2.4.2 Problem 28-2
Internal
problem
ID
[21704]
Book
:
The
Differential
Equations
Problem
Solver.
VOL.
II.
M.
Fogiel
director.
REA,
NY.
1978.
ISBN
78-63609
Section
:
Chapter
28.
Laplace
transforms.
Page
850
Problem
number
:
28-2
Date
solved
:
Thursday, December 11, 2025 at 11:37:47 PM
CAS
classification
:
[_quadrature]
\begin{align*}
y^{\prime }-5 y&=0 \\
y \left (\pi \right ) &= 2 \\
\end{align*}
Using Laplace transform method.
Entering first order ode laplace constant coeff solverSince initial condition is not at zero, then let
\begin{align*} y \left (0\right ) = c_1 \end{align*}
Solving using the Laplace transform method. Let
\[ \mathcal {L}\left (y\right ) =Y(s) \]
Taking the Laplace transform of the ode and
using the relations that \begin{align*} \mathcal {L}\left (y^{\prime }\right )&= s Y(s) - y \left (0\right ) \end{align*}
The given ode now becomes an algebraic equation in the Laplace domain
\begin{align*} s Y \left (s \right )-y \left (0\right )-5 Y \left (s \right ) = 0\tag {1} \end{align*}
Replacing initial condition gives
\begin{align*} s Y \left (s \right )-c_1 -5 Y \left (s \right ) = 0 \end{align*}
Solving for \(Y(s)\) gives
\begin{align*} Y(s) = \frac {c_1}{s -5} \end{align*}
Taking the inverse Laplace transform gives
\begin{align*} y&= \mathcal {L}^{-1}\left (Y(s)\right )\\ &= \mathcal {L}^{-1}\left (\frac {c_1}{s -5}\right )\\ &= c_1 \,{\mathrm e}^{5 t} \end{align*}
The constant \(c_1\) is determined from the given initial condition \(y(\pi )=2\) using the solution found above.
This results in
\begin{align*} 2&=c_1 \,{\mathrm e}^{5 \pi } \end{align*}
Solving gives
\begin{align*} c_1 &=2 \,{\mathrm e}^{-5 \pi } \end{align*}
Hence the solution now becomes
\begin{align*} y&=2 \,{\mathrm e}^{-5 \pi } {\mathrm e}^{5 t} \end{align*}
|
|
|
| Solution plot | Slope field \(y^{\prime }-5 y = 0\) |
2.4.2.1 ✓ Maple. Time used: 0.057 (sec). Leaf size: 14
ode:=diff(y(t),t)-5*y(t) = 0;
ic:=[y(Pi) = 2];
dsolve([ode,op(ic)],y(t),method='laplace');
\[
y = 2 \,{\mathrm e}^{5 t -5 \pi }
\]
Maple trace
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left [\frac {d}{d t}y \left (t \right )-5 y \left (t \right )=0, y \left (\pi \right )=2\right ] \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d t}y \left (t \right ) \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d t}y \left (t \right )=5 y \left (t \right ) \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {\frac {d}{d t}y \left (t \right )}{y \left (t \right )}=5 \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} t \\ {} & {} & \int \frac {\frac {d}{d t}y \left (t \right )}{y \left (t \right )}d t =\int 5d t +\mathit {C1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & \ln \left (y \left (t \right )\right )=5 t +\mathit {C1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} y \left (t \right ) \\ {} & {} & y \left (t \right )={\mathrm e}^{5 t +\mathit {C1}} \\ \bullet & {} & \textrm {Redefine the integration constant(s)}\hspace {3pt} \\ {} & {} & y \left (t \right )=\mathit {C1} \,{\mathrm e}^{5 t} \\ \bullet & {} & \textrm {Use initial condition}\hspace {3pt} y \left (\pi \right )=2 \\ {} & {} & 2=\mathit {C1} \,{\mathrm e}^{5 \pi } \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} \textit {\_C1} \\ {} & {} & \mathit {C1} =\frac {2}{{\mathrm e}^{5 \pi }} \\ \bullet & {} & \textrm {Substitute}\hspace {3pt} \textit {\_C1} =\frac {2}{{\mathrm e}^{5 \pi }}\hspace {3pt}\textrm {into general solution and simplify}\hspace {3pt} \\ {} & {} & y \left (t \right )=2 \,{\mathrm e}^{-5 \pi +5 t} \\ \bullet & {} & \textrm {Solution to the IVP}\hspace {3pt} \\ {} & {} & y \left (t \right )=2 \,{\mathrm e}^{-5 \pi +5 t} \end {array} \]
2.4.2.2 ✓ Mathematica. Time used: 0.014 (sec). Leaf size: 16
ode=D[y[t],t]-5*y[t]==0;
ic={y[Pi]==2};
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
\begin{align*} y(t)&\to 2 e^{5 t-5 \pi } \end{align*}
2.4.2.3 ✓ Sympy. Time used: 0.066 (sec). Leaf size: 14
from sympy import *
t = symbols("t")
y = Function("y")
ode = Eq(-5*y(t) + Derivative(y(t), t),0)
ics = {y(pi): 2}
dsolve(ode,func=y(t),ics=ics)
\[
y{\left (t \right )} = \frac {2 e^{5 t}}{e^{5 \pi }}
\]