2.2.220 Problems 21901 to 22000

Table 2.453: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

21901

\begin{align*} \left (2 x -1\right ) y^{\prime \prime }-3 y^{\prime }&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_y]]

0.587

21902

\begin{align*} \left (2 x^{2}+1\right ) y^{\prime \prime }+3 y^{\prime } x -6 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.714

21903

\begin{align*} \left (x^{2}-2 x \right ) y^{\prime \prime }+\left (1+3 x \right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

1.220

21904

\begin{align*} x^{2} y^{\prime \prime }+\left (x^{2}-3 x \right ) y^{\prime }+\left (x +4\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

1.049

21905

\begin{align*} x^{2} y^{\prime \prime }+x^{2} y^{\prime }-\left (2+x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

1.082

21906

\begin{align*} y^{\prime }-y^{2}-x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Riccati, _special]]

0.315

21907

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.873

21908

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (-n^{2}+x^{2}\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Bessel]

1.148

21909

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.416

21910

\begin{align*} y^{\prime \prime }+3 y^{\prime }&=0 \\ y \left (0\right ) &= -2 \\ y^{\prime }\left (0\right ) &= -3 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.310

21911

\begin{align*} y^{\prime \prime }-4 y&=0 \\ y \left (0\right ) &= 6 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.317

21912

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.357

21913

\begin{align*} y^{\prime \prime }+n^{2} y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= k \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.392

21914

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=2 \,{\mathrm e}^{-t} \\ y \left (0\right ) &= {\frac {3}{2}} \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.418

21915

\begin{align*} y^{\prime \prime }+9 y&=5 \cos \left (2 t \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 3 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.492

21916

\begin{align*} y^{\prime \prime }+y&=\sin \left (2 t \right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.488

21917

\begin{align*} y^{\prime \prime \prime \prime }-4 y^{\prime \prime }&=0 \\ y \left (0\right ) &= 5 \\ y^{\prime }\left (0\right ) &= 2 \\ y^{\prime \prime }\left (0\right ) &= 8 \\ y^{\prime \prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_high_order, _missing_x]]

0.548

21918

\begin{align*} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }-2 y^{\prime }+y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 1 \\ y^{\prime \prime }\left (0\right ) &= -3 \\ y^{\prime \prime \prime }\left (0\right ) &= -5 \\ \end{align*}
Using Laplace transform method.

[[_high_order, _missing_x]]

2.362

21919

\begin{align*} y^{\prime \prime \prime \prime }-y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 3 \\ y^{\prime \prime }\left (0\right ) &= -4 \\ y^{\prime \prime \prime }\left (0\right ) &= 12 \\ \end{align*}
Using Laplace transform method.

[[_high_order, _missing_x]]

0.520

21920

\begin{align*} y^{\prime \prime }+4 y&=t \sin \left (t \right ) \\ y \left (0\right ) &= {\frac {7}{9}} \\ y^{\prime }\left (0\right ) &= -{\frac {5}{2}} \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.591

21921

\begin{align*} 4 y+y^{\prime \prime }&=x \sin \left (x \right ) \\ y \left (0\right ) &= {\frac {7}{9}} \\ y \left (\frac {\pi }{2}\right ) &= \frac {\pi }{6}-1 \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.186

21922

\begin{align*} y^{\prime \prime }+3 y&=0 \\ y \left (0\right ) &= -2 \\ y \left (1\right ) &= \left (1-3 \,{\mathrm e}^{3}\right ) {\mathrm e}^{-3} \\ \end{align*}

[[_2nd_order, _missing_x]]

26.830

21923

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y+8 \,{\mathrm e}^{-x}+3 x&=0 \\ y \left (0\right ) &= -{\frac {2}{3}} \\ y \left (1\right ) &= 2 \,{\mathrm e}^{-1}+\frac {1}{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.670

21924

\begin{align*} x^{\prime }+y^{\prime }-y&=0 \\ y^{\prime }+2 y+z^{\prime }+2 z&=2 \\ x+z^{\prime }-z&=0 \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ z \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

1.392

21925

\begin{align*} x^{\prime \prime }&=1 \\ x^{\prime }+x+y^{\prime \prime }-9 y+z^{\prime }+z&=0 \\ 5 x+z^{\prime \prime }-4 z&=2 \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 0 \\ z \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ z^{\prime }\left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.046

21926

\begin{align*} x^{2} y^{\prime }+y^{2}&=x^{2} y y^{\prime }-x y^{2} \\ \end{align*}

[_separable]

39.975

21927

\begin{align*} 2 x +\frac {1}{y}+\left (\frac {1}{y}-\frac {x}{y^{2}}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

