| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 8501 |
\begin{align*}
\left (-t^{2}+1\right ) y^{\prime \prime }-t y^{\prime }+\alpha ^{2} y&=0 \\
\end{align*} Series expansion around \(t=0\). |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| 8502 |
\begin{align*}
x_{1}^{\prime }&=x_{1}+2 x_{2}-3 x_{3} \\
x_{2}^{\prime }&=x_{1}+x_{2}+2 x_{3} \\
x_{3}^{\prime }&=x_{1}-x_{2}+4 x_{3} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 1 \\
x_{2} \left (0\right ) &= 0 \\
x_{3} \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| 8503 |
\begin{align*}
2 y^{\prime \prime } x +y^{\prime }-2 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| 8504 |
\begin{align*}
y y^{\prime \prime }&=b +a {y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.428 |
|
| 8505 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }-8 y&=9 x \,{\mathrm e}^{x}+10 \,{\mathrm e}^{-x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| 8506 |
\begin{align*}
y^{\prime \prime }+\left (x -1\right ) y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| 8507 |
\begin{align*}
y^{\prime \prime }+y^{\prime }+y&={\mathrm e}^{3 x}+6 \,{\mathrm e}^{x}-3 \,{\mathrm e}^{-2 x}+5 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| 8508 |
\begin{align*}
x^{\prime }&=\left (x-1\right ) \left (1-2 x\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| 8509 |
\begin{align*}
5 y^{\prime }&=2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| 8510 |
\begin{align*}
y^{\prime } x&=2 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| 8511 |
\begin{align*}
x^{\prime }&=-\lambda _{1} x \\
y^{\prime }&=\lambda _{1} x-\lambda _{2} y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| 8512 |
\begin{align*}
y^{\prime \prime }-\left (x +1\right ) y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| 8513 |
\begin{align*}
y^{\prime \prime }-y^{\prime } x -y x -x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.428 |
|
| 8514 |
\begin{align*}
{y^{\prime }}^{3}-\left (x^{2}+y x +y^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+y^{2} x^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| 8515 |
\begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{x}+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| 8516 |
\begin{align*}
y-t y^{\prime }&=-2 {y^{\prime }}^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.428 |
|
| 8517 |
\begin{align*}
y^{\prime \prime }+y&=\cos \left (2 t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| 8518 | \begin{align*}
y^{\prime \prime }+4 y&=3 t \,{\mathrm e}^{-t} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.428 |
|
| 8519 |
\begin{align*}
\tan \left (y^{\prime }\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| 8520 |
\begin{align*}
x^{\prime }&=x+y \\
y^{\prime }&=-2 x+4 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| 8521 |
\begin{align*}
y^{\prime \prime \prime \prime }+y^{\prime \prime }+16 y&=g \left (t \right ) \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime \prime }\left (0\right ) &= 0 \\
y^{\prime \prime \prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| 8522 |
\begin{align*}
-2 y+2 y^{\prime } x -x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime }&=x^{3}+3 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| 8523 |
\begin{align*}
y^{\prime \prime }-6 y^{\prime }+25 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| 8524 |
\begin{align*}
9 y^{\prime \prime }-30 y^{\prime }+25 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| 8525 |
\begin{align*}
y^{\prime \prime \prime \prime }-y&=\cosh \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| 8526 |
\begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=x \,{\mathrm e}^{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| 8527 |
\begin{align*}
x^{\prime }&=-x+y \\
y^{\prime }&=-x-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| 8528 |
\begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \tan \left (x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.428 |
|
| 8529 |
\begin{align*}
2 y^{\prime \prime }+4 y^{\prime }+7 y&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.429 |
|
| 8530 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&=2 \cos \left (t \right )^{2} {\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.429 |
|
| 8531 |
\begin{align*}
\left ({\mathrm e}^{2 y}+x \right ) {y^{\prime }}^{3}+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
0.429 |
|
| 8532 |
\begin{align*}
y^{\prime \prime } x +y^{\prime } x -2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.429 |
|
| 8533 |
\begin{align*}
y^{\prime } x -\sqrt {a^{2}-x^{2}}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.429 |
|
| 8534 |
\begin{align*}
