrm e}^{x^{2}}+\sin \left (x \right ) \cos \left (x \right ) y\right )+\left (2 \,{\mathrm e}^{x^{2}}+3 y \sin \left (x \right )^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.439 |
|
| 8718 | \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=4 \sin \left (x \right ) \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.439 |
|
| 8719 |
\begin{align*}
2 y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.439 |
|
| 8720 |
\begin{align*}
4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (16 x^{2}+3\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.439 |
|
| 8721 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime } x +2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.439 |
|
| 8722 |
\begin{align*}
y^{\prime \prime }+y&=\cos \left (x \right ) x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.439 |
|
| 8723 |
\begin{align*}
y^{\prime \prime }+6 y^{\prime }+5 y&=2 \,{\mathrm e}^{x}+10 \,{\mathrm e}^{5 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.439 |
|
| 8724 |
\begin{align*}
-{y^{\prime }}^{2}+{y^{\prime }}^{3}+y y^{\prime \prime }&=0 \\
y \left (0\right ) &= -1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
0.439 |
|
| 8725 |
\begin{align*}
x^{\prime }&=-5 x-2 y \\
y^{\prime }&=-x-4 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.439 |
|
| 8726 |
\begin{align*}
y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -{\frac {1}{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.439 |
|
| 8727 |
\begin{align*}
x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-9 y^{\prime } x +9 y&=12 x \sin \left (x^{2}\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.439 |
|
| 8728 |
\begin{align*}
y^{\prime \prime }+b \left (t \right ) y^{\prime }+c \left (t \right ) y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.439 |
|
| 8729 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+26 y&=-338 t \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.439 |
|
| 8730 |
\begin{align*}
i^{\prime }&=\frac {i t^{2}}{t^{3}-i^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.439 |
|
| 8731 |
\begin{align*}
2 y^{\prime \prime } x +y^{\prime }-y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.439 |
|
| 8732 |
\begin{align*}
y^{\prime \prime } x +y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.439 |
|
| 8733 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+3 y&={\mathrm e}^{-t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.439 |
|
| 8734 |
\begin{align*}
y^{\prime }-4 y&=\delta \left (t -4\right ) \\
y \left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.439 |
|
| 8735 |
\begin{align*}
x_{1}^{\prime }&=x_{1} \\
x_{2}^{\prime }&=3 x_{2}+2 x_{3} \\
x_{3}^{\prime }&=2 x_{1}-2 x_{2}-x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.440 |
|
| 8736 |
\begin{align*}
y^{\prime }-5 y&=2 \,{\mathrm e}^{-t}+\delta \left (t -3\right ) \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.440 |
|
| 8737 |
\begin{align*}
2 y^{\prime \prime } x -y^{\prime }+2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.440 |
|
| 8738 | \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=\frac {1}{{\mathrm e}^{2 x}+1} \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 0.440 |
|
| 8739 |
\begin{align*}
y^{\prime \prime }+4 y&=3 \operatorname {Heaviside}\left (t \right )-3 \operatorname {Heaviside}\left (t -4\right )+\left (2 t -5\right ) \operatorname {Heaviside}\left (t -4\right ) \\
y \left (0\right ) &= {\frac {3}{4}} \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.440 |
|
| 8740 |
\begin{align*}
\left (x^{2}-1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.440 |
|
| 8741 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }-8 y&=8 x^{2}-3 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.440 |
|
| 8742 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime }-10 y&=-5 \,{\mathrm e}^{3 x} \\
y \left (0\right ) &= 5 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.440 |
|
| 8743 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=\left (24 x^{2}+2\right ) {\mathrm e}^{2 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.440 |
|
| 8744 |
\begin{align*}
3 x^{2} y^{\prime \prime }+\left (-6 x^{2}+2\right ) y^{\prime }-4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.440 |
|
| 8745 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{3 x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.440 |
|
| 8746 |
\begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.440 |
|
| 8747 |
\begin{align*}
y^{\prime \prime }+\left (1-x \right ) y^{\prime }-y x&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.440 |
|
| 8748 |
\begin{align*}
y^{\prime \prime }+y&=12 \cos \left (2 x \right )-\sin \left (3 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.440 |
|
| 8749 |
\begin{align*}
2 {y^{\prime }}^{3}+y^{\prime } x -2 y&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
0.440 |
|
| 8750 |
\begin{align*}
y^{\prime }+a y&=b \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.440 |
|
| 8751 |
\begin{align*}
6 x^{2} y^{\prime \prime }+7 y^{\prime } x -\left (x^{2}+2\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| 8752 |
\begin{align*}
\left (2 x^{2}-8 x +11\right ) y^{\prime \prime }-16 \left (x -2\right ) y^{\prime }+36 y&=0 \\
\end{align*} Series expansion around \(x=2\). |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| 8753 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+2 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| 8754 |
\begin{align*}
x_{1}^{\prime }&=2 x_{1}+x_{2}+3 x_{3} \\
x_{2}^{\prime }&=2 x_{2}-x_{3} \\
x_{3}^{\prime }&=2 x_{3} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 1 \\
x_{2} \left (0\right ) &= 2 \\
x_{3} \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| 8755 |
\begin{align*}
x_{1}^{\prime }&=2 x_{1}+x_{2} \\
x_{2}^{\prime }&=-5 x_{1}-2 x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| 8756 |
\begin{align*}
