2.3.88 Problems 8701 to 8800

Table 2.707: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

8701

7097

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \left (2 x -3\right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

0.438

8702

8384

\begin{align*} y^{\prime }&=\left (y-1\right )^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

0.438

8703

9350

\begin{align*} y^{\prime }+y&=1 \\ \end{align*}

0.438

8704

14081

\begin{align*} x {y^{\prime }}^{2}-2 y^{\prime } y-x&=0 \\ \end{align*}

0.438

8705

14103

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \\ \end{align*}

0.438

8706

14106

\begin{align*} y^{\prime \prime }+y&=\tan \left (x \right ) \\ \end{align*}

0.438

8707

14330

\begin{align*} x^{\prime \prime }+x&=\tan \left (t \right ) \\ \end{align*}

0.438

8708

16102

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=t^{2} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.438

8709

17696

\begin{align*} y^{\prime \prime }+y^{\prime } x&=\sin \left (x \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

0.438

8710

22081

\begin{align*} y^{\prime \prime }+{\mathrm e}^{x} y^{\prime }+\left (x +1\right ) y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

0.438

8711

25371

\begin{align*} y_{1}^{\prime }&=-y_{1}+2 y_{2} \\ y_{2}^{\prime }&=-2 y_{1}-y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= 0 \\ \end{align*}

0.438

8712

1816

\begin{align*} \left (2 x +1\right ) y^{\prime \prime }-2 y^{\prime }-\left (2 x +3\right ) y&=\left (2 x +1\right )^{2} {\mathrm e}^{-x} \\ \end{align*}

0.439

8713

3169

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{3 x} \\ \end{align*}

0.439

8714

3188

\begin{align*} y^{\prime \prime }+2 y&=x^{2} {\mathrm e}^{-x} \\ \end{align*}

0.439

8715

3505

\begin{align*} z y^{\prime \prime }-2 y^{\prime }+y z&=0 \\ \end{align*}
Series expansion around \(z=0\).

0.439

8716

3767

\begin{align*} y^{\prime \prime }+5 y^{\prime }+4 y&=F \left (x \right ) \\ \end{align*}

0.439

8717

4416

\begin{align*} 2 y \left (x \,{\mathrm e}^{x^{2}}+\sin \left (x \right ) \cos \left (x \right ) y\right )+\left (2 \,{\mathrm e}^{x^{2}}+3 y \sin \left (x \right )^{2}\right ) y^{\prime }&=0 \\ \end{align*}

0.439

8718

7759

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=4 \sin \left (x \right ) \\ \end{align*}

0.439

8719

8161

\begin{align*} 2 y^{\prime }+y&=0 \\ \end{align*}

0.439

8720

9585

\begin{align*} 4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (16 x^{2}+3\right ) y&=0 \\ \end{align*}

0.439

8721

9848

\begin{align*} y^{\prime \prime }+2 y^{\prime } x +2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.439

8722

14130

\begin{align*} y^{\prime \prime }+y&=\cos \left (x \right ) x \\ \end{align*}

0.439

8723

14624

\begin{align*} y^{\prime \prime }+6 y^{\prime }+5 y&=2 \,{\mathrm e}^{x}+10 \,{\mathrm e}^{5 x} \\ \end{align*}

0.439

8724

15404

\begin{align*} -{y^{\prime }}^{2}+{y^{\prime }}^{3}+y y^{\prime \prime }&=0 \\ y \left (0\right ) &= -1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.439

8725

15987

\begin{align*} x^{\prime }&=-5 x-2 y \\ y^{\prime }&=-x-4 y \\ \end{align*}

0.439

8726

16525

\begin{align*} y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -{\frac {1}{2}} \\ \end{align*}

0.439

8727

16707

\begin{align*} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-9 y^{\prime } x +9 y&=12 x \sin \left (x^{2}\right ) \\ \end{align*}

0.439

8728

17377

\begin{align*} y^{\prime \prime }+b \left (t \right ) y^{\prime }+c \left (t \right ) y&=0 \\ \end{align*}

0.439

8729

17440

\begin{align*} y^{\prime \prime }+2 y^{\prime }+26 y&=-338 t \\ \end{align*}

0.439

8730

22575

\begin{align*} i^{\prime }&=\frac {i t^{2}}{t^{3}-i^{3}} \\ \end{align*}

0.439

8731

22851

\begin{align*} 2 y^{\prime \prime } x +y^{\prime }-y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.439

8732

22859

\begin{align*} y^{\prime \prime } x +y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.439

8733

25091

\begin{align*} y^{\prime \prime }+2 y^{\prime }+3 y&={\mathrm e}^{-t} \\ \end{align*}

0.439

8734

25308

\begin{align*} y^{\prime }-4 y&=\delta \left (t -4\right ) \\ y \left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