\sin \left (x \right ) y^{\prime }-y^{2} \sin \left (x \right )^{2}+\left (\cos \left (x \right )-3 \sin \left (x \right )\right ) y+4&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.429 |
|
| 8535 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.429 |
|
| 8536 |
\begin{align*}
y_{1}^{\prime }&=2 y_{1}-3 y_{2} \\
y_{2}^{\prime }&=y_{1}-2 y_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.429 |
|
| 8537 | \begin{align*}
y^{\prime \prime }+3 y^{\prime }+4 y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.429 |
|
| 8538 |
\begin{align*}
y&=2 y^{\prime } x +y^{2} {y^{\prime }}^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.429 |
|
| 8539 |
\begin{align*}
y^{\prime \prime }-\frac {y}{x}&=x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.429 |
|
| 8540 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&=4 x^{2} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.429 |
|
| 8541 |
\begin{align*}
y^{\prime \prime }-y&={\mathrm e}^{-x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.429 |
|
| 8542 |
\begin{align*}
\left (x^{2}+x \right ) y^{\prime \prime }+\left (x -2\right ) y&=0 \\
\end{align*} Series expansion around \(x=1\). |
✓ |
✓ |
✓ |
✓ |
0.429 |
|
| 8543 |
\begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{a x} \\
y \left (0\right ) &= y_{0} \\
y^{\prime }\left (0\right ) &= y_{1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.429 |
|
| 8544 |
\begin{align*}
x^{\prime }&=4 x-2 y \\
y^{\prime }&=x+y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.429 |
|
| 8545 |
\begin{align*}
x^{\prime \prime }+4 x^{\prime }+4 x&=10 \cos \left (3 t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.430 |
|
| 8546 |
\begin{align*}
9 y^{\prime \prime }+6 y^{\prime }+4 y&=0 \\
y \left (0\right ) &= 3 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.430 |
|
| 8547 |
\begin{align*}
x_{1}^{\prime }&=-3 x_{1}-2 x_{2} \\
x_{2}^{\prime }&=9 x_{1}+3 x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.430 |
|
| 8548 |
\begin{align*}
y^{\prime \prime }+y&=\sin \left (2 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.430 |
|
| 8549 |
\begin{align*}
y^{\prime \prime }-y&=2 \tanh \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.430 |
|
| 8550 |
\begin{align*}
y^{\prime \prime }&=\operatorname {f2} \left (x \right )+\operatorname {f3} \left (x \right ) y+\operatorname {f1} \left (x \right ) y^{2}+y^{3}+\left (3 \operatorname {f1} \left (x \right )-y\right ) y^{\prime } \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.430 |
|
| 8551 |
\begin{align*}
\left (x^{2}-25\right ) y^{\prime \prime }+2 y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.430 |
|
| 8552 |
\begin{align*}
y^{\prime \prime }&=x {y^{\prime }}^{2} \\
y \left (2\right ) &= \frac {\pi }{4} \\
y^{\prime }\left (2\right ) &= -{\frac {1}{4}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.430 |
|
| 8553 |
\begin{align*}
\left (2 x^{2}-8 x +11\right ) y^{\prime \prime }-16 \left (x -2\right ) y^{\prime }+36 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.430 |
|
| 8554 |
\begin{align*}
x^{\prime }&=5 x+3 y \\
y^{\prime }&=4 x+y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= 8 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.430 |
|
| 8555 |
\begin{align*}
y^{\prime \prime }+4 y^{\prime }+3 y&={\mathrm e}^{-\frac {t}{2}} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.430 |
|
| 8556 |
\begin{align*}
\left (x -1\right )^{2} y^{\prime \prime }-5 \left (x -1\right ) y^{\prime }+9 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
0.430 |
|
| 8557 | \begin{align*}
x^{\prime }&=4 x+2 y \\
y^{\prime }&=3 x-y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 0 \\
y \left (0\right ) &= -21 \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.430 |
|
| 8558 |
\begin{align*}
x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y&=x^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.430 |
|
| 8559 |
\begin{align*}
y^{2}+x y^{\prime } y-x^{2} {y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.430 |
|
| 8560 |
\begin{align*}
x^{\prime \prime }+2 x^{\prime }+2 x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.430 |
|
| 8561 |
\begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=2 \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.430 |
|
| 8562 |
\begin{align*}
x^{2} y^{\prime \prime }-\left (x +4\right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✓ |
✗ |
0.430 |
|
| 8563 |
\begin{align*}
y+y^{\prime }&=\sin \left (t \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.430 |
|
| 8564 |
\begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{3 x} \\
y \left (1\right ) &= 2 \\
y^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.430 |
|
| 8565 |
\begin{align*}
x^{\prime }&=3 x-2 y \\
y^{\prime }&=2 x-2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.430 |
|
| 8566 |
