2.3.86 Problems 8501 to 8600

Table 2.703: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

8501

2620

\begin{align*} \left (-t^{2}+1\right ) y^{\prime \prime }-t y^{\prime }+\alpha ^{2} y&=0 \\ \end{align*}
Series expansion around \(t=0\).

0.428

8502

2755

\begin{align*} x_{1}^{\prime }&=x_{1}+2 x_{2}-3 x_{3} \\ x_{2}^{\prime }&=x_{1}+x_{2}+2 x_{3} \\ x_{3}^{\prime }&=x_{1}-x_{2}+4 x_{3} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 0 \\ x_{3} \left (0\right ) &= 0 \\ \end{align*}

0.428

8503

4016

\begin{align*} 2 y^{\prime \prime } x +y^{\prime }-2 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.428

8504

6450

\begin{align*} y y^{\prime \prime }&=b +a {y^{\prime }}^{2} \\ \end{align*}

0.428

8505

7081

\begin{align*} y^{\prime \prime }-2 y^{\prime }-8 y&=9 x \,{\mathrm e}^{x}+10 \,{\mathrm e}^{-x} \\ \end{align*}

0.428

8506

7635

\begin{align*} y^{\prime \prime }+\left (x -1\right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.428

8507

8011

\begin{align*} y^{\prime \prime }+y^{\prime }+y&={\mathrm e}^{3 x}+6 \,{\mathrm e}^{x}-3 \,{\mathrm e}^{-2 x}+5 \\ \end{align*}

0.428

8508

8169

\begin{align*} x^{\prime }&=\left (x-1\right ) \left (1-2 x\right ) \\ \end{align*}

0.428

8509

8182

\begin{align*} 5 y^{\prime }&=2 y \\ \end{align*}

0.428

8510

8257

\begin{align*} y^{\prime } x&=2 x \\ \end{align*}

0.428

8511

8473

\begin{align*} x^{\prime }&=-\lambda _{1} x \\ y^{\prime }&=\lambda _{1} x-\lambda _{2} y \\ \end{align*}

0.428

8512

8488

\begin{align*} y^{\prime \prime }-\left (x +1\right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.428

8513

10086

\begin{align*} y^{\prime \prime }-y^{\prime } x -y x -x&=0 \\ \end{align*}

0.428

8514

11812

\begin{align*} {y^{\prime }}^{3}-\left (x^{2}+y x +y^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+y^{2} x^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3}&=0 \\ \end{align*}

0.428

8515

16916

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.428

8516

17337

\begin{align*} y-t y^{\prime }&=-2 {y^{\prime }}^{3} \\ \end{align*}

0.428

8517

17430

\begin{align*} y^{\prime \prime }+y&=\cos \left (2 t \right ) \\ \end{align*}

0.428

8518

17433

\begin{align*} y^{\prime \prime }+4 y&=3 t \,{\mathrm e}^{-t} \\ \end{align*}

0.428

8519

17899

\begin{align*} \tan \left (y^{\prime }\right )&=0 \\ \end{align*}

0.428

8520

18431

\begin{align*} x^{\prime }&=x+y \\ y^{\prime }&=-2 x+4 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= -1 \\ \end{align*}

0.428

8521

18961

\begin{align*} y^{\prime \prime \prime \prime }+y^{\prime \prime }+16 y&=g \left (t \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ y^{\prime \prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.428

8522

19201

\begin{align*} -2 y+2 y^{\prime } x -x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime }&=x^{3}+3 x \\ \end{align*}

0.428

8523

19468

\begin{align*} y^{\prime \prime }-6 y^{\prime }+25 y&=0 \\ \end{align*}

0.428

8524

21876

\begin{align*} 9 y^{\prime \prime }-30 y^{\prime }+25 y&=0 \\ \end{align*}

0.428

8525

22706

\begin{align*} y^{\prime \prime \prime \prime }-y&=\cosh \left (x \right ) \\ \end{align*}

0.428

8526

23496

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x \,{\mathrm e}^{x} \\ \end{align*}

0.428

8527

23591

\begin{align*} x^{\prime }&=-x+y \\ y^{\prime }&=-x-y \\ \end{align*}

0.428

8528

24764

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \tan \left (x \right )^{2} \\ \end{align*}

0.428

8529

874

\begin{align*} 2 y^{\prime \prime }+4 y^{\prime }+7 y&=x^{2} \\ \end{align*}

0.429

8530

2602

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=2 \cos \left (t \right )^{2} {\mathrm e}^{t} \\ \end{align*}

0.429

8531

6348

\begin{align*} \left ({\mathrm e}^{2 y}+x \right ) {y^{\prime }}^{3}+y^{\prime \prime }&=0 \\ \end{align*}

0.429

8532

7690

\begin{align*} y^{\prime \prime } x +y^{\prime } x -2 y&=0 \\ \end{align*}

0.429

8533

11389

\begin{align*} y^{\prime } x -\sqrt {a^{2}-x^{2}}&=0 \\ \end{align*}

0.429

8534

11494

\begin{align*} \sin \left (x \right ) y^{\prime }-y^{2} \sin \left (x \right )^{2}+\left (\cos \left (x \right )-3 \sin \left (x \right )\right ) y+4&=0 \\ \end{align*}