\sin \left (x \right ) y^{\prime }&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| 8757 | \begin{align*}
y^{\prime \prime }-4 y&=\frac {8}{{\mathrm e}^{2 x}+1} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.441 |
|
| 8758 |
\begin{align*}
y^{\prime \prime }-10 y^{\prime }+25 y&=\frac {2 \,{\mathrm e}^{5 x}}{x^{2}+4} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.441 |
|
| 8759 |
\begin{align*}
y^{\prime }+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| 8760 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{x}-2 \,{\mathrm e}^{2 x}+\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| 8761 |
\begin{align*}
y^{\prime }+y^{\prime \prime \prime }&=\sin \left (x \right )+\cos \left (x \right ) x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| 8762 |
\begin{align*}
y^{\prime \prime }&=f \left (x \right ) y^{2}-y^{3}+\left (f \left (x \right )-3 y\right ) y^{\prime } \\
\end{align*} |
✗ |
✓ |
✗ |
✗ |
0.441 |
|
| 8763 |
\begin{align*}
2 y+y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| 8764 |
\begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (36 x^{2}-\frac {1}{4}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| 8765 |
\begin{align*}
y^{\prime \prime } x -5 y^{\prime }+y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| 8766 |
\begin{align*}
y&=y^{\prime } x +x^{2} {y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| 8767 |
\begin{align*}
y^{\prime \prime } x +\left (x +n \right ) y^{\prime }+\left (n +1\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.441 |
|
| 8768 |
\begin{align*}
4 y^{\prime \prime }+9 y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| 8769 |
\begin{align*}
n \left (n +2\right ) y-3 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.441 |
|
| 8770 |
\begin{align*}
y^{\prime }&=\frac {1}{2 y+1} \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| 8771 |
\begin{align*}
x^{\prime \prime }-x&=\frac {{\mathrm e}^{t}}{1+{\mathrm e}^{t}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| 8772 |
\begin{align*}
y^{\prime }&=1-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| 8773 |
\begin{align*}
y^{\prime }&=2-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| 8774 |
\begin{align*}
x^{\prime }&=-2 x+y \\
y^{\prime }&=-2 y \\
z^{\prime }&=z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| 8775 |
\begin{align*}
y^{\prime \prime }+7 y^{\prime }+12 y&=3 \,{\mathrm e}^{-t} \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| 8776 | \begin{align*}
y^{\prime \prime }+4 y&={\mathrm e}^{t} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.441 |
|
| 8777 |
\begin{align*}
y^{\prime }&={\mathrm e}^{-y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| 8778 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime }-10 y&=-6 \,{\mathrm e}^{4 x} \\
y \left (0\right ) &= 6 \\
y^{\prime }\left (0\right ) &= 8 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| 8779 |
\begin{align*}
y^{\prime \prime }+9 y&=x^{3} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| 8780 |
\begin{align*}
\left (3-2 x \right ) y^{\prime \prime }+2 y^{\prime }-2 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| 8781 |
\begin{align*}
\ln \left (y^{\prime }\right )&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| 8782 |
\begin{align*}
y^{\prime \prime }+y^{\prime }-2 y&=0 \\
y \left (0\right ) &= 8 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| 8783 |
\begin{align*}
x^{\prime }&=-4 x-y \\
y^{\prime }&=x-2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| 8784 |
\begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x^{5}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| 8785 |
\begin{align*}
{y^{\prime }}^{2}-y^{\prime } x -y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.441 |
|
| 8786 |
\begin{align*}
y^{\prime \prime } x&=y^{\prime } \left (2-3 y^{\prime } x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.441 |
|
| 8787 |
\begin{align*}
y^{\prime \prime }-4 y&=3 \cos \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.442 |
|
| 8788 |
\begin{align*}
y^{\prime \prime }-2 m y^{\prime }+m^{2} y&=\frac {{\mathrm e}^{m x}}{x^{2}+1} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.442 |
|
| 8789 |
\begin{align*}
x^{2} y^{\prime \prime }&=b x +a \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.442 |
|
| 8790 |
\begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{-x}}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.442 |
|
| 8791 |
\begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \ln \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.442 |
|
| 8792 |
\begin{align*}
x^{\prime }&=4 x+y \\
y^{\prime }&=4 y+z \\
z^{\prime }&=4 z \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.442 |
|
| 8793 |
\begin{align*}
y^{\prime \prime } x +y^{\prime }+2 y&=0 \\
y \left (1\right ) &= 2 \\
y^{\prime }\left (1\right ) &= 4 \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✓ |
0.442 |
|
| 8794 |
\begin{align*}
x^{\prime \prime }+2 x^{\prime }+10 x&={\mathrm e}^{-t} \cos \left (3 t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.442 |
|
| 8795 | \begin{align*}
y^{\prime \prime }-2 y^{\prime }+2 y&={\mathrm e}^{x} \sin \left (\frac {x}{2}\right )^{2} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.442 |
|
| 8796 |
\begin{align*}
3 y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.442 |
|
| 8797 |
\begin{align*}
y^{\prime \prime }-y&={\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.442 |
|
| 8798 |
\begin{align*}
x_{1}^{\prime }&=x_{1}-2 x_{2} \\
x_{2}^{\prime }&=2 x_{1}+x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 0 \\
x_{2} \left (0\right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.443 |
|
| 8799 |
\begin{align*}
y^{\prime }&=\left (1-y\right )^{2} y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.443 |
|
| 8800 |
\begin{align*}
y^{\prime \prime } x +y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.443 |
|