81.834

21928

\begin{align*} x^{2} y^{\prime }+y^{2}&=x y^{\prime } y \\ y \left (1\right ) &= 1 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

112.069

21929

\begin{align*} \left (x^{3}+3\right ) y^{\prime }+2 y x +5 x^{2}&=0 \\ y \left (2\right ) &= 1 \\ \end{align*}

[_linear]

99.512

21930

\begin{align*} x y^{2}&=y-y^{\prime } x \\ \end{align*}

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

28.459

21931

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.437

21932

\begin{align*} k^{2} y^{\prime \prime }+2 k y^{\prime }+\left (k^{2}+1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.414

21933

\begin{align*} y^{\prime \prime }+4 y^{\prime }+4 y&=\frac {{\mathrm e}^{-2 x}}{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.657

21934

\begin{align*} y^{\prime \prime }+y^{\prime }&=\sin \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.680

21935

\begin{align*} x^{\prime \prime }+2 x^{\prime }+2 x&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.558

21936

\begin{align*} y^{\prime \prime } x +y^{\prime }&=16 x^{3} \\ \end{align*}

[[_2nd_order, _missing_y]]

1.806

21937

\begin{align*} y^{\prime \prime \prime }-7 y^{\prime \prime }+12 y^{\prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.092

21938

\begin{align*} y^{\prime \prime }+4 y^{\prime }+13 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.550

21939

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }&=3 x +x \,{\mathrm e}^{x} \\ \end{align*}

[[_3rd_order, _missing_y]]

0.247

21940

\begin{align*} y^{\prime }-3 z&=5 \\ y-z^{\prime }-x&=3-2 t \\ z+x^{\prime }&=-1 \\ \end{align*}

system_of_ODEs

1.331

21941

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y&=\frac {{\mathrm e}^{x}}{x^{3}} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 0 \\ y^{\prime \prime }\left (1\right ) &= 0 \\ \end{align*}

[[_3rd_order, _linear, _nonhomogeneous]]

0.434

21942

\begin{align*} y^{\prime \prime }+y^{\prime } x -2 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.543

21943

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }-8 y^{\prime } x +20 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.700

21944

\begin{align*} y^{\prime }+y-x^{\prime }+x&=t \\ x^{\prime }+y^{\prime }+x-y&=0 \\ \end{align*}

system_of_ODEs

0.849

21945

\begin{align*} y^{\prime \prime }+4 y&=2 t -8 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.564

21946

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.360

21947

\begin{align*} y^{\prime \prime }+y&=2 \cos \left (t \right ) \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.480

21948

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }-6 y^{\prime }&=6 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_3rd_order, _missing_x]]

0.513

21949

\begin{align*} y^{\prime \prime \prime }-5 y^{\prime } x&={\mathrm e}^{x}+1 \\ \end{align*}

[[_3rd_order, _missing_y]]

1.880

21950

\begin{align*} t y^{\prime \prime }+t^{2} y^{\prime }-\sin \left (t \right ) \sqrt {t}&=t^{2}-t +1 \\ \end{align*}

[[_2nd_order, _missing_y]]

3.025

21951

\begin{align*} s^{2} t^{\prime \prime }+s t t^{\prime }&=s \\ \end{align*}

[[_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.552

21952

\begin{align*} 5 {b^{\prime \prime \prime \prime }}^{5}+7 {b^{\prime }}^{10}+b^{7}-b^{5}&=p \\ \end{align*}

0.173

21953

\begin{align*} y y^{\prime \prime }&=1+y^{2} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

43.781

21954

\begin{align*} {y^{\prime \prime }}^{2}-3 y^{\prime } y+y x&=0 \\ \end{align*}

[NONE]

0.091

21955

\begin{align*} x^{4} y^{\prime \prime \prime \prime }+x y^{\prime \prime \prime }&={\mathrm e}^{x} \\ \end{align*}

[[_high_order, _missing_y]]

1.104

21956

\begin{align*} t^{2} s^{\prime \prime }-t s^{\prime }&=1-\sin \left (t \right ) \\ \end{align*}

[[_2nd_order, _missing_y]]

1.211

21957

\begin{align*} y^{\prime \prime \prime \prime }+x y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-y^{\prime } x +\sin \left (y\right )&=0 \\ \end{align*}

[NONE]

0.075

21958

\begin{align*} {r^{\prime \prime }}^{2}+r^{\prime \prime }+y r^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

6.364

21959

\begin{align*} {y^{\prime \prime }}^{{3}/{2}}+y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.088

21960

\begin{align*} b^{\left (7\right )}&=3 p \\ \end{align*}

[[_high_order, _quadrature]]