0.429

8535

14733

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.429

8536

15730

\begin{align*} y_{1}^{\prime }&=2 y_{1}-3 y_{2} \\ y_{2}^{\prime }&=y_{1}-2 y_{2} \\ \end{align*}

0.429

8537

18728

\begin{align*} y^{\prime \prime }+3 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.429

8538

19124

\begin{align*} y&=2 y^{\prime } x +y^{2} {y^{\prime }}^{3} \\ \end{align*}

0.429

8539

22155

\begin{align*} y^{\prime \prime }-\frac {y}{x}&=x^{2} \\ \end{align*}

0.429

8540

22158

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&=4 x^{2} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

0.429

8541

22734

\begin{align*} y^{\prime \prime }-y&={\mathrm e}^{-x^{2}} \\ \end{align*}

0.429

8542

22836

\begin{align*} \left (x^{2}+x \right ) y^{\prime \prime }+\left (x -2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=1\).

0.429

8543

23524

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{a x} \\ y \left (0\right ) &= y_{0} \\ y^{\prime }\left (0\right ) &= y_{1} \\ \end{align*}

0.429

8544

23600

\begin{align*} x^{\prime }&=4 x-2 y \\ y^{\prime }&=x+y \\ \end{align*}

0.429

8545

388

\begin{align*} x^{\prime \prime }+4 x^{\prime }+4 x&=10 \cos \left (3 t \right ) \\ \end{align*}

0.430

8546

855

\begin{align*} 9 y^{\prime \prime }+6 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

0.430

8547

974

\begin{align*} x_{1}^{\prime }&=-3 x_{1}-2 x_{2} \\ x_{2}^{\prime }&=9 x_{1}+3 x_{2} \\ \end{align*}

0.430

8548

3111

\begin{align*} y^{\prime \prime }+y&=\sin \left (2 x \right ) \\ \end{align*}

0.430

8549

3755

\begin{align*} y^{\prime \prime }-y&=2 \tanh \left (x \right ) \\ \end{align*}

0.430

8550

6320

\begin{align*} y^{\prime \prime }&=\operatorname {f2} \left (x \right )+\operatorname {f3} \left (x \right ) y+\operatorname {f1} \left (x \right ) y^{2}+y^{3}+\left (3 \operatorname {f1} \left (x \right )-y\right ) y^{\prime } \\ \end{align*}

0.430

8551

8476

\begin{align*} \left (x^{2}-25\right ) y^{\prime \prime }+2 y^{\prime } x +y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.430

8552

9777

\begin{align*} y^{\prime \prime }&=x {y^{\prime }}^{2} \\ y \left (2\right ) &= \frac {\pi }{4} \\ y^{\prime }\left (2\right ) &= -{\frac {1}{4}} \\ \end{align*}

0.430

8553

10939

\begin{align*} \left (2 x^{2}-8 x +11\right ) y^{\prime \prime }-16 \left (x -2\right ) y^{\prime }+36 y&=0 \\ \end{align*}

0.430

8554

14789

\begin{align*} x^{\prime }&=5 x+3 y \\ y^{\prime }&=4 x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 8 \\ \end{align*}

0.430

8555

16082

\begin{align*} y^{\prime \prime }+4 y^{\prime }+3 y&={\mathrm e}^{-\frac {t}{2}} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.430

8556

16884

\begin{align*} \left (x -1\right )^{2} y^{\prime \prime }-5 \left (x -1\right ) y^{\prime }+9 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.430

8557

16935

\begin{align*} x^{\prime }&=4 x+2 y \\ y^{\prime }&=3 x-y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= -21 \\ \end{align*}

0.430

8558

19855

\begin{align*} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y&=x^{3} \\ \end{align*}

0.430

8559

19984

\begin{align*} y^{2}+x y^{\prime } y-x^{2} {y^{\prime }}^{2}&=0 \\ \end{align*}

0.430

8560

21109

\begin{align*} x^{\prime \prime }+2 x^{\prime }+2 x&=0 \\ \end{align*}

0.430

8561

21530

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=2 \sin \left (x \right ) \\ \end{align*}

0.430

8562

21684

\begin{align*} x^{2} y^{\prime \prime }-\left (x +4\right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.430

8563

21708

\begin{align*} y+y^{\prime }&=\sin \left (t \right ) \\ y \left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

0.430

8564

22165

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{3 x} \\ y \left (1\right ) &= 2 \\ y^{\prime }\left (1\right ) &= 1 \\ \end{align*}

0.430

8565

23589

\begin{align*} x^{\prime }&=3 x-2 y \\ y^{\prime }&=2 x-2 y \\ \end{align*}

0.430

8566

24856

\begin{align*} 16 x {y^{\prime }}^{2}+8 y^{\prime } y+y^{6}&=0 \\ \end{align*}

0.430

8567

389

\begin{align*} x^{\prime \prime }+3 x^{\prime }+5 x&=-4 \cos \left (5 t \right ) \\ \end{align*}

0.431

8568

486

\begin{align*} y^{\prime \prime } x -y^{\prime }+4 x^{3} y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.431

8569

583

\begin{align*} x^{\prime }&=-y \\ y^{\prime }&=10 x-7 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= -7 \\ \end{align*}

0.431

8570

1915

\begin{align*} \left (6+4 x \right ) y^{\prime \prime }+\left (2 x +1\right ) y&=0 \\ y \left (-1\right ) &= -1 \\ y^{\prime }\left (-1\right ) &= 2 \\ \end{align*}
Series expansion around \(x=-1\).