\begin{align*}
16 x {y^{\prime }}^{2}+8 y^{\prime } y+y^{6}&=0 \\
\end{align*} |
✓ |
✓ |
✗ |
✗ |
0.430 |
|
| 8567 |
\begin{align*}
x^{\prime \prime }+3 x^{\prime }+5 x&=-4 \cos \left (5 t \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| 8568 |
\begin{align*}
y^{\prime \prime } x -y^{\prime }+4 x^{3} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| 8569 |
\begin{align*}
x^{\prime }&=-y \\
y^{\prime }&=10 x-7 y \\
\end{align*} With initial conditions \begin{align*}
x \left (0\right ) &= 2 \\
y \left (0\right ) &= -7 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| 8570 |
\begin{align*}
\left (6+4 x \right ) y^{\prime \prime }+\left (2 x +1\right ) y&=0 \\
y \left (-1\right ) &= -1 \\
y^{\prime }\left (-1\right ) &= 2 \\
\end{align*} Series expansion around \(x=-1\). |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| 8571 |
\begin{align*}
x_{1}^{\prime }&=4 x_{2} \\
x_{2}^{\prime }&=-9 x_{1} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| 8572 |
\begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| 8573 |
\begin{align*}
x_{1}^{\prime }&=3 x_{1} \\
x_{2}^{\prime }&=3 x_{2}-x_{3} \\
x_{3}^{\prime }&=x_{2}+x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| 8574 |
\begin{align*}
x_{1}^{\prime }&=-3 x_{1}-5 x_{2} \\
x_{2}^{\prime }&=x_{1}-7 x_{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| 8575 |
\begin{align*}
-2 y+y^{\prime }&=\operatorname {Heaviside}\left (t -2\right ) {\mathrm e}^{t -2} \\
y \left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| 8576 | \begin{align*}
y^{\prime \prime }-y&=\frac {1}{\sinh \left (x \right )} \\
\end{align*} | ✓ | ✓ | ✓ | ✓ | 0.431 |
|
| 8577 |
\begin{align*}
x^{8} {y^{\prime }}^{2}+3 y^{\prime } x +9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| 8578 |
\begin{align*}
y^{\prime \prime } x +y^{\prime }+p x y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| 8579 |
\begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| 8580 |
\begin{align*}
y^{\prime \prime }-2 y^{\prime }-3 y&=6 x +4 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| 8581 |
\begin{align*}
y^{\prime }&=y^{2}-\frac {2}{x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| 8582 |
\begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right ) \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| 8583 |
\begin{align*}
x^{\prime \prime }-4 x^{\prime }+6 x&=0 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| 8584 |
\begin{align*}
y^{\prime }&=\ln \left (y x \right ) \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
0.431 |
|
| 8585 |
\begin{align*}
\left (x^{2}-x \right ) y^{\prime \prime }+\left (2 x^{2}+4 x -3\right ) y^{\prime }+8 y x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.431 |
|
| 8586 |
\begin{align*}
y^{\prime \prime }+y&=2 \cos \left (t w \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| 8587 |
\begin{align*}
4 y^{\prime \prime }-8 y^{\prime }+7 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| 8588 |
\begin{align*}
4 y+y^{\prime \prime }&=x \sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| 8589 |
\begin{align*}
y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
0.431 |
|
| 8590 |
\begin{align*}
x^{\prime }&=x+3 y \\
y^{\prime }&=x-y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| 8591 |
\begin{align*}
x^{\prime }&=4 x-y \\
y^{\prime }&=x+2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| 8592 |
\begin{align*}
y_{1}^{\prime }&=2 y_{1}-y_{2} \\
y_{2}^{\prime }&=3 y_{1}-2 y_{2} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 1 \\
y_{2} \left (0\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.431 |
|
| 8593 |
\begin{align*}
x^{\prime \prime }-4 x^{\prime }+4 x&={\mathrm e}^{t}+{\mathrm e}^{2 t}+1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.432 |
|
| 8594 |
\begin{align*}
y^{\prime \prime }&=4 x \sqrt {y^{\prime }} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.432 |
|
| 8595 |
\begin{align*}
y^{\prime \prime }+9 y&=\operatorname {Heaviside}\left (t -10\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
0.432 |
|
| 8596 | \begin{align*}
t y^{\prime }-{y^{\prime }}^{3}&=y \\
\end{align*} | ✓ | ✓ | ✓ | ✗ | 0.432 |
|
| 8597 |
\begin{align*}
x^{\prime }&=-y \\
y^{\prime }&=-5 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.432 |
|
| 8598 |
\begin{align*}
y^{\prime \prime }+y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
0.432 |
|
| 8599 |
\begin{align*}
y^{\prime \prime }+5 y^{\prime }+8 y&=4 \sin \left (5 x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.432 |
|
| 8600 |
\begin{align*}
y_{1}^{\prime }&=5 y_{1}-3 y_{2} \\
y_{2}^{\prime }&=2 y_{1} \\
\end{align*} With initial conditions \begin{align*}
y_{1} \left (0\right ) &= 2 \\
y_{2} \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
0.432 |
|