0.439

8735

3862

\begin{align*} x_{1}^{\prime }&=x_{1} \\ x_{2}^{\prime }&=3 x_{2}+2 x_{3} \\ x_{3}^{\prime }&=2 x_{1}-2 x_{2}-x_{3} \\ \end{align*}

0.440

8736

3975

\begin{align*} y^{\prime }-5 y&=2 \,{\mathrm e}^{-t}+\delta \left (t -3\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.440

8737

7689

\begin{align*} 2 y^{\prime \prime } x -y^{\prime }+2 y&=0 \\ \end{align*}

0.440

8738

14685

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=\frac {1}{{\mathrm e}^{2 x}+1} \\ \end{align*}

0.440

8739

15233

\begin{align*} y^{\prime \prime }+4 y&=3 \operatorname {Heaviside}\left (t \right )-3 \operatorname {Heaviside}\left (t -4\right )+\left (2 t -5\right ) \operatorname {Heaviside}\left (t -4\right ) \\ y \left (0\right ) &= {\frac {3}{4}} \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

0.440

8740

15306

\begin{align*} \left (x^{2}-1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.440

8741

16586

\begin{align*} y^{\prime \prime }+2 y^{\prime }-8 y&=8 x^{2}-3 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.440

8742

16609

\begin{align*} y^{\prime \prime }-3 y^{\prime }-10 y&=-5 \,{\mathrm e}^{3 x} \\ y \left (0\right ) &= 5 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}

0.440

8743

16690

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=\left (24 x^{2}+2\right ) {\mathrm e}^{2 x} \\ \end{align*}

0.440

8744

20176

\begin{align*} 3 x^{2} y^{\prime \prime }+\left (-6 x^{2}+2\right ) y^{\prime }-4 y&=0 \\ \end{align*}

0.440

8745

21521

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{3 x} \\ \end{align*}

0.440

8746

21731

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

0.440

8747

22627

\begin{align*} y^{\prime \prime }+\left (1-x \right ) y^{\prime }-y x&=x \\ \end{align*}

0.440

8748

24669

\begin{align*} y^{\prime \prime }+y&=12 \cos \left (2 x \right )-\sin \left (3 x \right ) \\ \end{align*}

0.440

8749

24819

\begin{align*} 2 {y^{\prime }}^{3}+y^{\prime } x -2 y&=0 \\ \end{align*}

0.440

8750

24989

\begin{align*} y^{\prime }+a y&=b \\ \end{align*}

0.440

8751

479

\begin{align*} 6 x^{2} y^{\prime \prime }+7 y^{\prime } x -\left (x^{2}+2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.441

8752

1870

\begin{align*} \left (2 x^{2}-8 x +11\right ) y^{\prime \prime }-16 \left (x -2\right ) y^{\prime }+36 y&=0 \\ \end{align*}
Series expansion around \(x=2\).

0.441

8753

2559

\begin{align*} y^{\prime \prime }+y^{\prime }+2 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}

0.441

8754

2748

\begin{align*} x_{1}^{\prime }&=2 x_{1}+x_{2}+3 x_{3} \\ x_{2}^{\prime }&=2 x_{2}-x_{3} \\ x_{3}^{\prime }&=2 x_{3} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 2 \\ x_{3} \left (0\right ) &= 1 \\ \end{align*}

0.441

8755

2832

\begin{align*} x_{1}^{\prime }&=2 x_{1}+x_{2} \\ x_{2}^{\prime }&=-5 x_{1}-2 x_{2} \\ \end{align*}

0.441

8756

3416

\begin{align*} \sin \left (x \right ) y^{\prime }&=1 \\ \end{align*}

0.441

8757

3748

\begin{align*} y^{\prime \prime }-4 y&=\frac {8}{{\mathrm e}^{2 x}+1} \\ \end{align*}

0.441

8758

3751

\begin{align*} y^{\prime \prime }-10 y^{\prime }+25 y&=\frac {2 \,{\mathrm e}^{5 x}}{x^{2}+4} \\ \end{align*}

0.441

8759

4098

\begin{align*} y^{\prime }+y&=0 \\ \end{align*}

0.441

8760

4154

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{x}-2 \,{\mathrm e}^{2 x}+\sin \left (x \right ) \\ \end{align*}

0.441

8761

4460

\begin{align*} y^{\prime }+y^{\prime \prime \prime }&=\sin \left (x \right )+\cos \left (x \right ) x \\ \end{align*}

0.441

8762

6328

\begin{align*} y^{\prime \prime }&=f \left (x \right ) y^{2}-y^{3}+\left (f \left (x \right )-3 y\right ) y^{\prime } \\ \end{align*}

0.441

8763

8181

\begin{align*} 2 y+y^{\prime }&=0 \\ \end{align*}

0.441

8764

9569

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (36 x^{2}-\frac {1}{4}\right ) y&=0 \\ \end{align*}