0.128

21961

\begin{align*} {b^{\prime }}^{7}&=3 p \\ \end{align*}

[_quadrature]

1.218

21962

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.201

21963

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.258

21964

\begin{align*} y^{\prime \prime } x +y^{\prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

0.513

21965

\begin{align*} y^{\prime }+2 x y^{2}&=0 \\ \end{align*}

[_separable]

1.785

21966

\begin{align*} y^{\prime }+y&=0 \\ y \left (3\right ) &= 2 \\ \end{align*}

[_quadrature]

0.574

21967

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.675

21968

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ y \left (\frac {\pi }{8}\right ) &= 0 \\ y \left (\frac {\pi }{6}\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.237

21969

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 1 \\ y \left (\frac {\pi }{2}\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.355

21970

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.695

21971

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.277

21972

\begin{align*} y^{\prime }&=y \sin \left (x \right )+{\mathrm e}^{x} \\ \end{align*}

[_linear]

1.763

21973

\begin{align*} y^{\prime }&=x \sin \left (y\right )+{\mathrm e}^{x} \\ \end{align*}

[‘y=_G(x,y’)‘]

2.312

21974

\begin{align*} y^{\prime }&=5 \\ \end{align*}

[_quadrature]

0.288

21975

\begin{align*} y^{\prime }&=x +y^{2} \\ \end{align*}

[[_Riccati, _special]]

2.126

21976

\begin{align*} y^{\prime }&=\frac {x +y}{x} \\ \end{align*}

[_linear]

1.893

21977

\begin{align*} y^{\prime }&=\frac {y^{2}}{x} \\ \end{align*}

[_separable]

1.662

21978

\begin{align*} y^{\prime }&=\frac {2 x y \,{\mathrm e}^{\frac {y}{x}}}{x^{2}+y^{2} \sin \left (\frac {x}{y}\right )} \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

33.362

21979

\begin{align*} y^{\prime }&=\frac {y+x^{2}}{x^{3}} \\ \end{align*}

[_linear]

1.317

21980

\begin{align*} \sin \left (x \right )+y^{2} y^{\prime }&=0 \\ \end{align*}

[_separable]

1.869

21981

\begin{align*} x y^{2}-x^{2} y^{2} y^{\prime }&=0 \\ \end{align*}

[_quadrature]

0.079

21982

\begin{align*} 1+y x +y^{\prime } y&=0 \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.270

21983

\begin{align*} 3 x^{2} y+\left (x^{3}+y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.566

21984

\begin{align*} y x +y^{2} y^{\prime }&=0 \\ \end{align*}

[_separable]

0.112

21985

\begin{align*} y^{\prime }&=2 \sqrt {{| y|}} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

1.530

21986

\begin{align*} y^{\prime }&=y x \\ \end{align*}

[_separable]

1.482

21987

\begin{align*} y^{\prime }&=y x +1 \\ \end{align*}

[_linear]

1.046

21988

\begin{align*} y^{\prime }&=\frac {x^{2}}{y^{2}} \\ \end{align*}

[_separable]

2.782

21989

\begin{align*} y^{\prime }&=-\frac {2 y}{x} \\ \end{align*}

[_separable]

1.798

21990

\begin{align*} y^{\prime }&=\frac {x y^{2}}{x^{2} y+y^{3}} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3.499

21991

\begin{align*} x -y^{2} y^{\prime }&=0 \\ \end{align*}

[_separable]

1.880

21992

\begin{align*} y^{\prime }&=x^{3} y^{2} \\ \end{align*}

[_separable]

2.403

21993

\begin{align*} y^{\prime }&=5 y \\ \end{align*}

[_quadrature]

0.349

21994

\begin{align*} y^{\prime }&=\frac {x +1}{1+y^{4}} \\ \end{align*}

[_separable]

1.528

21995

\begin{align*} {\mathrm e}^{x}-y^{\prime } y&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

1.342

21996

\begin{align*} \cos \left (x \right ) x +\left (1-6 y^{5}\right ) y^{\prime }&=0 \\ y \left (\pi \right ) &= 0 \\ \end{align*}

[_separable]

3.112

21997

\begin{align*} y^{\prime } y+x&=0 \\ \end{align*}

[_separable]

3.002

21998

\begin{align*} \frac {1}{x}-\frac {y^{\prime }}{y}&=0 \\ \end{align*}

[_separable]

1.598

21999

\begin{align*} \frac {1}{x}+y^{\prime }&=0 \\ \end{align*}

[_quadrature]

0.219

22000

\begin{align*} x +\frac {y^{\prime }}{y}&=0 \\ \end{align*}

[_separable]

1.550