0.431

8571

2833

\begin{align*} x_{1}^{\prime }&=4 x_{2} \\ x_{2}^{\prime }&=-9 x_{1} \\ \end{align*}

0.431

8572

3144

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \\ \end{align*}

0.431

8573

3882

\begin{align*} x_{1}^{\prime }&=3 x_{1} \\ x_{2}^{\prime }&=3 x_{2}-x_{3} \\ x_{3}^{\prime }&=x_{2}+x_{3} \\ \end{align*}

0.431

8574

3924

\begin{align*} x_{1}^{\prime }&=-3 x_{1}-5 x_{2} \\ x_{2}^{\prime }&=x_{1}-7 x_{2} \\ \end{align*}

0.431

8575

3956

\begin{align*} -2 y+y^{\prime }&=\operatorname {Heaviside}\left (t -2\right ) {\mathrm e}^{t -2} \\ y \left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

0.431

8576

4497

\begin{align*} y^{\prime \prime }-y&=\frac {1}{\sinh \left (x \right )} \\ \end{align*}

0.431

8577

5541

\begin{align*} x^{8} {y^{\prime }}^{2}+3 y^{\prime } x +9 y&=0 \\ \end{align*}

0.431

8578

7180

\begin{align*} y^{\prime \prime } x +y^{\prime }+p x y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.431

8579

7805

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x} \\ \end{align*}

0.431

8580

8285

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=6 x +4 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.431

8581

8741

\begin{align*} y^{\prime }&=y^{2}-\frac {2}{x^{2}} \\ \end{align*}

0.431

8582

10139

\begin{align*} y^{\prime \prime }+y&=\sin \left (x \right ) \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

0.431

8583

14288

\begin{align*} x^{\prime \prime }-4 x^{\prime }+6 x&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.431

8584

15123

\begin{align*} y^{\prime }&=\ln \left (y x \right ) \\ \end{align*}

0.431

8585

15181

\begin{align*} \left (x^{2}-x \right ) y^{\prime \prime }+\left (2 x^{2}+4 x -3\right ) y^{\prime }+8 y x&=0 \\ \end{align*}

0.431

8586

18852

\begin{align*} y^{\prime \prime }+y&=2 \cos \left (t w \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

0.431

8587

19472

\begin{align*} 4 y^{\prime \prime }-8 y^{\prime }+7 y&=0 \\ \end{align*}

0.431

8588

20061

\begin{align*} 4 y+y^{\prime \prime }&=x \sin \left (x \right ) \\ \end{align*}

0.431

8589

20180

\begin{align*} y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y&=0 \\ \end{align*}

0.431

8590

21222

\begin{align*} x^{\prime }&=x+3 y \\ y^{\prime }&=x-y \\ \end{align*}

0.431

8591

21745

\begin{align*} x^{\prime }&=4 x-y \\ y^{\prime }&=x+2 y \\ \end{align*}

0.431

8592

25366

\begin{align*} y_{1}^{\prime }&=2 y_{1}-y_{2} \\ y_{2}^{\prime }&=3 y_{1}-2 y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= 3 \\ \end{align*}

0.431

8593

15074

\begin{align*} x^{\prime \prime }-4 x^{\prime }+4 x&={\mathrm e}^{t}+{\mathrm e}^{2 t}+1 \\ \end{align*}

0.432

8594

16388

\begin{align*} y^{\prime \prime }&=4 x \sqrt {y^{\prime }} \\ \end{align*}

0.432

8595

16797

\begin{align*} y^{\prime \prime }+9 y&=\operatorname {Heaviside}\left (t -10\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.432

8596

17298

\begin{align*} t y^{\prime }-{y^{\prime }}^{3}&=y \\ \end{align*}

0.432

8597

20931

\begin{align*} x^{\prime }&=-y \\ y^{\prime }&=-5 x \\ \end{align*}

0.432

8598

21643

\begin{align*} y^{\prime \prime }+y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

0.432

8599

23039

\begin{align*} y^{\prime \prime }+5 y^{\prime }+8 y&=4 \sin \left (5 x \right ) \\ \end{align*}

0.432

8600

25386

\begin{align*} y_{1}^{\prime }&=5 y_{1}-3 y_{2} \\ y_{2}^{\prime }&=2 y_{1} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 2 \\ y_{2} \left (0\right ) &= 1 \\ \end{align*}

0.432