0.441

8765

9575

\begin{align*} y^{\prime \prime } x -5 y^{\prime }+y x&=0 \\ \end{align*}

0.441

8766

10009

\begin{align*} y&=y^{\prime } x +x^{2} {y^{\prime }}^{2} \\ \end{align*}

0.441

8767

10716

\begin{align*} y^{\prime \prime } x +\left (x +n \right ) y^{\prime }+\left (n +1\right ) y&=0 \\ \end{align*}

0.441

8768

12352

\begin{align*} 4 y^{\prime \prime }+9 y x&=0 \\ \end{align*}

0.441

8769

13816

\begin{align*} n \left (n +2\right ) y-3 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

0.441

8770

14225

\begin{align*} y^{\prime }&=\frac {1}{2 y+1} \\ y \left (0\right ) &= 1 \\ \end{align*}

0.441

8771

14338

\begin{align*} x^{\prime \prime }-x&=\frac {{\mathrm e}^{t}}{1+{\mathrm e}^{t}} \\ \end{align*}

0.441

8772

15526

\begin{align*} y^{\prime }&=1-y \\ \end{align*}

0.441

8773

15778

\begin{align*} y^{\prime }&=2-y \\ \end{align*}

0.441

8774

16043

\begin{align*} x^{\prime }&=-2 x+y \\ y^{\prime }&=-2 y \\ z^{\prime }&=z \\ \end{align*}

0.441

8775

16079

\begin{align*} y^{\prime \prime }+7 y^{\prime }+12 y&=3 \,{\mathrm e}^{-t} \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

0.441

8776

16096

\begin{align*} y^{\prime \prime }+4 y&={\mathrm e}^{t} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.441

8777

16242

\begin{align*} y^{\prime }&={\mathrm e}^{-y} \\ \end{align*}

0.441

8778

16589

\begin{align*} y^{\prime \prime }-3 y^{\prime }-10 y&=-6 \,{\mathrm e}^{4 x} \\ y \left (0\right ) &= 6 \\ y^{\prime }\left (0\right ) &= 8 \\ \end{align*}

0.441

8779

16619

\begin{align*} y^{\prime \prime }+9 y&=x^{3} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.441

8780

17693

\begin{align*} \left (3-2 x \right ) y^{\prime \prime }+2 y^{\prime }-2 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}
Series expansion around \(x=0\).

0.441

8781

17898

\begin{align*} \ln \left (y^{\prime }\right )&=x \\ \end{align*}

0.441

8782

19438

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=0 \\ y \left (0\right ) &= 8 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

0.441

8783

19647

\begin{align*} x^{\prime }&=-4 x-y \\ y^{\prime }&=x-2 y \\ \end{align*}

0.441

8784

22152

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x^{5}} \\ \end{align*}

0.441

8785

24795

\begin{align*} {y^{\prime }}^{2}-y^{\prime } x -y&=0 \\ \end{align*}

0.441

8786

24900

\begin{align*} y^{\prime \prime } x&=y^{\prime } \left (2-3 y^{\prime } x \right ) \\ \end{align*}

0.441

8787

3110

\begin{align*} y^{\prime \prime }-4 y&=3 \cos \left (x \right ) \\ \end{align*}

0.442

8788

3756

\begin{align*} y^{\prime \prime }-2 m y^{\prime }+m^{2} y&=\frac {{\mathrm e}^{m x}}{x^{2}+1} \\ \end{align*}

0.442

8789

5953

\begin{align*} x^{2} y^{\prime \prime }&=b x +a \\ \end{align*}

0.442

8790

7110

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{-x}}{x} \\ \end{align*}

0.442

8791

7112

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \ln \left (x \right ) \\ \end{align*}

0.442

8792

9696

\begin{align*} x^{\prime }&=4 x+y \\ y^{\prime }&=4 y+z \\ z^{\prime }&=4 z \\ \end{align*}

0.442

8793

14743

\begin{align*} y^{\prime \prime } x +y^{\prime }+2 y&=0 \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= 4 \\ \end{align*}
Series expansion around \(x=1\).

0.442

8794

14940

\begin{align*} x^{\prime \prime }+2 x^{\prime }+10 x&={\mathrm e}^{-t} \cos \left (3 t \right ) \\ \end{align*}

0.442

8795

18248

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&={\mathrm e}^{x} \sin \left (\frac {x}{2}\right )^{2} \\ \end{align*}

0.442

8796

19470

\begin{align*} 3 y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

0.442

8797

21543

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{x} \\ \end{align*}

0.442

8798

975

\begin{align*} x_{1}^{\prime }&=x_{1}-2 x_{2} \\ x_{2}^{\prime }&=2 x_{1}+x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 0 \\ x_{2} \left (0\right ) &= 4 \\ \end{align*}

0.443

8799

1192

\begin{align*} y^{\prime }&=\left (1-y\right )^{2} y^{2} \\ \end{align*}

0.443

8800

4065

\begin{align*} y^{\prime \prime } x +y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.443